mirror of https://github.com/mpv-player/mpv
762 lines
24 KiB
C
762 lines
24 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** $Id: sbr_fbt.c,v 1.17 2004/09/08 09:43:11 gcp Exp $
|
|
**/
|
|
|
|
/* Calculate frequency band tables */
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#ifdef SBR_DEC
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "sbr_syntax.h"
|
|
#include "sbr_fbt.h"
|
|
|
|
/* static function declarations */
|
|
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1);
|
|
|
|
|
|
/* calculate the start QMF channel for the master frequency band table */
|
|
/* parameter is also called k0 */
|
|
uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode,
|
|
uint32_t sample_rate)
|
|
{
|
|
static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16,
|
|
17, 24, 32, 35, 48 };
|
|
static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
|
|
6, 6, 6 };
|
|
static const int8_t offset[7][16] = {
|
|
{ -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
|
|
{ -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
|
|
{ -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
|
|
{ -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
|
|
{ -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
|
|
{ -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
|
|
};
|
|
uint8_t startMin = startMinTable[get_sr_index(sample_rate)];
|
|
uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)];
|
|
|
|
#if 0 /* replaced with table (startMinTable) */
|
|
if (sample_rate >= 64000)
|
|
{
|
|
startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5);
|
|
} else if (sample_rate < 32000) {
|
|
startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5);
|
|
} else {
|
|
startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5);
|
|
}
|
|
#endif
|
|
|
|
if (bs_samplerate_mode)
|
|
{
|
|
return startMin + offset[offsetIndex][bs_start_freq];
|
|
|
|
#if 0 /* replaced by offsetIndexTable */
|
|
switch (sample_rate)
|
|
{
|
|
case 16000:
|
|
return startMin + offset[0][bs_start_freq];
|
|
case 22050:
|
|
return startMin + offset[1][bs_start_freq];
|
|
case 24000:
|
|
return startMin + offset[2][bs_start_freq];
|
|
case 32000:
|
|
return startMin + offset[3][bs_start_freq];
|
|
default:
|
|
if (sample_rate > 64000)
|
|
{
|
|
return startMin + offset[5][bs_start_freq];
|
|
} else { /* 44100 <= sample_rate <= 64000 */
|
|
return startMin + offset[4][bs_start_freq];
|
|
}
|
|
}
|
|
#endif
|
|
} else {
|
|
return startMin + offset[6][bs_start_freq];
|
|
}
|
|
}
|
|
|
|
static int longcmp(const void *a, const void *b)
|
|
{
|
|
return ((int)(*(int32_t*)a - *(int32_t*)b));
|
|
}
|
|
|
|
/* calculate the stop QMF channel for the master frequency band table */
|
|
/* parameter is also called k2 */
|
|
uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate,
|
|
uint8_t k0)
|
|
{
|
|
if (bs_stop_freq == 15)
|
|
{
|
|
return min(64, k0 * 3);
|
|
} else if (bs_stop_freq == 14) {
|
|
return min(64, k0 * 2);
|
|
} else {
|
|
static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23,
|
|
32, 32, 35, 48, 64, 70, 96 };
|
|
static const int8_t offset[12][14] = {
|
|
{ 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
|
|
{ 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
|
|
{ 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
|
|
{ 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
|
|
{ 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
|
|
{ 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
|
|
{ 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
|
|
{ 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
|
|
{ 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
|
|
};
|
|
#if 0
|
|
uint8_t i;
|
|
int32_t stopDk[13], stopDk_t[14], k2;
|
|
#endif
|
|
uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)];
|
|
|
|
#if 0 /* replaced by table lookup */
|
|
if (sample_rate >= 64000)
|
|
{
|
|
stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5);
|
|
} else if (sample_rate < 32000) {
|
|
stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5);
|
|
} else {
|
|
stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5);
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* replaced by table lookup */
|
|
/* diverging power series */
|
|
for (i = 0; i <= 13; i++)
|
|
{
|
|
stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5);
|
|
}
|
|
for (i = 0; i < 13; i++)
|
|
{
|
|
stopDk[i] = stopDk_t[i+1] - stopDk_t[i];
|
|
}
|
|
|
|
/* needed? */
|
|
qsort(stopDk, 13, sizeof(stopDk[0]), longcmp);
|
|
|
|
k2 = stopMin;
|
|
for (i = 0; i < bs_stop_freq; i++)
|
|
{
|
|
k2 += stopDk[i];
|
|
}
|
|
return min(64, k2);
|
|
#endif
|
|
/* bs_stop_freq <= 13 */
|
|
return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* calculate the master frequency table from k0, k2, bs_freq_scale
|
|
and bs_alter_scale
|
|
|
|
version for bs_freq_scale = 0
|
|
*/
|
|
uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2,
|
|
uint8_t bs_alter_scale)
|
|
{
|
|
int8_t incr;
|
|
uint8_t k;
|
|
uint8_t dk;
|
|
uint32_t nrBands, k2Achieved;
|
|
int32_t k2Diff, vDk[64] = {0};
|
|
|
|
/* mft only defined for k2 > k0 */
|
|
if (k2 <= k0)
|
|
{
|
|
sbr->N_master = 0;
|
|
return 1;
|
|
}
|
|
|
|
dk = bs_alter_scale ? 2 : 1;
|
|
|
|
#if 0 /* replaced by float-less design */
|
|
nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f);
|
|
#else
|
|
if (bs_alter_scale)
|
|
{
|
|
nrBands = (((k2-k0+2)>>2)<<1);
|
|
} else {
|
|
nrBands = (((k2-k0)>>1)<<1);
|
|
}
|
|
#endif
|
|
nrBands = min(nrBands, 63);
|
|
if (nrBands <= 0)
|
|
return 1;
|
|
|
|
k2Achieved = k0 + nrBands * dk;
|
|
k2Diff = k2 - k2Achieved;
|
|
for (k = 0; k < nrBands; k++)
|
|
vDk[k] = dk;
|
|
|
|
if (k2Diff)
|
|
{
|
|
incr = (k2Diff > 0) ? -1 : 1;
|
|
k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0);
|
|
|
|
while (k2Diff != 0)
|
|
{
|
|
vDk[k] -= incr;
|
|
k += incr;
|
|
k2Diff += incr;
|
|
}
|
|
}
|
|
|
|
sbr->f_master[0] = k0;
|
|
for (k = 1; k <= nrBands; k++)
|
|
sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]);
|
|
|
|
sbr->N_master = (uint8_t)nrBands;
|
|
sbr->N_master = (min(sbr->N_master, 64));
|
|
|
|
#if 0
|
|
printf("f_master[%d]: ", nrBands);
|
|
for (k = 0; k <= nrBands; k++)
|
|
{
|
|
printf("%d ", sbr->f_master[k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
This function finds the number of bands using this formula:
|
|
bands * log(a1/a0)/log(2.0) + 0.5
|
|
*/
|
|
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1)
|
|
{
|
|
#ifdef FIXED_POINT
|
|
/* table with log2() values */
|
|
static const real_t log2Table[65] = {
|
|
COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
|
|
COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
|
|
COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
|
|
COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
|
|
COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
|
|
COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
|
|
COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
|
|
COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
|
|
COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
|
|
COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
|
|
COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
|
|
COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
|
|
COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
|
|
COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
|
|
COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
|
|
COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
|
|
COEF_CONST(6.0)
|
|
};
|
|
real_t r0 = log2Table[a0]; /* coef */
|
|
real_t r1 = log2Table[a1]; /* coef */
|
|
real_t r2 = (r1 - r0); /* coef */
|
|
|
|
if (warp)
|
|
r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
|
|
|
|
/* convert r2 to real and then multiply and round */
|
|
r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
|
|
|
|
return (r2 >> REAL_BITS);
|
|
#else
|
|
real_t div = (real_t)log(2.0);
|
|
if (warp) div *= (real_t)1.3;
|
|
|
|
return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
|
|
#endif
|
|
}
|
|
|
|
static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1)
|
|
{
|
|
#ifdef FIXED_POINT
|
|
/* table with log() values */
|
|
static const real_t logTable[65] = {
|
|
COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
|
|
COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
|
|
COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
|
|
COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
|
|
COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
|
|
COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
|
|
COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
|
|
COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
|
|
COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
|
|
COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
|
|
COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
|
|
COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
|
|
COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
|
|
COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
|
|
COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
|
|
COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
|
|
COEF_CONST(4.158883083)
|
|
};
|
|
/* standard Taylor polynomial coefficients for exp(x) around 0 */
|
|
/* a polynomial around x=1 is more precise, as most values are around 1.07,
|
|
but this is just fine already */
|
|
static const real_t c1 = COEF_CONST(1.0);
|
|
static const real_t c2 = COEF_CONST(1.0/2.0);
|
|
static const real_t c3 = COEF_CONST(1.0/6.0);
|
|
static const real_t c4 = COEF_CONST(1.0/24.0);
|
|
|
|
real_t r0 = logTable[a0]; /* coef */
|
|
real_t r1 = logTable[a1]; /* coef */
|
|
real_t r2 = (r1 - r0) / bands; /* coef */
|
|
real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
|
|
|
|
return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
|
|
#else
|
|
return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
version for bs_freq_scale > 0
|
|
*/
|
|
uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2,
|
|
uint8_t bs_freq_scale, uint8_t bs_alter_scale)
|
|
{
|
|
uint8_t k, bands, twoRegions;
|
|
uint8_t k1;
|
|
uint8_t nrBand0, nrBand1;
|
|
int32_t vDk0[64] = {0}, vDk1[64] = {0};
|
|
int32_t vk0[64] = {0}, vk1[64] = {0};
|
|
uint8_t temp1[] = { 6, 5, 4 };
|
|
real_t q, qk;
|
|
int32_t A_1;
|
|
#ifdef FIXED_POINT
|
|
real_t rk2, rk0;
|
|
#endif
|
|
|
|
/* mft only defined for k2 > k0 */
|
|
if (k2 <= k0)
|
|
{
|
|
sbr->N_master = 0;
|
|
return 1;
|
|
}
|
|
|
|
bands = temp1[bs_freq_scale-1];
|
|
|
|
#ifdef FIXED_POINT
|
|
rk0 = (real_t)k0 << REAL_BITS;
|
|
rk2 = (real_t)k2 << REAL_BITS;
|
|
if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
|
|
#else
|
|
if ((float)k2/(float)k0 > 2.2449)
|
|
#endif
|
|
{
|
|
twoRegions = 1;
|
|
k1 = k0 << 1;
|
|
} else {
|
|
twoRegions = 0;
|
|
k1 = k2;
|
|
}
|
|
|
|
nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
|
|
nrBand0 = min(nrBand0, 63);
|
|
if (nrBand0 <= 0)
|
|
return 1;
|
|
|
|
q = find_initial_power(nrBand0, k0, k1);
|
|
#ifdef FIXED_POINT
|
|
qk = (real_t)k0 << REAL_BITS;
|
|
//A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
|
|
A_1 = k0;
|
|
#else
|
|
qk = REAL_CONST(k0);
|
|
A_1 = (int32_t)(qk + .5);
|
|
#endif
|
|
for (k = 0; k <= nrBand0; k++)
|
|
{
|
|
int32_t A_0 = A_1;
|
|
#ifdef FIXED_POINT
|
|
qk = MUL_R(qk,q);
|
|
A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
|
|
#else
|
|
qk *= q;
|
|
A_1 = (int32_t)(qk + 0.5);
|
|
#endif
|
|
vDk0[k] = A_1 - A_0;
|
|
}
|
|
|
|
/* needed? */
|
|
qsort(vDk0, nrBand0, sizeof(vDk0[0]), longcmp);
|
|
|
|
vk0[0] = k0;
|
|
for (k = 1; k <= nrBand0; k++)
|
|
{
|
|
vk0[k] = vk0[k-1] + vDk0[k-1];
|
|
if (vDk0[k-1] == 0)
|
|
return 1;
|
|
}
|
|
|
|
if (!twoRegions)
|
|
{
|
|
for (k = 0; k <= nrBand0; k++)
|
|
sbr->f_master[k] = (uint8_t) vk0[k];
|
|
|
|
sbr->N_master = nrBand0;
|
|
sbr->N_master = min(sbr->N_master, 64);
|
|
return 0;
|
|
}
|
|
|
|
nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
|
|
nrBand1 = min(nrBand1, 63);
|
|
|
|
q = find_initial_power(nrBand1, k1, k2);
|
|
#ifdef FIXED_POINT
|
|
qk = (real_t)k1 << REAL_BITS;
|
|
//A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
|
|
A_1 = k1;
|
|
#else
|
|
qk = REAL_CONST(k1);
|
|
A_1 = (int32_t)(qk + .5);
|
|
#endif
|
|
for (k = 0; k <= nrBand1 - 1; k++)
|
|
{
|
|
int32_t A_0 = A_1;
|
|
#ifdef FIXED_POINT
|
|
qk = MUL_R(qk,q);
|
|
A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
|
|
#else
|
|
qk *= q;
|
|
A_1 = (int32_t)(qk + 0.5);
|
|
#endif
|
|
vDk1[k] = A_1 - A_0;
|
|
}
|
|
|
|
if (vDk1[0] < vDk0[nrBand0 - 1])
|
|
{
|
|
int32_t change;
|
|
|
|
/* needed? */
|
|
qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp);
|
|
change = vDk0[nrBand0 - 1] - vDk1[0];
|
|
vDk1[0] = vDk0[nrBand0 - 1];
|
|
vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
|
|
}
|
|
|
|
/* needed? */
|
|
qsort(vDk1, nrBand1, sizeof(vDk1[0]), longcmp);
|
|
vk1[0] = k1;
|
|
for (k = 1; k <= nrBand1; k++)
|
|
{
|
|
vk1[k] = vk1[k-1] + vDk1[k-1];
|
|
if (vDk1[k-1] == 0)
|
|
return 1;
|
|
}
|
|
|
|
sbr->N_master = nrBand0 + nrBand1;
|
|
sbr->N_master = min(sbr->N_master, 64);
|
|
for (k = 0; k <= nrBand0; k++)
|
|
{
|
|
sbr->f_master[k] = (uint8_t) vk0[k];
|
|
}
|
|
for (k = nrBand0 + 1; k <= sbr->N_master; k++)
|
|
{
|
|
sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
|
|
}
|
|
|
|
#if 0
|
|
printf("f_master[%d]: ", sbr->N_master);
|
|
for (k = 0; k <= sbr->N_master; k++)
|
|
{
|
|
printf("%d ", sbr->f_master[k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* calculate the derived frequency border tables from f_master */
|
|
uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band,
|
|
uint8_t k2)
|
|
{
|
|
uint8_t k, i;
|
|
uint32_t minus;
|
|
|
|
/* The following relation shall be satisfied: bs_xover_band < N_Master */
|
|
if (sbr->N_master <= bs_xover_band)
|
|
return 1;
|
|
|
|
sbr->N_high = sbr->N_master - bs_xover_band;
|
|
sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1));
|
|
|
|
sbr->n[0] = sbr->N_low;
|
|
sbr->n[1] = sbr->N_high;
|
|
|
|
for (k = 0; k <= sbr->N_high; k++)
|
|
{
|
|
sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band];
|
|
}
|
|
|
|
sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0];
|
|
sbr->kx = sbr->f_table_res[HI_RES][0];
|
|
if (sbr->kx > 32)
|
|
return 1;
|
|
if (sbr->kx + sbr->M > 64)
|
|
return 1;
|
|
|
|
minus = (sbr->N_high & 1) ? 1 : 0;
|
|
|
|
for (k = 0; k <= sbr->N_low; k++)
|
|
{
|
|
if (k == 0)
|
|
i = 0;
|
|
else
|
|
i = (uint8_t)(2*k - minus);
|
|
sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i];
|
|
}
|
|
|
|
#if 0
|
|
printf("bs_freq_scale: %d\n", sbr->bs_freq_scale);
|
|
printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands);
|
|
printf("f_table_res[HI_RES][%d]: ", sbr->N_high);
|
|
for (k = 0; k <= sbr->N_high; k++)
|
|
{
|
|
printf("%d ", sbr->f_table_res[HI_RES][k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
#if 0
|
|
printf("f_table_res[LO_RES][%d]: ", sbr->N_low);
|
|
for (k = 0; k <= sbr->N_low; k++)
|
|
{
|
|
printf("%d ", sbr->f_table_res[LO_RES][k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
sbr->N_Q = 0;
|
|
if (sbr->bs_noise_bands == 0)
|
|
{
|
|
sbr->N_Q = 1;
|
|
} else {
|
|
#if 0
|
|
sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5));
|
|
#else
|
|
sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2)));
|
|
#endif
|
|
sbr->N_Q = min(5, sbr->N_Q);
|
|
}
|
|
|
|
for (k = 0; k <= sbr->N_Q; k++)
|
|
{
|
|
if (k == 0)
|
|
{
|
|
i = 0;
|
|
} else {
|
|
/* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */
|
|
i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k);
|
|
}
|
|
sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i];
|
|
}
|
|
|
|
/* build table for mapping k to g in hf patching */
|
|
for (k = 0; k < 64; k++)
|
|
{
|
|
uint8_t g;
|
|
for (g = 0; g < sbr->N_Q; g++)
|
|
{
|
|
if ((sbr->f_table_noise[g] <= k) &&
|
|
(k < sbr->f_table_noise[g+1]))
|
|
{
|
|
sbr->table_map_k_to_g[k] = g;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
printf("f_table_noise[%d]: ", sbr->N_Q);
|
|
for (k = 0; k <= sbr->N_Q; k++)
|
|
{
|
|
printf("%d ", sbr->f_table_noise[k] - sbr->kx);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* TODO: blegh, ugly */
|
|
/* Modified to calculate for all possible bs_limiter_bands always
|
|
* This reduces the number calls to this functions needed (now only on
|
|
* header reset)
|
|
*/
|
|
void limiter_frequency_table(sbr_info *sbr)
|
|
{
|
|
#if 0
|
|
static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
|
|
REAL_CONST(2), REAL_CONST(3) };
|
|
#else
|
|
static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
|
|
REAL_CONST(1.185093), REAL_CONST(1.119872) };
|
|
#endif
|
|
uint8_t k, s;
|
|
int8_t nrLim;
|
|
#if 0
|
|
real_t limBands;
|
|
#endif
|
|
|
|
sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
|
|
sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
|
|
sbr->N_L[0] = 1;
|
|
|
|
#if 0
|
|
printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
|
|
for (k = 0; k <= sbr->N_L[0]; k++)
|
|
{
|
|
printf("%d ", sbr->f_table_lim[0][k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
for (s = 1; s < 4; s++)
|
|
{
|
|
int32_t limTable[100 /*TODO*/] = {0};
|
|
uint8_t patchBorders[64/*??*/] = {0};
|
|
|
|
#if 0
|
|
limBands = limiterBandsPerOctave[s - 1];
|
|
#endif
|
|
|
|
patchBorders[0] = sbr->kx;
|
|
for (k = 1; k <= sbr->noPatches; k++)
|
|
{
|
|
patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
|
|
}
|
|
|
|
for (k = 0; k <= sbr->N_low; k++)
|
|
{
|
|
limTable[k] = sbr->f_table_res[LO_RES][k];
|
|
}
|
|
for (k = 1; k < sbr->noPatches; k++)
|
|
{
|
|
limTable[k+sbr->N_low] = patchBorders[k];
|
|
}
|
|
|
|
/* needed */
|
|
qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
|
|
k = 1;
|
|
nrLim = sbr->noPatches + sbr->N_low - 1;
|
|
|
|
if (nrLim < 0) // TODO: BIG FAT PROBLEM
|
|
return;
|
|
|
|
restart:
|
|
if (k <= nrLim)
|
|
{
|
|
real_t nOctaves;
|
|
|
|
if (limTable[k-1] != 0)
|
|
#if 0
|
|
nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
|
|
#else
|
|
#ifdef FIXED_POINT
|
|
nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
|
|
#else
|
|
nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
|
|
#endif
|
|
#endif
|
|
else
|
|
nOctaves = 0;
|
|
|
|
#if 0
|
|
if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
|
|
#else
|
|
if (nOctaves < limiterBandsCompare[s - 1])
|
|
#endif
|
|
{
|
|
uint8_t i;
|
|
if (limTable[k] != limTable[k-1])
|
|
{
|
|
uint8_t found = 0, found2 = 0;
|
|
for (i = 0; i <= sbr->noPatches; i++)
|
|
{
|
|
if (limTable[k] == patchBorders[i])
|
|
found = 1;
|
|
}
|
|
if (found)
|
|
{
|
|
found2 = 0;
|
|
for (i = 0; i <= sbr->noPatches; i++)
|
|
{
|
|
if (limTable[k-1] == patchBorders[i])
|
|
found2 = 1;
|
|
}
|
|
if (found2)
|
|
{
|
|
k++;
|
|
goto restart;
|
|
} else {
|
|
/* remove (k-1)th element */
|
|
limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
|
|
qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
|
|
nrLim--;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
/* remove kth element */
|
|
limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
|
|
qsort(limTable, nrLim, sizeof(limTable[0]), longcmp);
|
|
nrLim--;
|
|
goto restart;
|
|
} else {
|
|
k++;
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
sbr->N_L[s] = nrLim;
|
|
for (k = 0; k <= nrLim; k++)
|
|
{
|
|
sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
|
|
}
|
|
|
|
#if 0
|
|
printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
|
|
for (k = 0; k <= sbr->N_L[s]; k++)
|
|
{
|
|
printf("%d ", sbr->f_table_lim[s][k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|