mirror of
https://github.com/mpv-player/mpv
synced 2024-12-25 08:12:17 +00:00
cca02e51ef
libzimg recently added direct alpha support and new API for it. (The API change is rather minimal, and it turns out we can easily support old and new zimg versions.) This does not support _all_ alpha formats. For example, gray + alpha is not supported yet, because my stupid design in the zimg wrapper would require a planar gray + alpha format, while ffmpeg provides only a packed one.
932 lines
33 KiB
C
932 lines
33 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "common/common.h"
|
|
#include "common/msg.h"
|
|
#include "csputils.h"
|
|
#include "options/m_config.h"
|
|
#include "options/m_option.h"
|
|
#include "video/img_format.h"
|
|
#include "zimg.h"
|
|
|
|
static_assert(MP_IMAGE_BYTE_ALIGN >= ZIMG_ALIGN, "");
|
|
|
|
#define HAVE_ZIMG_ALPHA (ZIMG_API_VERSION >= ZIMG_MAKE_API_VERSION(2, 4))
|
|
|
|
static const struct m_opt_choice_alternatives mp_zimg_scalers[] = {
|
|
{"point", ZIMG_RESIZE_POINT},
|
|
{"bilinear", ZIMG_RESIZE_BILINEAR},
|
|
{"bicubic", ZIMG_RESIZE_BICUBIC},
|
|
{"spline16", ZIMG_RESIZE_SPLINE16},
|
|
{"spline36", ZIMG_RESIZE_SPLINE36},
|
|
{"lanczos", ZIMG_RESIZE_LANCZOS},
|
|
{0}
|
|
};
|
|
|
|
#define OPT_PARAM(name, var, flags) \
|
|
OPT_DOUBLE(name, var, (flags) | M_OPT_DEFAULT_NAN)
|
|
|
|
#define OPT_BASE_STRUCT struct zimg_opts
|
|
const struct m_sub_options zimg_conf = {
|
|
.opts = (struct m_option[]) {
|
|
OPT_CHOICE_C("scaler", scaler, 0, mp_zimg_scalers),
|
|
OPT_PARAM("scaler-param-a", scaler_params[0], 0),
|
|
OPT_PARAM("scaler-param-b", scaler_params[1], 0),
|
|
OPT_CHOICE_C("scaler-chroma", scaler_chroma, 0, mp_zimg_scalers),
|
|
OPT_PARAM("scaler-chroma-param-a", scaler_chroma_params[0], 0),
|
|
OPT_PARAM("scaler-chroma-param-b", scaler_chroma_params[1], 0),
|
|
OPT_CHOICE("dither", dither, 0,
|
|
({"no", ZIMG_DITHER_NONE},
|
|
{"ordered", ZIMG_DITHER_ORDERED},
|
|
{"random", ZIMG_DITHER_RANDOM},
|
|
{"error-diffusion", ZIMG_DITHER_ERROR_DIFFUSION})),
|
|
OPT_FLAG("fast", fast, 0),
|
|
{0}
|
|
},
|
|
.size = sizeof(struct zimg_opts),
|
|
.defaults = &(const struct zimg_opts){
|
|
.scaler = ZIMG_RESIZE_LANCZOS,
|
|
.scaler_params = {NAN, NAN},
|
|
.scaler_chroma_params = {NAN, NAN},
|
|
.scaler_chroma = ZIMG_RESIZE_BILINEAR,
|
|
.dither = ZIMG_DITHER_RANDOM,
|
|
.fast = 1,
|
|
},
|
|
};
|
|
|
|
struct mp_zimg_repack {
|
|
bool pack; // if false, this is for unpacking
|
|
struct mp_image_params fmt; // original mp format (possibly packed format)
|
|
int zimgfmt; // zimg equivalent unpacked format
|
|
int zplanes; // number of planes (zimgfmt)
|
|
unsigned zmask[4]; // zmask[n] = zimg_image_buffer.plane[n].mask
|
|
int z_planes[4]; // z_planes[zimg_index] = mp_index
|
|
bool pass_through_y; // luma plane optimization for e.g. nv12
|
|
|
|
// If set, the pack/unpack callback to pass to zimg.
|
|
// Called with user==mp_zimg_repack.
|
|
zimg_filter_graph_callback repack;
|
|
|
|
// For packed_repack.
|
|
int components[4]; // p2[n] = mp_image.planes[components[n]]
|
|
// pack: p1 is dst, p2 is src
|
|
// unpack: p1 is src, p2 is dst
|
|
void (*packed_repack_scanline)(void *p1, void *p2[], int x0, int x1);
|
|
|
|
// Temporary memory for slice-wise repacking. This may be set even if repack
|
|
// is not set (then it may be used to avoid alignment issues). This has
|
|
// about one slice worth of data.
|
|
struct mp_image *tmp;
|
|
|
|
// Temporary, per-call source/target frame. (Regrettably a mutable field,
|
|
// but it's not the only one, and makes the callbacks much less of a mess
|
|
// by avoiding another "closure" indirection.)
|
|
// To be used by the repack callback.
|
|
struct mp_image *mpi;
|
|
|
|
// Also temporary, per-call. use_buf[n] == plane n uses tmp (and not mpi).
|
|
bool use_buf[4];
|
|
};
|
|
|
|
static void mp_zimg_update_from_cmdline(struct mp_zimg_context *ctx)
|
|
{
|
|
m_config_cache_update(ctx->opts_cache);
|
|
|
|
struct zimg_opts *opts = ctx->opts_cache->opts;
|
|
ctx->opts = *opts;
|
|
}
|
|
|
|
static zimg_chroma_location_e mp_to_z_chroma(enum mp_chroma_location cl)
|
|
{
|
|
switch (cl) {
|
|
case MP_CHROMA_LEFT: return ZIMG_CHROMA_LEFT;
|
|
case MP_CHROMA_CENTER: return ZIMG_CHROMA_CENTER;
|
|
default: return ZIMG_CHROMA_LEFT;
|
|
}
|
|
}
|
|
|
|
static zimg_matrix_coefficients_e mp_to_z_matrix(enum mp_csp csp)
|
|
{
|
|
switch (csp) {
|
|
case MP_CSP_BT_601: return ZIMG_MATRIX_BT470_BG;
|
|
case MP_CSP_BT_709: return ZIMG_MATRIX_BT709;
|
|
case MP_CSP_SMPTE_240M: return ZIMG_MATRIX_ST240_M;
|
|
case MP_CSP_BT_2020_NC: return ZIMG_MATRIX_BT2020_NCL;
|
|
case MP_CSP_BT_2020_C: return ZIMG_MATRIX_BT2020_CL;
|
|
case MP_CSP_RGB: return ZIMG_MATRIX_RGB;
|
|
case MP_CSP_XYZ: return ZIMG_MATRIX_RGB;
|
|
case MP_CSP_YCGCO: return ZIMG_MATRIX_YCGCO;
|
|
default: return ZIMG_MATRIX_BT709;
|
|
}
|
|
}
|
|
|
|
static zimg_transfer_characteristics_e mp_to_z_trc(enum mp_csp_trc trc)
|
|
{
|
|
switch (trc) {
|
|
case MP_CSP_TRC_BT_1886: return ZIMG_TRANSFER_BT709;
|
|
case MP_CSP_TRC_SRGB: return ZIMG_TRANSFER_IEC_61966_2_1;
|
|
case MP_CSP_TRC_LINEAR: return ZIMG_TRANSFER_LINEAR;
|
|
case MP_CSP_TRC_GAMMA22: return ZIMG_TRANSFER_BT470_M;
|
|
case MP_CSP_TRC_GAMMA28: return ZIMG_TRANSFER_BT470_BG;
|
|
case MP_CSP_TRC_PQ: return ZIMG_TRANSFER_ST2084;
|
|
case MP_CSP_TRC_HLG: return ZIMG_TRANSFER_ARIB_B67;
|
|
case MP_CSP_TRC_GAMMA18: // ?
|
|
case MP_CSP_TRC_GAMMA20:
|
|
case MP_CSP_TRC_GAMMA24:
|
|
case MP_CSP_TRC_GAMMA26:
|
|
case MP_CSP_TRC_PRO_PHOTO:
|
|
case MP_CSP_TRC_V_LOG:
|
|
case MP_CSP_TRC_S_LOG1:
|
|
case MP_CSP_TRC_S_LOG2: // ?
|
|
default: return ZIMG_TRANSFER_BT709;
|
|
}
|
|
}
|
|
|
|
static zimg_color_primaries_e mp_to_z_prim(enum mp_csp_prim prim)
|
|
{
|
|
switch (prim) {
|
|
case MP_CSP_PRIM_BT_601_525:return ZIMG_PRIMARIES_ST170_M;
|
|
case MP_CSP_PRIM_BT_601_625:return ZIMG_PRIMARIES_BT470_BG;
|
|
case MP_CSP_PRIM_BT_709: return ZIMG_PRIMARIES_BT709;
|
|
case MP_CSP_PRIM_BT_2020: return ZIMG_PRIMARIES_BT2020;
|
|
case MP_CSP_PRIM_BT_470M: return ZIMG_PRIMARIES_BT470_M;
|
|
case MP_CSP_PRIM_CIE_1931: return ZIMG_PRIMARIES_ST428;
|
|
case MP_CSP_PRIM_DCI_P3: return ZIMG_PRIMARIES_ST431_2;
|
|
case MP_CSP_PRIM_DISPLAY_P3:return ZIMG_PRIMARIES_ST432_1;
|
|
case MP_CSP_PRIM_APPLE: // ?
|
|
case MP_CSP_PRIM_ADOBE:
|
|
case MP_CSP_PRIM_PRO_PHOTO:
|
|
case MP_CSP_PRIM_V_GAMUT:
|
|
case MP_CSP_PRIM_S_GAMUT: // ?
|
|
default: return ZIMG_PRIMARIES_BT709;
|
|
}
|
|
}
|
|
|
|
static void destroy_zimg(struct mp_zimg_context *ctx)
|
|
{
|
|
free(ctx->zimg_tmp);
|
|
ctx->zimg_tmp = NULL;
|
|
zimg_filter_graph_free(ctx->zimg_graph);
|
|
ctx->zimg_graph = NULL;
|
|
TA_FREEP(&ctx->zimg_src);
|
|
TA_FREEP(&ctx->zimg_dst);
|
|
}
|
|
|
|
static void free_mp_zimg(void *p)
|
|
{
|
|
struct mp_zimg_context *ctx = p;
|
|
|
|
destroy_zimg(ctx);
|
|
}
|
|
|
|
struct mp_zimg_context *mp_zimg_alloc(void)
|
|
{
|
|
struct mp_zimg_context *ctx = talloc_ptrtype(NULL, ctx);
|
|
*ctx = (struct mp_zimg_context) {
|
|
.log = mp_null_log,
|
|
};
|
|
ctx->opts = *(struct zimg_opts *)zimg_conf.defaults;
|
|
talloc_set_destructor(ctx, free_mp_zimg);
|
|
return ctx;
|
|
}
|
|
|
|
void mp_zimg_enable_cmdline_opts(struct mp_zimg_context *ctx,
|
|
struct mpv_global *g)
|
|
{
|
|
if (ctx->opts_cache)
|
|
return;
|
|
|
|
ctx->opts_cache = m_config_cache_alloc(ctx, g, &zimg_conf);
|
|
destroy_zimg(ctx); // force update
|
|
mp_zimg_update_from_cmdline(ctx); // first update
|
|
}
|
|
|
|
static int repack_align(void *user, unsigned i, unsigned x0, unsigned x1)
|
|
{
|
|
struct mp_zimg_repack *r = user;
|
|
|
|
for (int p = 0; p < r->mpi->fmt.num_planes; p++) {
|
|
if (!r->use_buf[p])
|
|
continue;
|
|
|
|
int bpp = r->mpi->fmt.bytes[p];
|
|
int xs = r->mpi->fmt.xs[p];
|
|
int ys = r->mpi->fmt.ys[p];
|
|
// Number of lines on this plane.
|
|
int h = (1 << r->mpi->fmt.chroma_ys) - (1 << ys) + 1;
|
|
|
|
for (int y = i; y < i + h; y++) {
|
|
void *a = r->mpi->planes[p] +
|
|
r->mpi->stride[p] * (ptrdiff_t)(y >> ys) +
|
|
bpp * (x0 >> xs);
|
|
void *b = r->tmp->planes[p] +
|
|
r->tmp->stride[p] * (ptrdiff_t)((y >> ys) & r->zmask[p]) +
|
|
bpp * (x0 >> xs);
|
|
size_t size = ((x1 - x0) >> xs) * bpp;
|
|
if (r->pack) {
|
|
memcpy(a, b, size);
|
|
} else {
|
|
memcpy(b, a, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// PA = PAck, copy planar input to single packed array
|
|
// UN = UNpack, copy packed input to planar output
|
|
// Naming convention:
|
|
// pa_/un_ prefix to identify conversion direction.
|
|
// Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
|
|
// (This is unusual; MSG to LSB is more commonly used to describe formats,
|
|
// but our convention makes more sense for byte access in little endian.)
|
|
// "c" identifies a color component.
|
|
// "z" identifies known zero padding.
|
|
// "o" identifies opaque alpha (unused/unsupported yet).
|
|
// "x" identifies uninitialized padding.
|
|
// A component is followed by its size in bits.
|
|
// Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
|
|
// Unpackers will often use "x" for padding, because they ignore it, while
|
|
// packets will use "z" because they write zero.
|
|
|
|
#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \
|
|
static void name(void *dst, void *src[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
((packed_t *)dst)[x] = \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
|
|
((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \
|
|
((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \
|
|
} \
|
|
}
|
|
|
|
#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
|
|
static void name(void *src, void *dst[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
|
|
((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
|
|
#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \
|
|
static void name(void *dst, void *src[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
((packed_t *)dst)[x] = (pad) | \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
|
|
((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu)
|
|
PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24)
|
|
// Not sure if this is a good idea; there may be no alignment guarantee.
|
|
UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu)
|
|
PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48)
|
|
|
|
#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \
|
|
static void name(void *src, void *dst[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu)
|
|
PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0)
|
|
UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu)
|
|
PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0)
|
|
UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
|
|
PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 20, 10, 0, 0)
|
|
|
|
#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \
|
|
static void name(void *dst, void *src[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
((packed_t *)dst)[x] = (pad) | \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \
|
|
} \
|
|
}
|
|
|
|
#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \
|
|
static void name(void *src, void *dst[], int x0, int x1) { \
|
|
for (int x = x0; x < x1; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu)
|
|
PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0)
|
|
UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
|
|
PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)
|
|
|
|
#define PA_SEQ_3(name, comp_t) \
|
|
static void name(void *dst, void *src[], int x0, int x1) { \
|
|
comp_t *r = dst; \
|
|
for (int x = x0; x < x1; x++) { \
|
|
*r++ = ((comp_t *)src[0])[x]; \
|
|
*r++ = ((comp_t *)src[1])[x]; \
|
|
*r++ = ((comp_t *)src[2])[x]; \
|
|
} \
|
|
}
|
|
|
|
#define UN_SEQ_3(name, comp_t) \
|
|
static void name(void *src, void *dst[], int x0, int x1) { \
|
|
comp_t *r = src; \
|
|
for (int x = x0; x < x1; x++) { \
|
|
((comp_t *)dst[0])[x] = *r++; \
|
|
((comp_t *)dst[1])[x] = *r++; \
|
|
((comp_t *)dst[2])[x] = *r++; \
|
|
} \
|
|
}
|
|
|
|
UN_SEQ_3(un_ccc8, uint8_t)
|
|
PA_SEQ_3(pa_ccc8, uint8_t)
|
|
UN_SEQ_3(un_ccc16, uint16_t)
|
|
PA_SEQ_3(pa_ccc16, uint16_t)
|
|
|
|
// "regular": single packed plane, all components have same width (except padding)
|
|
struct regular_repacker {
|
|
int packed_width; // number of bits of the packed pixel
|
|
int component_width; // number of bits for a single component
|
|
int prepadding; // number of bits of LSB padding
|
|
int num_components; // number of components that can be accessed
|
|
void (*pa_scanline)(void *p1, void *p2[], int x0, int x1);
|
|
void (*un_scanline)(void *p1, void *p2[], int x0, int x1);
|
|
};
|
|
|
|
static const struct regular_repacker regular_repackers[] = {
|
|
{32, 8, 0, 3, pa_ccc8z8, un_ccc8x8},
|
|
{32, 8, 8, 3, pa_z8ccc8, un_x8ccc8},
|
|
{32, 8, 0, 4, pa_cccc8, un_cccc8},
|
|
{64, 16, 0, 4, pa_cccc16, un_cccc16},
|
|
{24, 8, 0, 3, pa_ccc8, un_ccc8},
|
|
{48, 16, 0, 3, pa_ccc16, un_ccc16},
|
|
{16, 8, 0, 2, pa_cc8, un_cc8},
|
|
{32, 16, 0, 2, pa_cc16, un_cc16},
|
|
{32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
|
|
};
|
|
|
|
static int packed_repack(void *user, unsigned i, unsigned x0, unsigned x1)
|
|
{
|
|
struct mp_zimg_repack *r = user;
|
|
|
|
uint32_t *p1 =
|
|
(void *)(r->mpi->planes[0] + r->mpi->stride[0] * (ptrdiff_t)i);
|
|
|
|
void *p2[4] = {0};
|
|
for (int p = 0; p < r->zplanes; p++) {
|
|
int s = r->components[p];
|
|
p2[p] = r->tmp->planes[s] +
|
|
r->tmp->stride[s] * (ptrdiff_t)(i & r->zmask[s]);
|
|
}
|
|
|
|
r->packed_repack_scanline(p1, p2, x0, x1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int repack_nv(void *user, unsigned i, unsigned x0, unsigned x1)
|
|
{
|
|
struct mp_zimg_repack *r = user;
|
|
|
|
int xs = r->mpi->fmt.chroma_xs;
|
|
int ys = r->mpi->fmt.chroma_ys;
|
|
|
|
if (r->use_buf[0]) {
|
|
// Copy Y.
|
|
int l_h = 1 << ys;
|
|
for (int y = i; y < i + l_h; y++) {
|
|
ptrdiff_t bpp = r->mpi->fmt.bytes[0];
|
|
void *a = r->mpi->planes[0] +
|
|
r->mpi->stride[0] * (ptrdiff_t)y + bpp * x0;
|
|
void *b = r->tmp->planes[0] +
|
|
r->tmp->stride[0] * (ptrdiff_t)(y & r->zmask[0]) + bpp * x0;
|
|
size_t size = (x1 - x0) * bpp;
|
|
if (r->pack) {
|
|
memcpy(a, b, size);
|
|
} else {
|
|
memcpy(b, a, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t *p1 =
|
|
(void *)(r->mpi->planes[1] + r->mpi->stride[1] * (ptrdiff_t)(i >> ys));
|
|
|
|
void *p2[2];
|
|
for (int p = 0; p < 2; p++) {
|
|
int s = r->components[p];
|
|
p2[p] = r->tmp->planes[s] +
|
|
r->tmp->stride[s] * (ptrdiff_t)((i >> ys) & r->zmask[s]);
|
|
}
|
|
|
|
r->packed_repack_scanline(p1, p2, x0 >> xs, x1 >> xs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void wrap_buffer(struct mp_zimg_repack *r,
|
|
zimg_image_buffer *buf,
|
|
zimg_filter_graph_callback *cb,
|
|
struct mp_image *mpi)
|
|
{
|
|
*buf = (zimg_image_buffer){ZIMG_API_VERSION};
|
|
|
|
bool plane_aligned[4] = {0};
|
|
for (int n = 0; n < r->zplanes; n++) {
|
|
plane_aligned[n] = !((uintptr_t)mpi->planes[n] % ZIMG_ALIGN) &&
|
|
!(mpi->stride[n] % ZIMG_ALIGN);
|
|
}
|
|
|
|
for (int n = 0; n < r->zplanes; n++) {
|
|
int mplane = r->z_planes[n];
|
|
|
|
r->use_buf[mplane] = !plane_aligned[n];
|
|
if (!(r->pass_through_y && mplane == 0))
|
|
r->use_buf[mplane] |= !!r->repack;
|
|
|
|
struct mp_image *tmpi = r->use_buf[mplane] ? r->tmp : mpi;
|
|
buf->plane[n].data = tmpi->planes[mplane];
|
|
buf->plane[n].stride = tmpi->stride[mplane];
|
|
buf->plane[n].mask = r->use_buf[mplane] ? r->zmask[n] : ZIMG_BUFFER_MAX;
|
|
}
|
|
|
|
*cb = r->repack ? r->repack : repack_align;
|
|
|
|
r->mpi = mpi;
|
|
}
|
|
|
|
static void setup_nv_packer(struct mp_zimg_repack *r)
|
|
{
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
|
|
return;
|
|
|
|
// Check for NV.
|
|
if (desc.num_planes != 2)
|
|
return;
|
|
if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
|
|
return;
|
|
if (desc.planes[1].num_components != 2)
|
|
return;
|
|
int cr0 = desc.planes[1].components[0];
|
|
int cr1 = desc.planes[1].components[1];
|
|
if (cr0 > cr1)
|
|
MPSWAP(int, cr0, cr1);
|
|
if (cr0 != 2 || cr1 != 3)
|
|
return;
|
|
|
|
// Construct equivalent planar format.
|
|
struct mp_regular_imgfmt desc2 = desc;
|
|
desc2.num_planes = 3;
|
|
desc2.planes[1].num_components = 1;
|
|
desc2.planes[1].components[0] = 2;
|
|
desc2.planes[2].num_components = 1;
|
|
desc2.planes[2].components[0] = 3;
|
|
// For P010. Strangely this concept exists only for the NV format.
|
|
if (desc2.component_pad > 0)
|
|
desc2.component_pad = 0;
|
|
|
|
int planar_fmt = mp_find_regular_imgfmt(&desc2);
|
|
if (!planar_fmt)
|
|
return;
|
|
|
|
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
|
|
const struct regular_repacker *pa = ®ular_repackers[i];
|
|
|
|
void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
|
|
r->pack ? pa->pa_scanline : pa->un_scanline;
|
|
|
|
if (pa->packed_width != desc.component_size * 2 * 8 ||
|
|
pa->component_width != desc.component_size * 8 ||
|
|
pa->num_components != 2 ||
|
|
pa->prepadding != 0 ||
|
|
!repack_cb)
|
|
continue;
|
|
|
|
r->repack = repack_nv;
|
|
r->pass_through_y = true;
|
|
r->packed_repack_scanline = repack_cb;
|
|
r->zimgfmt = planar_fmt;
|
|
r->components[0] = desc.planes[1].components[0] - 1;
|
|
r->components[1] = desc.planes[1].components[1] - 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void setup_misc_packer(struct mp_zimg_repack *r)
|
|
{
|
|
// Although it's in regular_repackers[], the generic mpv imgfmt metadata
|
|
// can't handle it yet.
|
|
if (r->zimgfmt == IMGFMT_RGB30) {
|
|
struct mp_regular_imgfmt planar10 = {
|
|
.component_type = MP_COMPONENT_TYPE_UINT,
|
|
.component_size = 2,
|
|
.component_pad = -6,
|
|
.num_planes = 3,
|
|
.planes = {
|
|
{1, {1}},
|
|
{1, {2}},
|
|
{1, {3}},
|
|
},
|
|
.chroma_w = 1,
|
|
.chroma_h = 1,
|
|
};
|
|
int planar_fmt = mp_find_regular_imgfmt(&planar10);
|
|
if (!planar_fmt)
|
|
return;
|
|
r->zimgfmt = planar_fmt;
|
|
r->repack = packed_repack;
|
|
r->packed_repack_scanline = r->pack ? pa_ccc10z2 : un_ccc10x2;
|
|
static int c_order[] = {3, 2, 1};
|
|
for (int n = 0; n < 3; n++)
|
|
r->components[n] = c_order[n] - 1;
|
|
}
|
|
}
|
|
|
|
// Tries to set a packer/unpacker for component-wise byte aligned RGB formats.
|
|
static void setup_regular_rgb_packer(struct mp_zimg_repack *r)
|
|
{
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
|
|
return;
|
|
|
|
if (desc.num_planes != 1 || desc.planes[0].num_components < 3)
|
|
return;
|
|
struct mp_regular_imgfmt_plane *p = &desc.planes[0];
|
|
|
|
int num_real_components = 0;
|
|
for (int n = 0; n < p->num_components; n++) {
|
|
if (p->components[n]) {
|
|
num_real_components += 1;
|
|
} else {
|
|
// padding must be in MSB or LSB
|
|
if (n != 0 && n != p->num_components - 1)
|
|
return;
|
|
}
|
|
}
|
|
|
|
int depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);
|
|
|
|
// Find a physically compatible planar format (typically IMGFMT_420P).
|
|
struct mp_regular_imgfmt desc2 = desc;
|
|
desc2.forced_csp = 0;
|
|
if (desc2.component_pad > 0)
|
|
desc2.component_pad = 0;
|
|
desc2.num_planes = num_real_components;
|
|
for (int n = 0; n < desc2.num_planes; n++) {
|
|
desc2.planes[n].num_components = 1;
|
|
desc2.planes[n].components[0] = n + 1;
|
|
}
|
|
int planar_fmt = mp_find_regular_imgfmt(&desc2);
|
|
if (!planar_fmt)
|
|
return;
|
|
|
|
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
|
|
const struct regular_repacker *pa = ®ular_repackers[i];
|
|
|
|
// The following may assume little endian (because some repack backends
|
|
// use word access, while the metadata here uses byte access).
|
|
|
|
int prepad = p->components[0] ? 0 : 8;
|
|
int first_comp = p->components[0] ? 0 : 1;
|
|
void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
|
|
r->pack ? pa->pa_scanline : pa->un_scanline;
|
|
|
|
if (pa->packed_width != desc.component_size * p->num_components * 8 ||
|
|
pa->component_width != depth ||
|
|
pa->num_components != num_real_components ||
|
|
pa->prepadding != prepad ||
|
|
!repack_cb)
|
|
continue;
|
|
|
|
r->repack = packed_repack;
|
|
r->packed_repack_scanline = repack_cb;
|
|
r->zimgfmt = planar_fmt;
|
|
for (int n = 0; n < num_real_components; n++)
|
|
r->components[n] = p->components[first_comp + n] - 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// (ctx can be NULL for the sake of probing.)
|
|
static bool setup_format(zimg_image_format *zfmt, struct mp_zimg_repack *r,
|
|
struct mp_zimg_context *ctx)
|
|
{
|
|
zimg_image_format_default(zfmt, ZIMG_API_VERSION);
|
|
|
|
struct mp_image_params fmt = r->fmt;
|
|
mp_image_params_guess_csp(&fmt);
|
|
|
|
r->zimgfmt = fmt.imgfmt;
|
|
|
|
if (!r->repack)
|
|
setup_nv_packer(r);
|
|
if (!r->repack)
|
|
setup_misc_packer(r);
|
|
if (!r->repack)
|
|
setup_regular_rgb_packer(r);
|
|
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
|
|
return false;
|
|
|
|
// no weird stuff
|
|
if (desc.num_planes > 4 || !MP_IS_POWER_OF_2(desc.chroma_w) ||
|
|
!MP_IS_POWER_OF_2(desc.chroma_h))
|
|
return false;
|
|
|
|
// Accept only true planar formats.
|
|
for (int n = 0; n < desc.num_planes; n++) {
|
|
if (desc.planes[n].num_components != 1)
|
|
return false;
|
|
int c = desc.planes[n].components[0];
|
|
if (c < 1 || c > 4)
|
|
return false;
|
|
if (c < 4) {
|
|
// Unfortunately, ffmpeg prefers GBR order for planar RGB, while zimg
|
|
// is sane. This makes it necessary to determine and fix the order.
|
|
r->z_planes[c - 1] = n;
|
|
} else {
|
|
r->z_planes[3] = n; // alpha, always plane 4 in zimg
|
|
|
|
#if HAVE_ZIMG_ALPHA
|
|
zfmt->alpha = ZIMG_ALPHA_STRAIGHT;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
r->zplanes = desc.num_planes;
|
|
|
|
// Note: formats with subsampled chroma may have odd width or height in mpv
|
|
// and FFmpeg. This is because the width/height is actually a cropping
|
|
// rectangle. Reconstruct the image allocation size and set the cropping.
|
|
zfmt->width = MP_ALIGN_UP(fmt.w, desc.chroma_w);
|
|
zfmt->height = MP_ALIGN_UP(fmt.h, desc.chroma_h);
|
|
if (zfmt->width != fmt.w)
|
|
zfmt->active_region.width = fmt.w;
|
|
if (zfmt->height != fmt.h)
|
|
zfmt->active_region.height = fmt.h;
|
|
|
|
zfmt->subsample_w = mp_log2(desc.chroma_w);
|
|
zfmt->subsample_h = mp_log2(desc.chroma_h);
|
|
|
|
zfmt->color_family = ZIMG_COLOR_YUV;
|
|
if (desc.num_planes == 1) {
|
|
zfmt->color_family = ZIMG_COLOR_GREY;
|
|
} else if (fmt.color.space == MP_CSP_RGB || fmt.color.space == MP_CSP_XYZ) {
|
|
zfmt->color_family = ZIMG_COLOR_RGB;
|
|
}
|
|
|
|
if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
|
|
desc.component_size == 1)
|
|
{
|
|
zfmt->pixel_type = ZIMG_PIXEL_BYTE;
|
|
} else if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
|
|
desc.component_size == 2)
|
|
{
|
|
zfmt->pixel_type = ZIMG_PIXEL_WORD;
|
|
} else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
|
|
desc.component_size == 2)
|
|
{
|
|
zfmt->pixel_type = ZIMG_PIXEL_HALF;
|
|
} else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
|
|
desc.component_size == 4)
|
|
{
|
|
zfmt->pixel_type = ZIMG_PIXEL_FLOAT;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// (Formats like P010 are basically reported as P016.)
|
|
zfmt->depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);
|
|
|
|
zfmt->pixel_range = fmt.color.levels == MP_CSP_LEVELS_PC ?
|
|
ZIMG_RANGE_FULL : ZIMG_RANGE_LIMITED;
|
|
|
|
zfmt->matrix_coefficients = mp_to_z_matrix(fmt.color.space);
|
|
zfmt->transfer_characteristics = mp_to_z_trc(fmt.color.gamma);
|
|
zfmt->color_primaries = mp_to_z_prim(fmt.color.primaries);
|
|
zfmt->chroma_location = mp_to_z_chroma(fmt.chroma_location);
|
|
|
|
if (ctx && ctx->opts.fast) {
|
|
// mpv's default for RGB output slows down zimg significantly.
|
|
if (zfmt->transfer_characteristics == ZIMG_TRANSFER_IEC_61966_2_1 &&
|
|
zfmt->color_family == ZIMG_COLOR_RGB)
|
|
zfmt->transfer_characteristics = ZIMG_TRANSFER_BT709;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool allocate_buffer(struct mp_zimg_context *ctx,
|
|
struct mp_zimg_repack *r)
|
|
{
|
|
unsigned lines = 0;
|
|
int err;
|
|
if (r->pack) {
|
|
err = zimg_filter_graph_get_output_buffering(ctx->zimg_graph, &lines);
|
|
} else {
|
|
err = zimg_filter_graph_get_input_buffering(ctx->zimg_graph, &lines);
|
|
}
|
|
|
|
if (err)
|
|
return false;
|
|
|
|
r->zmask[0] = zimg_select_buffer_mask(lines);
|
|
|
|
// Either ZIMG_BUFFER_MAX, or a power-of-2 slice buffer.
|
|
assert(r->zmask[0] == ZIMG_BUFFER_MAX || MP_IS_POWER_OF_2(r->zmask[0] + 1));
|
|
|
|
int h = r->zmask[0] == ZIMG_BUFFER_MAX ? r->fmt.h : r->zmask[0] + 1;
|
|
if (h >= r->fmt.h) {
|
|
h = r->fmt.h;
|
|
r->zmask[0] = ZIMG_BUFFER_MAX;
|
|
}
|
|
|
|
r->tmp = mp_image_alloc(r->zimgfmt, r->fmt.w, h);
|
|
talloc_steal(r, r->tmp);
|
|
|
|
if (r->tmp) {
|
|
for (int n = 1; n < r->tmp->fmt.num_planes; n++) {
|
|
r->zmask[n] = r->zmask[0];
|
|
if (r->zmask[0] != ZIMG_BUFFER_MAX)
|
|
r->zmask[n] = r->zmask[n] >> r->tmp->fmt.ys[n];
|
|
}
|
|
}
|
|
|
|
return !!r->tmp;
|
|
}
|
|
|
|
bool mp_zimg_config(struct mp_zimg_context *ctx)
|
|
{
|
|
struct zimg_opts *opts = &ctx->opts;
|
|
|
|
destroy_zimg(ctx);
|
|
|
|
if (ctx->opts_cache)
|
|
mp_zimg_update_from_cmdline(ctx);
|
|
|
|
ctx->zimg_src = talloc_zero(NULL, struct mp_zimg_repack);
|
|
ctx->zimg_src->pack = false;
|
|
ctx->zimg_src->fmt = ctx->src;
|
|
|
|
ctx->zimg_dst = talloc_zero(NULL, struct mp_zimg_repack);
|
|
ctx->zimg_dst->pack = true;
|
|
ctx->zimg_dst->fmt = ctx->dst;
|
|
|
|
zimg_image_format src_fmt, dst_fmt;
|
|
|
|
if (!setup_format(&src_fmt, ctx->zimg_src, ctx) ||
|
|
!setup_format(&dst_fmt, ctx->zimg_dst, ctx))
|
|
goto fail;
|
|
|
|
zimg_graph_builder_params params;
|
|
zimg_graph_builder_params_default(¶ms, ZIMG_API_VERSION);
|
|
|
|
params.resample_filter = opts->scaler;
|
|
params.filter_param_a = opts->scaler_params[0];
|
|
params.filter_param_b = opts->scaler_params[1];
|
|
|
|
params.resample_filter_uv = opts->scaler_chroma;
|
|
params.filter_param_a_uv = opts->scaler_chroma_params[0];
|
|
params.filter_param_b_uv = opts->scaler_chroma_params[1];
|
|
|
|
params.dither_type = opts->dither;
|
|
|
|
params.cpu_type = ZIMG_CPU_AUTO_64B;
|
|
|
|
if (opts->fast)
|
|
params.allow_approximate_gamma = 1;
|
|
|
|
if (ctx->src.color.sig_peak > 0)
|
|
params.nominal_peak_luminance = ctx->src.color.sig_peak;
|
|
|
|
ctx->zimg_graph = zimg_filter_graph_build(&src_fmt, &dst_fmt, ¶ms);
|
|
if (!ctx->zimg_graph) {
|
|
char err[128] = {0};
|
|
zimg_get_last_error(err, sizeof(err) - 1);
|
|
MP_ERR(ctx, "zimg_filter_graph_build: %s \n", err);
|
|
goto fail;
|
|
}
|
|
|
|
size_t tmp_size;
|
|
if (!zimg_filter_graph_get_tmp_size(ctx->zimg_graph, &tmp_size)) {
|
|
tmp_size = MP_ALIGN_UP(tmp_size, ZIMG_ALIGN);
|
|
ctx->zimg_tmp = aligned_alloc(ZIMG_ALIGN, tmp_size);
|
|
}
|
|
|
|
if (!ctx->zimg_tmp)
|
|
goto fail;
|
|
|
|
if (!allocate_buffer(ctx, ctx->zimg_src) ||
|
|
!allocate_buffer(ctx, ctx->zimg_dst))
|
|
goto fail;
|
|
|
|
return true;
|
|
|
|
fail:
|
|
destroy_zimg(ctx);
|
|
return false;
|
|
}
|
|
|
|
bool mp_zimg_config_image_params(struct mp_zimg_context *ctx)
|
|
{
|
|
if (ctx->zimg_src && mp_image_params_equal(&ctx->src, &ctx->zimg_src->fmt) &&
|
|
ctx->zimg_dst && mp_image_params_equal(&ctx->dst, &ctx->zimg_dst->fmt) &&
|
|
(!ctx->opts_cache || !m_config_cache_update(ctx->opts_cache)) &&
|
|
ctx->zimg_graph)
|
|
return true;
|
|
return mp_zimg_config(ctx);
|
|
}
|
|
|
|
bool mp_zimg_convert(struct mp_zimg_context *ctx, struct mp_image *dst,
|
|
struct mp_image *src)
|
|
{
|
|
ctx->src = src->params;
|
|
ctx->dst = dst->params;
|
|
|
|
if (!mp_zimg_config_image_params(ctx)) {
|
|
MP_ERR(ctx, "zimg initialization failed.\n");
|
|
return false;
|
|
}
|
|
|
|
assert(ctx->zimg_graph);
|
|
|
|
zimg_image_buffer zsrc, zdst;
|
|
zimg_filter_graph_callback cbsrc, cbdst;
|
|
|
|
wrap_buffer(ctx->zimg_src, &zsrc, &cbsrc, src);
|
|
wrap_buffer(ctx->zimg_dst, &zdst, &cbdst, dst);
|
|
|
|
// An annoyance.
|
|
zimg_image_buffer_const zsrc_c = {ZIMG_API_VERSION};
|
|
for (int n = 0; n < MP_ARRAY_SIZE(zsrc_c.plane); n++) {
|
|
zsrc_c.plane[n].data = zsrc.plane[n].data;
|
|
zsrc_c.plane[n].stride = zsrc.plane[n].stride;
|
|
zsrc_c.plane[n].mask = zsrc.plane[n].mask;
|
|
}
|
|
|
|
// (The API promises to succeed if no user callbacks fail, so no need
|
|
// to check the return value.)
|
|
zimg_filter_graph_process(ctx->zimg_graph, &zsrc_c, &zdst,
|
|
ctx->zimg_tmp,
|
|
cbsrc, ctx->zimg_src,
|
|
cbdst, ctx->zimg_dst);
|
|
|
|
ctx->zimg_src->mpi = NULL;
|
|
ctx->zimg_dst->mpi = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool supports_format(int imgfmt, bool out)
|
|
{
|
|
struct mp_zimg_repack t = {
|
|
.pack = out,
|
|
.fmt = {
|
|
.imgfmt = imgfmt,
|
|
},
|
|
};
|
|
zimg_image_format fmt;
|
|
return setup_format(&fmt, &t, NULL);
|
|
}
|
|
|
|
bool mp_zimg_supports_in_format(int imgfmt)
|
|
{
|
|
return supports_format(imgfmt, false);
|
|
}
|
|
|
|
bool mp_zimg_supports_out_format(int imgfmt)
|
|
{
|
|
return supports_format(imgfmt, true);
|
|
}
|