1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-04 05:52:09 +00:00
mpv/libswscale/swscale.c
cehoyos ca205c9d8f Make reset_ptr() void.
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@29229 b3059339-0415-0410-9bf9-f77b7e298cf2
2009-04-23 22:19:53 +00:00

3425 lines
117 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* the C code (not assembly, mmx, ...) of this file can be used
* under the LGPL license too
*/
/*
supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
{BGR,RGB}{1,4,8,15,16} support dithering
unscaled special converters (YV12=I420=IYUV, Y800=Y8)
YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
x -> x
YUV9 -> YV12
YUV9/YV12 -> Y800
Y800 -> YUV9/YV12
BGR24 -> BGR32 & RGB24 -> RGB32
BGR32 -> BGR24 & RGB32 -> RGB24
BGR15 -> BGR16
*/
/*
tested special converters (most are tested actually, but I did not write it down ...)
YV12 -> BGR16
YV12 -> YV12
BGR15 -> BGR16
BGR16 -> BGR16
YVU9 -> YV12
untested special converters
YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
YV12/I420 -> YV12/I420
YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
BGR24 -> BGR32 & RGB24 -> RGB32
BGR32 -> BGR24 & RGB32 -> RGB24
BGR24 -> YV12
*/
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include "config.h"
#include <assert.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#if HAVE_VIRTUALALLOC
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "rgb2rgb.h"
#include "libavutil/x86_cpu.h"
#include "libavutil/bswap.h"
unsigned swscale_version(void)
{
return LIBSWSCALE_VERSION_INT;
}
#undef MOVNTQ
#undef PAVGB
//#undef HAVE_MMX2
//#define HAVE_AMD3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
//#define WORDS_BIGENDIAN
#define DITHER1XBPP
#define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
#define RET 0xC3 //near return opcode for x86
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif
#define isSupportedIn(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_RGB32_1 \
|| (x)==PIX_FMT_BGR24 \
|| (x)==PIX_FMT_BGR565 \
|| (x)==PIX_FMT_BGR555 \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_BGR32_1 \
|| (x)==PIX_FMT_RGB24 \
|| (x)==PIX_FMT_RGB565 \
|| (x)==PIX_FMT_RGB555 \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_RGB8 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_MONOWHITE \
|| (x)==PIX_FMT_MONOBLACK \
|| (x)==PIX_FMT_YUV420PLE \
|| (x)==PIX_FMT_YUV422PLE \
|| (x)==PIX_FMT_YUV444PLE \
|| (x)==PIX_FMT_YUV420PBE \
|| (x)==PIX_FMT_YUV422PBE \
|| (x)==PIX_FMT_YUV444PBE \
)
#define isSupportedOut(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| isRGB(x) \
|| isBGR(x) \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_YUV420PLE \
|| (x)==PIX_FMT_YUV422PLE \
|| (x)==PIX_FMT_YUV444PLE \
|| (x)==PIX_FMT_YUV420PBE \
|| (x)==PIX_FMT_YUV422PBE \
|| (x)==PIX_FMT_YUV444PBE \
)
#define isPacked(x) ( \
(x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| isRGB(x) \
|| isBGR(x) \
)
#define usePal(x) ( \
(x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_RGB8 \
)
#define RGB2YUV_SHIFT 15
#define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
extern const int32_t ff_yuv2rgb_coeffs[8][4];
static const double rgb2yuv_table[8][9]={
{0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
{0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
{0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
{0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
{0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
{0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
{0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
{0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
};
/*
NOTES
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
TODO
more intelligent misalignment avoidance for the horizontal scaler
write special vertical cubic upscale version
optimize C code (YV12 / minmax)
add support for packed pixel YUV input & output
add support for Y8 output
optimize BGR24 & BGR32
add BGR4 output support
write special BGR->BGR scaler
*/
#if ARCH_X86 && CONFIG_GPL
DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
0x0103010301030103LL,
0x0200020002000200LL,};
const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
0x0602060206020602LL,
0x0004000400040004LL,};
DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
#ifdef FAST_BGR2YV12
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
#else
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
#endif /* FAST_BGR2YV12 */
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
{0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
{0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
};
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
#endif /* ARCH_X86 && CONFIG_GPL */
// clipping helper table for C implementations:
static unsigned char clip_table[768];
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
{ 1, 3, 1, 3, 1, 3, 1, 3, },
{ 2, 0, 2, 0, 2, 0, 2, 0, },
};
static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
{ 6, 2, 6, 2, 6, 2, 6, 2, },
{ 0, 4, 0, 4, 0, 4, 0, 4, },
};
const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
{ 17, 9, 23, 15, 16, 8, 22, 14, },
{ 5, 29, 3, 27, 4, 28, 2, 26, },
{ 21, 13, 19, 11, 20, 12, 18, 10, },
{ 0, 24, 6, 30, 1, 25, 7, 31, },
{ 16, 8, 22, 14, 17, 9, 23, 15, },
{ 4, 28, 2, 26, 5, 29, 3, 27, },
{ 20, 12, 18, 10, 21, 13, 19, 11, },
{ 1, 25, 7, 31, 0, 24, 6, 30, },
};
#if 0
const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
{ 0, 48, 12, 60, 3, 51, 15, 63, },
{ 32, 16, 44, 28, 35, 19, 47, 31, },
{ 8, 56, 4, 52, 11, 59, 7, 55, },
{ 40, 24, 36, 20, 43, 27, 39, 23, },
{ 2, 50, 14, 62, 1, 49, 13, 61, },
{ 34, 18, 46, 30, 33, 17, 45, 29, },
{ 10, 58, 6, 54, 9, 57, 5, 53, },
{ 42, 26, 38, 22, 41, 25, 37, 21, },
};
#endif
const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
{ 0, 55, 14, 68, 3, 58, 17, 72, },
{ 37, 18, 50, 32, 40, 22, 54, 35, },
{ 9, 64, 5, 59, 13, 67, 8, 63, },
{ 46, 27, 41, 23, 49, 31, 44, 26, },
{ 2, 57, 16, 71, 1, 56, 15, 70, },
{ 39, 21, 52, 34, 38, 19, 51, 33, },
{ 11, 66, 7, 62, 10, 65, 6, 60, },
{ 48, 30, 43, 25, 47, 29, 42, 24, },
};
#if 0
const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
{ 68, 36, 92, 60, 66, 34, 90, 58, },
{ 20, 116, 12, 108, 18, 114, 10, 106, },
{ 84, 52, 76, 44, 82, 50, 74, 42, },
{ 0, 96, 24, 120, 6, 102, 30, 126, },
{ 64, 32, 88, 56, 70, 38, 94, 62, },
{ 16, 112, 8, 104, 22, 118, 14, 110, },
{ 80, 48, 72, 40, 86, 54, 78, 46, },
{ 4, 100, 28, 124, 2, 98, 26, 122, },
};
#endif
#if 1
const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
{117, 62, 158, 103, 113, 58, 155, 100, },
{ 34, 199, 21, 186, 31, 196, 17, 182, },
{144, 89, 131, 76, 141, 86, 127, 72, },
{ 0, 165, 41, 206, 10, 175, 52, 217, },
{110, 55, 151, 96, 120, 65, 162, 107, },
{ 28, 193, 14, 179, 38, 203, 24, 189, },
{138, 83, 124, 69, 148, 93, 134, 79, },
{ 7, 172, 48, 213, 3, 168, 45, 210, },
};
#elif 1
// tries to correct a gamma of 1.5
const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
{ 0, 143, 18, 200, 2, 156, 25, 215, },
{ 78, 28, 125, 64, 89, 36, 138, 74, },
{ 10, 180, 3, 161, 16, 195, 8, 175, },
{109, 51, 93, 38, 121, 60, 105, 47, },
{ 1, 152, 23, 210, 0, 147, 20, 205, },
{ 85, 33, 134, 71, 81, 30, 130, 67, },
{ 14, 190, 6, 171, 12, 185, 5, 166, },
{117, 57, 101, 44, 113, 54, 97, 41, },
};
#elif 1
// tries to correct a gamma of 2.0
const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
{ 0, 124, 8, 193, 0, 140, 12, 213, },
{ 55, 14, 104, 42, 66, 19, 119, 52, },
{ 3, 168, 1, 145, 6, 187, 3, 162, },
{ 86, 31, 70, 21, 99, 39, 82, 28, },
{ 0, 134, 11, 206, 0, 129, 9, 200, },
{ 62, 17, 114, 48, 58, 16, 109, 45, },
{ 5, 181, 2, 157, 4, 175, 1, 151, },
{ 95, 36, 78, 26, 90, 34, 74, 24, },
};
#else
// tries to correct a gamma of 2.5
const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
{ 0, 107, 3, 187, 0, 125, 6, 212, },
{ 39, 7, 86, 28, 49, 11, 102, 36, },
{ 1, 158, 0, 131, 3, 180, 1, 151, },
{ 68, 19, 52, 12, 81, 25, 64, 17, },
{ 0, 119, 5, 203, 0, 113, 4, 195, },
{ 45, 9, 96, 33, 42, 8, 91, 30, },
{ 2, 172, 1, 144, 2, 165, 0, 137, },
{ 77, 23, 60, 15, 72, 21, 56, 14, },
};
#endif
const char *sws_format_name(enum PixelFormat format)
{
switch (format) {
case PIX_FMT_YUV420P:
return "yuv420p";
case PIX_FMT_YUVA420P:
return "yuva420p";
case PIX_FMT_YUYV422:
return "yuyv422";
case PIX_FMT_RGB24:
return "rgb24";
case PIX_FMT_BGR24:
return "bgr24";
case PIX_FMT_YUV422P:
return "yuv422p";
case PIX_FMT_YUV444P:
return "yuv444p";
case PIX_FMT_RGB32:
return "rgb32";
case PIX_FMT_YUV410P:
return "yuv410p";
case PIX_FMT_YUV411P:
return "yuv411p";
case PIX_FMT_RGB565:
return "rgb565";
case PIX_FMT_RGB555:
return "rgb555";
case PIX_FMT_GRAY16BE:
return "gray16be";
case PIX_FMT_GRAY16LE:
return "gray16le";
case PIX_FMT_GRAY8:
return "gray8";
case PIX_FMT_MONOWHITE:
return "mono white";
case PIX_FMT_MONOBLACK:
return "mono black";
case PIX_FMT_PAL8:
return "Palette";
case PIX_FMT_YUVJ420P:
return "yuvj420p";
case PIX_FMT_YUVJ422P:
return "yuvj422p";
case PIX_FMT_YUVJ444P:
return "yuvj444p";
case PIX_FMT_XVMC_MPEG2_MC:
return "xvmc_mpeg2_mc";
case PIX_FMT_XVMC_MPEG2_IDCT:
return "xvmc_mpeg2_idct";
case PIX_FMT_UYVY422:
return "uyvy422";
case PIX_FMT_UYYVYY411:
return "uyyvyy411";
case PIX_FMT_RGB32_1:
return "rgb32x";
case PIX_FMT_BGR32_1:
return "bgr32x";
case PIX_FMT_BGR32:
return "bgr32";
case PIX_FMT_BGR565:
return "bgr565";
case PIX_FMT_BGR555:
return "bgr555";
case PIX_FMT_BGR8:
return "bgr8";
case PIX_FMT_BGR4:
return "bgr4";
case PIX_FMT_BGR4_BYTE:
return "bgr4 byte";
case PIX_FMT_RGB8:
return "rgb8";
case PIX_FMT_RGB4:
return "rgb4";
case PIX_FMT_RGB4_BYTE:
return "rgb4 byte";
case PIX_FMT_NV12:
return "nv12";
case PIX_FMT_NV21:
return "nv21";
case PIX_FMT_YUV440P:
return "yuv440p";
case PIX_FMT_VDPAU_H264:
return "vdpau_h264";
case PIX_FMT_VDPAU_MPEG1:
return "vdpau_mpeg1";
case PIX_FMT_VDPAU_MPEG2:
return "vdpau_mpeg2";
case PIX_FMT_VDPAU_WMV3:
return "vdpau_wmv3";
case PIX_FMT_VDPAU_VC1:
return "vdpau_vc1";
case PIX_FMT_YUV420PLE:
return "yuv420ple";
case PIX_FMT_YUV422PLE:
return "yuv422ple";
case PIX_FMT_YUV444PLE:
return "yuv444ple";
case PIX_FMT_YUV420PBE:
return "yuv420pbe";
case PIX_FMT_YUV422PBE:
return "yuv422pbe";
case PIX_FMT_YUV444PBE:
return "yuv444pbe";
default:
return "Unknown format";
}
}
static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
{
//FIXME Optimize (just quickly written not optimized..)
int i;
for (i=0; i<dstW; i++)
{
int val=1<<18;
int j;
for (j=0; j<lumFilterSize; j++)
val += lumSrc[j][i] * lumFilter[j];
dest[i]= av_clip_uint8(val>>19);
}
if (uDest)
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + VOFW] * chrFilter[j];
}
uDest[i]= av_clip_uint8(u>>19);
vDest[i]= av_clip_uint8(v>>19);
}
if (CONFIG_SWSCALE_ALPHA && aDest)
for (i=0; i<dstW; i++){
int val=1<<18;
int j;
for (j=0; j<lumFilterSize; j++)
val += alpSrc[j][i] * lumFilter[j];
aDest[i]= av_clip_uint8(val>>19);
}
}
static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
{
//FIXME Optimize (just quickly written not optimized..)
int i;
for (i=0; i<dstW; i++)
{
int val=1<<18;
int j;
for (j=0; j<lumFilterSize; j++)
val += lumSrc[j][i] * lumFilter[j];
dest[i]= av_clip_uint8(val>>19);
}
if (!uDest)
return;
if (dstFormat == PIX_FMT_NV12)
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + VOFW] * chrFilter[j];
}
uDest[2*i]= av_clip_uint8(u>>19);
uDest[2*i+1]= av_clip_uint8(v>>19);
}
else
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + VOFW] * chrFilter[j];
}
uDest[2*i]= av_clip_uint8(v>>19);
uDest[2*i+1]= av_clip_uint8(u>>19);
}
}
#define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
for (i=0; i<(dstW>>1); i++){\
int j;\
int Y1 = 1<<18;\
int Y2 = 1<<18;\
int U = 1<<18;\
int V = 1<<18;\
int av_unused A1, A2;\
type av_unused *r, *b, *g;\
const int i2= 2*i;\
\
for (j=0; j<lumFilterSize; j++)\
{\
Y1 += lumSrc[j][i2] * lumFilter[j];\
Y2 += lumSrc[j][i2+1] * lumFilter[j];\
}\
for (j=0; j<chrFilterSize; j++)\
{\
U += chrSrc[j][i] * chrFilter[j];\
V += chrSrc[j][i+VOFW] * chrFilter[j];\
}\
Y1>>=19;\
Y2>>=19;\
U >>=19;\
V >>=19;\
if (alpha){\
A1 = 1<<18;\
A2 = 1<<18;\
for (j=0; j<lumFilterSize; j++){\
A1 += alpSrc[j][i2 ] * lumFilter[j];\
A2 += alpSrc[j][i2+1] * lumFilter[j];\
}\
A1>>=19;\
A2>>=19;\
}\
#define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
if ((Y1|Y2|U|V)&256)\
{\
if (Y1>255) Y1=255; \
else if (Y1<0)Y1=0; \
if (Y2>255) Y2=255; \
else if (Y2<0)Y2=0; \
if (U>255) U=255; \
else if (U<0) U=0; \
if (V>255) V=255; \
else if (V<0) V=0; \
}\
if (alpha && ((A1|A2)&256)){\
A1=av_clip_uint8(A1);\
A2=av_clip_uint8(A2);\
}
#define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
for (i=0; i<dstW; i++){\
int j;\
int Y = 0;\
int U = -128<<19;\
int V = -128<<19;\
int av_unused A;\
int R,G,B;\
\
for (j=0; j<lumFilterSize; j++){\
Y += lumSrc[j][i ] * lumFilter[j];\
}\
for (j=0; j<chrFilterSize; j++){\
U += chrSrc[j][i ] * chrFilter[j];\
V += chrSrc[j][i+VOFW] * chrFilter[j];\
}\
Y >>=10;\
U >>=10;\
V >>=10;\
if (alpha){\
A = rnd;\
for (j=0; j<lumFilterSize; j++)\
A += alpSrc[j][i ] * lumFilter[j];\
A >>=19;\
if (A&256)\
A = av_clip_uint8(A);\
}\
#define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
Y-= c->yuv2rgb_y_offset;\
Y*= c->yuv2rgb_y_coeff;\
Y+= rnd;\
R= Y + V*c->yuv2rgb_v2r_coeff;\
G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
B= Y + U*c->yuv2rgb_u2b_coeff;\
if ((R|G|B)&(0xC0000000)){\
if (R>=(256<<22)) R=(256<<22)-1; \
else if (R<0)R=0; \
if (G>=(256<<22)) G=(256<<22)-1; \
else if (G<0)G=0; \
if (B>=(256<<22)) B=(256<<22)-1; \
else if (B<0)B=0; \
}\
#define YSCALE_YUV_2_GRAY16_C \
for (i=0; i<(dstW>>1); i++){\
int j;\
int Y1 = 1<<18;\
int Y2 = 1<<18;\
int U = 1<<18;\
int V = 1<<18;\
\
const int i2= 2*i;\
\
for (j=0; j<lumFilterSize; j++)\
{\
Y1 += lumSrc[j][i2] * lumFilter[j];\
Y2 += lumSrc[j][i2+1] * lumFilter[j];\
}\
Y1>>=11;\
Y2>>=11;\
if ((Y1|Y2|U|V)&65536)\
{\
if (Y1>65535) Y1=65535; \
else if (Y1<0)Y1=0; \
if (Y2>65535) Y2=65535; \
else if (Y2<0)Y2=0; \
}
#define YSCALE_YUV_2_RGBX_C(type,alpha) \
YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
r = (type *)c->table_rV[V]; \
g = (type *)(c->table_gU[U] + c->table_gV[V]); \
b = (type *)c->table_bU[U]; \
#define YSCALE_YUV_2_PACKED2_C(type,alpha) \
for (i=0; i<(dstW>>1); i++){ \
const int i2= 2*i; \
int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
type av_unused *r, *b, *g; \
int av_unused A1, A2; \
if (alpha){\
A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
}\
#define YSCALE_YUV_2_GRAY16_2_C \
for (i=0; i<(dstW>>1); i++){ \
const int i2= 2*i; \
int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
#define YSCALE_YUV_2_RGB2_C(type,alpha) \
YSCALE_YUV_2_PACKED2_C(type,alpha)\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_PACKED1_C(type,alpha) \
for (i=0; i<(dstW>>1); i++){\
const int i2= 2*i;\
int Y1= buf0[i2 ]>>7;\
int Y2= buf0[i2+1]>>7;\
int U= (uvbuf1[i ])>>7;\
int V= (uvbuf1[i+VOFW])>>7;\
type av_unused *r, *b, *g;\
int av_unused A1, A2;\
if (alpha){\
A1= abuf0[i2 ]>>7;\
A2= abuf0[i2+1]>>7;\
}\
#define YSCALE_YUV_2_GRAY16_1_C \
for (i=0; i<(dstW>>1); i++){\
const int i2= 2*i;\
int Y1= buf0[i2 ]<<1;\
int Y2= buf0[i2+1]<<1;\
#define YSCALE_YUV_2_RGB1_C(type,alpha) \
YSCALE_YUV_2_PACKED1_C(type,alpha)\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
for (i=0; i<(dstW>>1); i++){\
const int i2= 2*i;\
int Y1= buf0[i2 ]>>7;\
int Y2= buf0[i2+1]>>7;\
int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
type av_unused *r, *b, *g;\
int av_unused A1, A2;\
if (alpha){\
A1= abuf0[i2 ]>>7;\
A2= abuf0[i2+1]>>7;\
}\
#define YSCALE_YUV_2_RGB1B_C(type,alpha) \
YSCALE_YUV_2_PACKED1B_C(type,alpha)\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_MONO2_C \
const uint8_t * const d128=dither_8x8_220[y&7];\
uint8_t *g= c->table_gU[128] + c->table_gV[128];\
for (i=0; i<dstW-7; i+=8){\
int acc;\
acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
dest++;\
}\
#define YSCALE_YUV_2_MONOX_C \
const uint8_t * const d128=dither_8x8_220[y&7];\
uint8_t *g= c->table_gU[128] + c->table_gV[128];\
int acc=0;\
for (i=0; i<dstW-1; i+=2){\
int j;\
int Y1=1<<18;\
int Y2=1<<18;\
\
for (j=0; j<lumFilterSize; j++)\
{\
Y1 += lumSrc[j][i] * lumFilter[j];\
Y2 += lumSrc[j][i+1] * lumFilter[j];\
}\
Y1>>=19;\
Y2>>=19;\
if ((Y1|Y2)&256)\
{\
if (Y1>255) Y1=255;\
else if (Y1<0)Y1=0;\
if (Y2>255) Y2=255;\
else if (Y2<0)Y2=0;\
}\
acc+= acc + g[Y1+d128[(i+0)&7]];\
acc+= acc + g[Y2+d128[(i+1)&7]];\
if ((i&7)==6){\
((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
dest++;\
}\
}
#define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
switch(c->dstFormat)\
{\
case PIX_FMT_RGBA:\
case PIX_FMT_BGRA:\
if (CONFIG_SMALL){\
int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
func(uint32_t,needAlpha)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
}\
}else{\
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
func(uint32_t,1)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
}\
}else{\
func(uint32_t,0)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
}\
}\
}\
break;\
case PIX_FMT_ARGB:\
case PIX_FMT_ABGR:\
if (CONFIG_SMALL){\
int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
func(uint32_t,needAlpha)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
}\
}else{\
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
func(uint32_t,1)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
}\
}else{\
func(uint32_t,0)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
}\
}\
} \
break;\
case PIX_FMT_RGB24:\
func(uint8_t,0)\
((uint8_t*)dest)[0]= r[Y1];\
((uint8_t*)dest)[1]= g[Y1];\
((uint8_t*)dest)[2]= b[Y1];\
((uint8_t*)dest)[3]= r[Y2];\
((uint8_t*)dest)[4]= g[Y2];\
((uint8_t*)dest)[5]= b[Y2];\
dest+=6;\
}\
break;\
case PIX_FMT_BGR24:\
func(uint8_t,0)\
((uint8_t*)dest)[0]= b[Y1];\
((uint8_t*)dest)[1]= g[Y1];\
((uint8_t*)dest)[2]= r[Y1];\
((uint8_t*)dest)[3]= b[Y2];\
((uint8_t*)dest)[4]= g[Y2];\
((uint8_t*)dest)[5]= r[Y2];\
dest+=6;\
}\
break;\
case PIX_FMT_RGB565:\
case PIX_FMT_BGR565:\
{\
const int dr1= dither_2x2_8[y&1 ][0];\
const int dg1= dither_2x2_4[y&1 ][0];\
const int db1= dither_2x2_8[(y&1)^1][0];\
const int dr2= dither_2x2_8[y&1 ][1];\
const int dg2= dither_2x2_4[y&1 ][1];\
const int db2= dither_2x2_8[(y&1)^1][1];\
func(uint16_t,0)\
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
}\
}\
break;\
case PIX_FMT_RGB555:\
case PIX_FMT_BGR555:\
{\
const int dr1= dither_2x2_8[y&1 ][0];\
const int dg1= dither_2x2_8[y&1 ][1];\
const int db1= dither_2x2_8[(y&1)^1][0];\
const int dr2= dither_2x2_8[y&1 ][1];\
const int dg2= dither_2x2_8[y&1 ][0];\
const int db2= dither_2x2_8[(y&1)^1][1];\
func(uint16_t,0)\
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
}\
}\
break;\
case PIX_FMT_RGB8:\
case PIX_FMT_BGR8:\
{\
const uint8_t * const d64= dither_8x8_73[y&7];\
const uint8_t * const d32= dither_8x8_32[y&7];\
func(uint8_t,0)\
((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
}\
}\
break;\
case PIX_FMT_RGB4:\
case PIX_FMT_BGR4:\
{\
const uint8_t * const d64= dither_8x8_73 [y&7];\
const uint8_t * const d128=dither_8x8_220[y&7];\
func(uint8_t,0)\
((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
+ ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
}\
}\
break;\
case PIX_FMT_RGB4_BYTE:\
case PIX_FMT_BGR4_BYTE:\
{\
const uint8_t * const d64= dither_8x8_73 [y&7];\
const uint8_t * const d128=dither_8x8_220[y&7];\
func(uint8_t,0)\
((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
}\
}\
break;\
case PIX_FMT_MONOBLACK:\
case PIX_FMT_MONOWHITE:\
{\
func_monoblack\
}\
break;\
case PIX_FMT_YUYV422:\
func2\
((uint8_t*)dest)[2*i2+0]= Y1;\
((uint8_t*)dest)[2*i2+1]= U;\
((uint8_t*)dest)[2*i2+2]= Y2;\
((uint8_t*)dest)[2*i2+3]= V;\
} \
break;\
case PIX_FMT_UYVY422:\
func2\
((uint8_t*)dest)[2*i2+0]= U;\
((uint8_t*)dest)[2*i2+1]= Y1;\
((uint8_t*)dest)[2*i2+2]= V;\
((uint8_t*)dest)[2*i2+3]= Y2;\
} \
break;\
case PIX_FMT_GRAY16BE:\
func_g16\
((uint8_t*)dest)[2*i2+0]= Y1>>8;\
((uint8_t*)dest)[2*i2+1]= Y1;\
((uint8_t*)dest)[2*i2+2]= Y2>>8;\
((uint8_t*)dest)[2*i2+3]= Y2;\
} \
break;\
case PIX_FMT_GRAY16LE:\
func_g16\
((uint8_t*)dest)[2*i2+0]= Y1;\
((uint8_t*)dest)[2*i2+1]= Y1>>8;\
((uint8_t*)dest)[2*i2+2]= Y2;\
((uint8_t*)dest)[2*i2+3]= Y2>>8;\
} \
break;\
}\
static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
{
int i;
YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
}
static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
{
int i;
int step= fmt_depth(c->dstFormat)/8;
int aidx= 3;
switch(c->dstFormat){
case PIX_FMT_ARGB:
dest++;
aidx= 0;
case PIX_FMT_RGB24:
aidx--;
case PIX_FMT_RGBA:
if (CONFIG_SMALL){
int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
dest[aidx]= needAlpha ? A : 255;
dest[0]= R>>22;
dest[1]= G>>22;
dest[2]= B>>22;
dest+= step;
}
}else{
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
dest[aidx]= A;
dest[0]= R>>22;
dest[1]= G>>22;
dest[2]= B>>22;
dest+= step;
}
}else{
YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
dest[aidx]= 255;
dest[0]= R>>22;
dest[1]= G>>22;
dest[2]= B>>22;
dest+= step;
}
}
}
break;
case PIX_FMT_ABGR:
dest++;
aidx= 0;
case PIX_FMT_BGR24:
aidx--;
case PIX_FMT_BGRA:
if (CONFIG_SMALL){
int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
dest[aidx]= needAlpha ? A : 255;
dest[0]= B>>22;
dest[1]= G>>22;
dest[2]= R>>22;
dest+= step;
}
}else{
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
dest[aidx]= A;
dest[0]= B>>22;
dest[1]= G>>22;
dest[2]= R>>22;
dest+= step;
}
}else{
YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
dest[aidx]= 255;
dest[0]= B>>22;
dest[1]= G>>22;
dest[2]= R>>22;
dest+= step;
}
}
}
break;
default:
assert(0);
}
}
static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
int i;
uint8_t *ptr = plane + stride*y;
for (i=0; i<height; i++){
memset(ptr, val, width);
ptr += stride;
}
}
//Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
//Plain C versions
#if !HAVE_MMX || CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL
#define COMPILE_C
#endif
#if ARCH_PPC
#if (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#undef COMPILE_C
#define COMPILE_ALTIVEC
#endif
#endif //ARCH_PPC
#if ARCH_X86
#if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_MMX
#endif
#if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_MMX2
#endif
#if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_3DNOW
#endif
#endif //ARCH_X86
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#undef HAVE_ALTIVEC
#define HAVE_MMX 0
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 0
#define HAVE_ALTIVEC 0
#ifdef COMPILE_C
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif
#ifdef COMPILE_ALTIVEC
#undef RENAME
#undef HAVE_ALTIVEC
#define HAVE_ALTIVEC 1
#define RENAME(a) a ## _altivec
#include "swscale_template.c"
#endif
#if ARCH_X86
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 0
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif
//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 1
#define HAVE_AMD3DNOW 0
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif
//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 1
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif
#endif //ARCH_X86
// minor note: the HAVE_xyz are messed up after this line so don't use them
static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
// printf("%f %f %f %f %f\n", a,b,c,d,dist);
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
else return getSplineCoeff( 0.0,
b+ 2.0*c + 3.0*d,
c + 3.0*d,
-b- 3.0*c - 6.0*d,
dist-1.0);
}
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags,
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
int64_t *filter=NULL;
int64_t *filter2=NULL;
const int64_t fone= 1LL<<54;
int ret= -1;
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif
// NOTE: the +1 is for the MMX scaler which reads over the end
*filterPos = av_malloc((dstW+1)*sizeof(int16_t));
if (FFABS(xInc - 0x10000) <10) // unscaled
{
int i;
filterSize= 1;
filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
for (i=0; i<dstW; i++)
{
filter[i*filterSize]= fone;
(*filterPos)[i]=i;
}
}
else if (flags&SWS_POINT) // lame looking point sampling mode
{
int i;
int xDstInSrc;
filterSize= 1;
filter= av_malloc(dstW*sizeof(*filter)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++)
{
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
(*filterPos)[i]= xx;
filter[i]= fone;
xDstInSrc+= xInc;
}
}
else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
{
int i;
int xDstInSrc;
if (flags&SWS_BICUBIC) filterSize= 4;
else if (flags&SWS_X ) filterSize= 4;
else filterSize= 2; // SWS_BILINEAR / SWS_AREA
filter= av_malloc(dstW*sizeof(*filter)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++)
{
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
int j;
(*filterPos)[i]= xx;
//bilinear upscale / linear interpolate / area averaging
for (j=0; j<filterSize; j++)
{
int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
if (coeff<0) coeff=0;
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
}
else
{
int xDstInSrc;
int sizeFactor;
if (flags&SWS_BICUBIC) sizeFactor= 4;
else if (flags&SWS_X) sizeFactor= 8;
else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
else if (flags&SWS_BILINEAR) sizeFactor= 2;
else {
sizeFactor= 0; //GCC warning killer
assert(0);
}
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
if (filterSize > srcW-2) filterSize=srcW-2;
filter= av_malloc(dstW*sizeof(*filter)*filterSize);
xDstInSrc= xInc - 0x10000;
for (i=0; i<dstW; i++)
{
int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
int j;
(*filterPos)[i]= xx;
for (j=0; j<filterSize; j++)
{
int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
double floatd;
int64_t coeff;
if (xInc > 1<<16)
d= d*dstW/srcW;
floatd= d * (1.0/(1<<30));
if (flags & SWS_BICUBIC)
{
int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
int64_t dd = ( d*d)>>30;
int64_t ddd= (dd*d)>>30;
if (d < 1LL<<30)
coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
else if (d < 1LL<<31)
coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
else
coeff=0.0;
coeff *= fone>>(30+24);
}
/* else if (flags & SWS_X)
{
double p= param ? param*0.01 : 0.3;
coeff = d ? sin(d*PI)/(d*PI) : 1.0;
coeff*= pow(2.0, - p*d*d);
}*/
else if (flags & SWS_X)
{
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
double c;
if (floatd<1.0)
c = cos(floatd*PI);
else
c=-1.0;
if (c<0.0) c= -pow(-c, A);
else c= pow( c, A);
coeff= (c*0.5 + 0.5)*fone;
}
else if (flags & SWS_AREA)
{
int64_t d2= d - (1<<29);
if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
else coeff=0.0;
coeff *= fone>>(30+16);
}
else if (flags & SWS_GAUSS)
{
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (pow(2.0, - p*floatd*floatd))*fone;
}
else if (flags & SWS_SINC)
{
coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
}
else if (flags & SWS_LANCZOS)
{
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
if (floatd>p) coeff=0;
}
else if (flags & SWS_BILINEAR)
{
coeff= (1<<30) - d;
if (coeff<0) coeff=0;
coeff *= fone >> 30;
}
else if (flags & SWS_SPLINE)
{
double p=-2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
}
else {
coeff= 0.0; //GCC warning killer
assert(0);
}
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= 2*xInc;
}
}
/* apply src & dst Filter to filter -> filter2
av_free(filter);
*/
assert(filterSize>0);
filter2Size= filterSize;
if (srcFilter) filter2Size+= srcFilter->length - 1;
if (dstFilter) filter2Size+= dstFilter->length - 1;
assert(filter2Size>0);
filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
for (i=0; i<dstW; i++)
{
int j, k;
if(srcFilter){
for (k=0; k<srcFilter->length; k++){
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
}
}else{
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + j]= filter[i*filterSize + j];
}
//FIXME dstFilter
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
}
av_freep(&filter);
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize= 0;
for (i=dstW-1; i>=0; i--)
{
int min= filter2Size;
int j;
int64_t cutOff=0.0;
/* get rid off near zero elements on the left by shifting left */
for (j=0; j<filter2Size; j++)
{
int k;
cutOff += FFABS(filter2[i*filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
/* preserve monotonicity because the core can't handle the filter otherwise */
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// move filter coefficients left
for (k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0;
(*filterPos)[i]++;
}
cutOff=0;
/* count near zeros on the right */
for (j=filter2Size-1; j>0; j--)
{
cutOff += FFABS(filter2[i*filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
min--;
}
if (min>minFilterSize) minFilterSize= min;
}
if (flags & SWS_CPU_CAPS_ALTIVEC) {
// we can handle the special case 4,
// so we don't want to go to the full 8
if (minFilterSize < 5)
filterAlign = 4;
// We really don't want to waste our time
// doing useless computation, so fall back on
// the scalar C code for very small filters.
// Vectorizing is worth it only if you have a
// decent-sized vector.
if (minFilterSize < 3)
filterAlign = 1;
}
if (flags & SWS_CPU_CAPS_MMX) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign= 1;
}
assert(minFilterSize > 0);
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
assert(filterSize > 0);
filter= av_malloc(filterSize*dstW*sizeof(*filter));
if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
goto error;
*outFilterSize= filterSize;
if (flags&SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i=0; i<dstW; i++)
{
int j;
for (j=0; j<filterSize; j++)
{
if (j>=filter2Size) filter[i*filterSize + j]= 0;
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
if((flags & SWS_BITEXACT) && j>=minFilterSize)
filter[i*filterSize + j]= 0;
}
}
//FIXME try to align filterPos if possible
//fix borders
for (i=0; i<dstW; i++)
{
int j;
if ((*filterPos)[i] < 0)
{
// move filter coefficients left to compensate for filterPos
for (j=1; j<filterSize; j++)
{
int left= FFMAX(j + (*filterPos)[i], 0);
filter[i*filterSize + left] += filter[i*filterSize + j];
filter[i*filterSize + j]=0;
}
(*filterPos)[i]= 0;
}
if ((*filterPos)[i] + filterSize > srcW)
{
int shift= (*filterPos)[i] + filterSize - srcW;
// move filter coefficients right to compensate for filterPos
for (j=filterSize-2; j>=0; j--)
{
int right= FFMIN(j + shift, filterSize-1);
filter[i*filterSize +right] += filter[i*filterSize +j];
filter[i*filterSize +j]=0;
}
(*filterPos)[i]= srcW - filterSize;
}
}
// Note the +1 is for the MMX scaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
*outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
/* normalize & store in outFilter */
for (i=0; i<dstW; i++)
{
int j;
int64_t error=0;
int64_t sum=0;
for (j=0; j<filterSize; j++)
{
sum+= filter[i*filterSize + j];
}
sum= (sum + one/2)/ one;
for (j=0; j<*outFilterSize; j++)
{
int64_t v= filter[i*filterSize + j] + error;
int intV= ROUNDED_DIV(v, sum);
(*outFilter)[i*(*outFilterSize) + j]= intV;
error= v - intV*sum;
}
}
(*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
for (i=0; i<*outFilterSize; i++)
{
int j= dstW*(*outFilterSize);
(*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
}
ret=0;
error:
av_free(filter);
av_free(filter2);
return ret;
}
#ifdef COMPILE_MMX2
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
uint8_t *fragmentA;
x86_reg imm8OfPShufW1A;
x86_reg imm8OfPShufW2A;
x86_reg fragmentLengthA;
uint8_t *fragmentB;
x86_reg imm8OfPShufW1B;
x86_reg imm8OfPShufW2B;
x86_reg fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
//code fragment
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos=0;
for (i=0; i<dstW/numSplits; i++)
{
int xx=xpos>>16;
if ((i&3) == 0)
{
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
filterPos[i/2]= xx;
if (d+1<4)
{
int maxShift= 3-(d+1);
int shift=0;
memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
funnyCode[fragmentPos + imm8OfPShufW1B]=
(a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
funnyCode[fragmentPos + imm8OfPShufW2B]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+3>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
if (shift && i>=shift)
{
funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
filterPos[i/2]-=shift;
}
fragmentPos+= fragmentLengthB;
}
else
{
int maxShift= 3-d;
int shift=0;
memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
funnyCode[fragmentPos + imm8OfPShufW1A]=
funnyCode[fragmentPos + imm8OfPShufW2A]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+4>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
if (shift && i>=shift)
{
funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
filterPos[i/2]-=shift;
}
fragmentPos+= fragmentLengthA;
}
funnyCode[fragmentPos]= RET;
}
xpos+=xInc;
}
filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
}
#endif /* COMPILE_MMX2 */
static void globalInit(void){
// generating tables:
int i;
for (i=0; i<768; i++){
int c= av_clip_uint8(i-256);
clip_table[i]=c;
}
}
static SwsFunc getSwsFunc(SwsContext *c)
{
int flags = c->flags;
#if CONFIG_RUNTIME_CPUDETECT && CONFIG_GPL
#if ARCH_X86
// ordered per speed fastest first
if (flags & SWS_CPU_CAPS_MMX2) {
sws_init_swScale_MMX2(c);
return swScale_MMX2;
} else if (flags & SWS_CPU_CAPS_3DNOW) {
sws_init_swScale_3DNow(c);
return swScale_3DNow;
} else if (flags & SWS_CPU_CAPS_MMX) {
sws_init_swScale_MMX(c);
return swScale_MMX;
} else {
sws_init_swScale_C(c);
return swScale_C;
}
#else
#if ARCH_PPC
if (flags & SWS_CPU_CAPS_ALTIVEC) {
sws_init_swScale_altivec(c);
return swScale_altivec;
} else {
sws_init_swScale_C(c);
return swScale_C;
}
#endif
sws_init_swScale_C(c);
return swScale_C;
#endif /* ARCH_X86 */
#else //CONFIG_RUNTIME_CPUDETECT
#if HAVE_MMX2
sws_init_swScale_MMX2(c);
return swScale_MMX2;
#elif HAVE_AMD3DNOW
sws_init_swScale_3DNow(c);
return swScale_3DNow;
#elif HAVE_MMX
sws_init_swScale_MMX(c);
return swScale_MMX;
#elif HAVE_ALTIVEC
sws_init_swScale_altivec(c);
return swScale_altivec;
#else
sws_init_swScale_C(c);
return swScale_C;
#endif
#endif //!CONFIG_RUNTIME_CPUDETECT
}
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
/* Copy Y plane */
if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
memcpy(dst, src[0], srcSliceH*dstStride[0]);
else
{
int i;
const uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst;
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, c->srcW);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
dst = dstParam[1] + dstStride[1]*srcSliceY/2;
if (c->dstFormat == PIX_FMT_NV12)
interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
else
interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
return srcSliceH;
}
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
return srcSliceH;
}
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
return srcSliceH;
}
static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
return srcSliceH;
}
static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
return srcSliceH;
}
static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
if (dstParam[3])
fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
return srcSliceH;
}
static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
return srcSliceH;
}
static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
if (dstParam[3])
fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
return srcSliceH;
}
static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
return srcSliceH;
}
static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
const enum PixelFormat srcFormat= c->srcFormat;
const enum PixelFormat dstFormat= c->dstFormat;
void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
const uint8_t *palette)=NULL;
int i;
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
uint8_t *srcPtr= src[0];
if (!usePal(srcFormat))
av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
switch(dstFormat){
case PIX_FMT_RGB32 : conv = palette8topacked32; break;
case PIX_FMT_BGR32 : conv = palette8topacked32; break;
case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
case PIX_FMT_RGB24 : conv = palette8topacked24; break;
case PIX_FMT_BGR24 : conv = palette8topacked24; break;
default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
}
for (i=0; i<srcSliceH; i++) {
conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
return srcSliceH;
}
/* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
const enum PixelFormat srcFormat= c->srcFormat;
const enum PixelFormat dstFormat= c->dstFormat;
const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
const int dstId= fmt_depth(dstFormat) >> 2;
void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
/* BGR -> BGR */
if ( (isBGR(srcFormat) && isBGR(dstFormat))
|| (isRGB(srcFormat) && isRGB(dstFormat))){
switch(srcId | (dstId<<4)){
case 0x34: conv= rgb16to15; break;
case 0x36: conv= rgb24to15; break;
case 0x38: conv= rgb32to15; break;
case 0x43: conv= rgb15to16; break;
case 0x46: conv= rgb24to16; break;
case 0x48: conv= rgb32to16; break;
case 0x63: conv= rgb15to24; break;
case 0x64: conv= rgb16to24; break;
case 0x68: conv= rgb32to24; break;
case 0x83: conv= rgb15to32; break;
case 0x84: conv= rgb16to32; break;
case 0x86: conv= rgb24to32; break;
default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
}
}else if ( (isBGR(srcFormat) && isRGB(dstFormat))
|| (isRGB(srcFormat) && isBGR(dstFormat))){
switch(srcId | (dstId<<4)){
case 0x33: conv= rgb15tobgr15; break;
case 0x34: conv= rgb16tobgr15; break;
case 0x36: conv= rgb24tobgr15; break;
case 0x38: conv= rgb32tobgr15; break;
case 0x43: conv= rgb15tobgr16; break;
case 0x44: conv= rgb16tobgr16; break;
case 0x46: conv= rgb24tobgr16; break;
case 0x48: conv= rgb32tobgr16; break;
case 0x63: conv= rgb15tobgr24; break;
case 0x64: conv= rgb16tobgr24; break;
case 0x66: conv= rgb24tobgr24; break;
case 0x68: conv= rgb32tobgr24; break;
case 0x83: conv= rgb15tobgr32; break;
case 0x84: conv= rgb16tobgr32; break;
case 0x86: conv= rgb24tobgr32; break;
case 0x88: conv= rgb32tobgr32; break;
default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
}
}else{
av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
}
if(conv)
{
uint8_t *srcPtr= src[0];
if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
srcPtr += ALT32_CORR;
if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
else
{
int i;
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
for (i=0; i<srcSliceH; i++)
{
conv(srcPtr, dstPtr, c->srcW*srcBpp);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
}
return srcSliceH;
}
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
rgb24toyv12(
src[0],
dst[0]+ srcSliceY *dstStride[0],
dst[1]+(srcSliceY>>1)*dstStride[1],
dst[2]+(srcSliceY>>1)*dstStride[2],
c->srcW, srcSliceH,
dstStride[0], dstStride[1], srcStride[0]);
if (dst[3])
fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
return srcSliceH;
}
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int i;
/* copy Y */
if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
else{
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, c->srcW);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
}else{
planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
}
if (dst[3])
fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
return srcSliceH;
}
/* unscaled copy like stuff (assumes nearly identical formats) */
static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[])
{
if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
else
{
int i;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
int length=0;
/* universal length finder */
while(length+c->srcW <= FFABS(dstStride[0])
&& length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
assert(length!=0);
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, length);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
return srcSliceH;
}
static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[])
{
int plane, i, j;
for (plane=0; plane<4; plane++)
{
int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
uint8_t *srcPtr= src[plane];
uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
if (!dst[plane]) continue;
// ignore palette for GRAY8
if (plane == 1 && !dst[2]) continue;
if (!src[plane] || (plane == 1 && !src[2])){
if(is16BPS(c->dstFormat))
length*=2;
fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
}else
{
if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
if (!isBE(c->srcFormat)) srcPtr++;
for (i=0; i<height; i++){
for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
srcPtr+= srcStride[plane];
dstPtr+= dstStride[plane];
}
}else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
for (i=0; i<height; i++){
for (j=0; j<length; j++){
dstPtr[ j<<1 ] = srcPtr[j];
dstPtr[(j<<1)+1] = srcPtr[j];
}
srcPtr+= srcStride[plane];
dstPtr+= dstStride[plane];
}
}else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
&& isBE(c->srcFormat) != isBE(c->dstFormat)){
for (i=0; i<height; i++){
for (j=0; j<length; j++)
((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
srcPtr+= srcStride[plane];
dstPtr+= dstStride[plane];
}
} else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
else
{
if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
length*=2;
for (i=0; i<height; i++)
{
memcpy(dstPtr, srcPtr, length);
srcPtr+= srcStride[plane];
dstPtr+= dstStride[plane];
}
}
}
}
return srcSliceH;
}
static void getSubSampleFactors(int *h, int *v, int format){
switch(format){
case PIX_FMT_UYVY422:
case PIX_FMT_YUYV422:
*h=1;
*v=0;
break;
case PIX_FMT_YUV420P:
case PIX_FMT_YUV420PLE:
case PIX_FMT_YUV420PBE:
case PIX_FMT_YUVA420P:
case PIX_FMT_GRAY16BE:
case PIX_FMT_GRAY16LE:
case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
case PIX_FMT_NV12:
case PIX_FMT_NV21:
*h=1;
*v=1;
break;
case PIX_FMT_YUV440P:
*h=0;
*v=1;
break;
case PIX_FMT_YUV410P:
*h=2;
*v=2;
break;
case PIX_FMT_YUV444P:
case PIX_FMT_YUV444PLE:
case PIX_FMT_YUV444PBE:
*h=0;
*v=0;
break;
case PIX_FMT_YUV422P:
case PIX_FMT_YUV422PLE:
case PIX_FMT_YUV422PBE:
*h=1;
*v=0;
break;
case PIX_FMT_YUV411P:
*h=2;
*v=0;
break;
default:
*h=0;
*v=0;
break;
}
}
static uint16_t roundToInt16(int64_t f){
int r= (f + (1<<15))>>16;
if (r<-0x7FFF) return 0x8000;
else if (r> 0x7FFF) return 0x7FFF;
else return r;
}
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
int64_t crv = inv_table[0];
int64_t cbu = inv_table[1];
int64_t cgu = -inv_table[2];
int64_t cgv = -inv_table[3];
int64_t cy = 1<<16;
int64_t oy = 0;
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
c->brightness= brightness;
c->contrast = contrast;
c->saturation= saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
c->uOffset= 0x0400040004000400LL;
c->vOffset= 0x0400040004000400LL;
if (!srcRange){
cy= (cy*255) / 219;
oy= 16<<16;
}else{
crv= (crv*224) / 255;
cbu= (cbu*224) / 255;
cgu= (cgu*224) / 255;
cgv= (cgv*224) / 255;
}
cy = (cy *contrast )>>16;
crv= (crv*contrast * saturation)>>32;
cbu= (cbu*contrast * saturation)>>32;
cgu= (cgu*contrast * saturation)>>32;
cgv= (cgv*contrast * saturation)>>32;
oy -= 256*brightness;
c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
//FIXME factorize
#ifdef COMPILE_ALTIVEC
if (c->flags & SWS_CPU_CAPS_ALTIVEC)
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
#endif
return 0;
}
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness= c->brightness;
*contrast = c->contrast;
*saturation= c->saturation;
return 0;
}
static int handle_jpeg(enum PixelFormat *format)
{
switch (*format) {
case PIX_FMT_YUVJ420P:
*format = PIX_FMT_YUV420P;
return 1;
case PIX_FMT_YUVJ422P:
*format = PIX_FMT_YUV422P;
return 1;
case PIX_FMT_YUVJ444P:
*format = PIX_FMT_YUV444P;
return 1;
case PIX_FMT_YUVJ440P:
*format = PIX_FMT_YUV440P;
return 1;
default:
return 0;
}
}
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
SwsContext *c;
int i;
int usesVFilter, usesHFilter;
int unscaled, needsDither;
int srcRange, dstRange;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory");
#endif
#if !CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
#if HAVE_MMX2
flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
#elif HAVE_AMD3DNOW
flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
#elif HAVE_MMX
flags |= SWS_CPU_CAPS_MMX;
#elif HAVE_ALTIVEC
flags |= SWS_CPU_CAPS_ALTIVEC;
#elif ARCH_BFIN
flags |= SWS_CPU_CAPS_BFIN;
#endif
#endif /* CONFIG_RUNTIME_CPUDETECT */
if (clip_table[512] != 255) globalInit();
if (!rgb15to16) sws_rgb2rgb_init(flags);
unscaled = (srcW == dstW && srcH == dstH);
needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
&& (fmt_depth(dstFormat))<24
&& ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
srcRange = handle_jpeg(&srcFormat);
dstRange = handle_jpeg(&dstFormat);
if (!isSupportedIn(srcFormat))
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
return NULL;
}
if (!isSupportedOut(dstFormat))
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
return NULL;
}
i= flags & ( SWS_POINT
|SWS_AREA
|SWS_BILINEAR
|SWS_FAST_BILINEAR
|SWS_BICUBIC
|SWS_X
|SWS_GAUSS
|SWS_LANCZOS
|SWS_SINC
|SWS_SPLINE
|SWS_BICUBLIN);
if(!i || (i & (i-1)))
{
av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
return NULL;
}
/* sanity check */
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return NULL;
}
if(srcW > VOFW || dstW > VOFW){
av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
return NULL;
}
if (!dstFilter) dstFilter= &dummyFilter;
if (!srcFilter) srcFilter= &dummyFilter;
c= av_mallocz(sizeof(SwsContext));
c->av_class = &sws_context_class;
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
c->vRounder= 4* 0x0001000100010001ULL;
usesHFilter= usesVFilter= 0;
if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
// reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
// drop some chroma lines if the user wants it
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample+= c->vChrDrop;
// drop every other pixel for chroma calculation unless user wants full chroma
if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
&& ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
c->chrSrcHSubSample=1;
if (param){
c->param[0] = param[0];
c->param[1] = param[1];
}else{
c->param[0] =
c->param[1] = SWS_PARAM_DEFAULT;
}
c->chrIntHSubSample= c->chrDstHSubSample;
c->chrIntVSubSample= c->chrSrcVSubSample;
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
/* unscaled special cases */
if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
{
/* yv12_to_nv12 */
if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
{
c->swScale= PlanarToNV12Wrapper;
}
/* yuv2bgr */
if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
&& !(flags & SWS_ACCURATE_RND) && !(dstH&1))
{
c->swScale= ff_yuv2rgb_get_func_ptr(c);
}
if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
{
c->swScale= yvu9toyv12Wrapper;
}
/* bgr24toYV12 */
if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
c->swScale= bgr24toyv12Wrapper;
/* RGB/BGR -> RGB/BGR (no dither needed forms) */
if ( (isBGR(srcFormat) || isRGB(srcFormat))
&& (isBGR(dstFormat) || isRGB(dstFormat))
&& srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
&& srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
&& srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
&& srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
&& srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
&& srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
&& srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
&& srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
&& dstFormat != PIX_FMT_RGB32_1
&& dstFormat != PIX_FMT_BGR32_1
&& (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
c->swScale= rgb2rgbWrapper;
if ((usePal(srcFormat) && (
dstFormat == PIX_FMT_RGB32 ||
dstFormat == PIX_FMT_RGB32_1 ||
dstFormat == PIX_FMT_RGB24 ||
dstFormat == PIX_FMT_BGR32 ||
dstFormat == PIX_FMT_BGR32_1 ||
dstFormat == PIX_FMT_BGR24)))
c->swScale= pal2rgbWrapper;
if (srcFormat == PIX_FMT_YUV422P)
{
if (dstFormat == PIX_FMT_YUYV422)
c->swScale= YUV422PToYuy2Wrapper;
else if (dstFormat == PIX_FMT_UYVY422)
c->swScale= YUV422PToUyvyWrapper;
}
/* LQ converters if -sws 0 or -sws 4*/
if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
/* yv12_to_yuy2 */
if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
{
if (dstFormat == PIX_FMT_YUYV422)
c->swScale= PlanarToYuy2Wrapper;
else if (dstFormat == PIX_FMT_UYVY422)
c->swScale= PlanarToUyvyWrapper;
}
}
if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
c->swScale= YUYV2YUV420Wrapper;
if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
c->swScale= UYVY2YUV420Wrapper;
if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
c->swScale= YUYV2YUV422Wrapper;
if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
c->swScale= UYVY2YUV422Wrapper;
#ifdef COMPILE_ALTIVEC
if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
!(c->flags & SWS_BITEXACT) &&
srcFormat == PIX_FMT_YUV420P) {
// unscaled YV12 -> packed YUV, we want speed
if (dstFormat == PIX_FMT_YUYV422)
c->swScale= yv12toyuy2_unscaled_altivec;
else if (dstFormat == PIX_FMT_UYVY422)
c->swScale= yv12touyvy_unscaled_altivec;
}
#endif
/* simple copy */
if ( srcFormat == dstFormat
|| (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
|| (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
|| (isPlanarYUV(srcFormat) && isGray(dstFormat))
|| (isPlanarYUV(dstFormat) && isGray(srcFormat))
|| (isGray(dstFormat) && isGray(srcFormat))
|| (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
&& c->chrDstHSubSample == c->chrSrcHSubSample
&& c->chrDstVSubSample == c->chrSrcVSubSample))
{
if (isPacked(c->srcFormat))
c->swScale= packedCopy;
else /* Planar YUV or gray */
c->swScale= planarCopy;
}
#if ARCH_BFIN
if (flags & SWS_CPU_CAPS_BFIN)
ff_bfin_get_unscaled_swscale (c);
#endif
if (c->swScale){
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return c;
}
}
if (flags & SWS_CPU_CAPS_MMX2)
{
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
{
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
}
if (usesHFilter) c->canMMX2BeUsed=0;
}
else
c->canMMX2BeUsed=0;
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but no one should notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if (flags&SWS_FAST_BILINEAR)
{
if (c->canMMX2BeUsed)
{
c->lumXInc+= 20;
c->chrXInc+= 20;
}
//we don't use the x86 asm scaler if MMX is available
else if (flags & SWS_CPU_CAPS_MMX)
{
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
}
}
/* precalculate horizontal scaler filter coefficients */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) ? 4 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumH, dstFilter->lumH, c->param);
initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrH, dstFilter->chrH, c->param);
#define MAX_FUNNY_CODE_SIZE 10000
#if defined(COMPILE_MMX2)
// can't downscale !!!
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
{
#ifdef MAP_ANONYMOUS
c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#elif HAVE_VIRTUALALLOC
c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
#endif
c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
}
#endif /* defined(COMPILE_MMX2) */
} // initialize horizontal stuff
/* precalculate vertical scaler filter coefficients */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumV, dstFilter->lumV, c->param);
initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrV, dstFilter->chrV, c->param);
#if HAVE_ALTIVEC
c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
int j;
short *p = (short *)&c->vYCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vLumFilter[i];
}
for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
int j;
short *p = (short *)&c->vCCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vChrFilter[i];
}
#endif
}
// calculate buffer sizes so that they won't run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for (i=0; i<dstH; i++)
{
int chrI= i*c->chrDstH / dstH;
int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
nextSlice>>= c->chrSrcVSubSample;
nextSlice<<= c->chrSrcVSubSample;
if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
//Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
/* align at 16 bytes for AltiVec */
for (i=0; i<c->vLumBufSize; i++)
c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
for (i=0; i<c->vChrBufSize; i++)
c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
for (i=0; i<c->vLumBufSize; i++)
c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
//try to avoid drawing green stuff between the right end and the stride end
for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
assert(2*VOFW == VOF);
assert(c->chrDstH <= dstH);
if (flags&SWS_PRINT_INFO)
{
#ifdef DITHER1XBPP
const char *dither= " dithered";
#else
const char *dither= "";
#endif
if (flags&SWS_FAST_BILINEAR)
av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
else if (flags&SWS_BILINEAR)
av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
else if (flags&SWS_BICUBIC)
av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
else if (flags&SWS_X)
av_log(c, AV_LOG_INFO, "Experimental scaler, ");
else if (flags&SWS_POINT)
av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
else if (flags&SWS_AREA)
av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
else if (flags&SWS_BICUBLIN)
av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
else if (flags&SWS_GAUSS)
av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
else if (flags&SWS_SINC)
av_log(c, AV_LOG_INFO, "Sinc scaler, ");
else if (flags&SWS_LANCZOS)
av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
else if (flags&SWS_SPLINE)
av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
else
av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
av_log(c, AV_LOG_INFO, "from %s to%s %s ",
sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
else
av_log(c, AV_LOG_INFO, "from %s to %s ",
sws_format_name(srcFormat), sws_format_name(dstFormat));
if (flags & SWS_CPU_CAPS_MMX2)
av_log(c, AV_LOG_INFO, "using MMX2\n");
else if (flags & SWS_CPU_CAPS_3DNOW)
av_log(c, AV_LOG_INFO, "using 3DNOW\n");
else if (flags & SWS_CPU_CAPS_MMX)
av_log(c, AV_LOG_INFO, "using MMX\n");
else if (flags & SWS_CPU_CAPS_ALTIVEC)
av_log(c, AV_LOG_INFO, "using AltiVec\n");
else
av_log(c, AV_LOG_INFO, "using C\n");
}
if (flags & SWS_PRINT_INFO)
{
if (flags & SWS_CPU_CAPS_MMX)
{
if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
else
{
if (c->hLumFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
else if (c->hLumFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
if (c->hChrFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
else if (c->hChrFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
}
}
else
{
#if ARCH_X86
av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
#else
if (flags & SWS_FAST_BILINEAR)
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
#endif
}
if (isPlanarYUV(dstFormat))
{
if (c->vLumFilterSize==1)
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
}
else
{
if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
" 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
}
if (dstFormat==PIX_FMT_BGR24)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
(flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
else if (dstFormat==PIX_FMT_RGB32)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR565)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR555)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
}
if (flags & SWS_PRINT_INFO)
{
av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
}
c->swScale= getSwsFunc(c);
return c;
}
static void reset_ptr(uint8_t* src[], int format){
if(!isALPHA(format))
src[3]=NULL;
if(!isPlanarYUV(format)){
src[3]=src[2]=NULL;
if( format != PIX_FMT_PAL8
&& format != PIX_FMT_RGB8
&& format != PIX_FMT_BGR8
&& format != PIX_FMT_RGB4_BYTE
&& format != PIX_FMT_BGR4_BYTE
)
src[1]= NULL;
}
}
/**
* swscale wrapper, so we don't need to export the SwsContext.
* Assumes planar YUV to be in YUV order instead of YVU.
*/
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int i;
uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
return 0;
}
if (c->sliceDir == 0) {
if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
}
if (usePal(c->srcFormat)){
for (i=0; i<256; i++){
int p, r, g, b,y,u,v;
if(c->srcFormat == PIX_FMT_PAL8){
p=((uint32_t*)(src[1]))[i];
r= (p>>16)&0xFF;
g= (p>> 8)&0xFF;
b= p &0xFF;
}else if(c->srcFormat == PIX_FMT_RGB8){
r= (i>>5 )*36;
g= ((i>>2)&7)*36;
b= (i&3 )*85;
}else if(c->srcFormat == PIX_FMT_BGR8){
b= (i>>6 )*85;
g= ((i>>3)&7)*36;
r= (i&7 )*36;
}else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
r= (i>>3 )*255;
g= ((i>>1)&3)*85;
b= (i&1 )*255;
}else {
assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
b= (i>>3 )*255;
g= ((i>>1)&3)*85;
r= (i&1 )*255;
}
y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
c->pal_yuv[i]= y + (u<<8) + (v<<16);
switch(c->dstFormat) {
case PIX_FMT_BGR32:
#ifndef WORDS_BIGENDIAN
case PIX_FMT_RGB24:
#endif
c->pal_rgb[i]= r + (g<<8) + (b<<16);
break;
case PIX_FMT_BGR32_1:
#ifdef WORDS_BIGENDIAN
case PIX_FMT_BGR24:
#endif
c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
break;
case PIX_FMT_RGB32_1:
#ifdef WORDS_BIGENDIAN
case PIX_FMT_RGB24:
#endif
c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
break;
case PIX_FMT_RGB32:
#ifndef WORDS_BIGENDIAN
case PIX_FMT_BGR24:
#endif
default:
c->pal_rgb[i]= b + (g<<8) + (r<<16);
}
}
}
// copy strides, so they can safely be modified
if (c->sliceDir == 1) {
// slices go from top to bottom
int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
reset_ptr(src2, c->srcFormat);
reset_ptr(dst2, c->dstFormat);
return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
} else {
// slices go from bottom to top => we flip the image internally
int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
src2[0] += (srcSliceH-1)*srcStride[0];
if (!usePal(c->srcFormat))
src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
src2[3] += (srcSliceH-1)*srcStride[3];
dst2[0] += ( c->dstH -1)*dstStride[0];
dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
dst2[3] += ( c->dstH -1)*dstStride[3];
reset_ptr(src2, c->srcFormat);
reset_ptr(dst2, c->dstFormat);
return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
}
}
#if LIBSWSCALE_VERSION_MAJOR < 1
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
}
#endif
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
float lumaSharpen, float chromaSharpen,
float chromaHShift, float chromaVShift,
int verbose)
{
SwsFilter *filter= av_malloc(sizeof(SwsFilter));
if (lumaGBlur!=0.0){
filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
}else{
filter->lumH= sws_getIdentityVec();
filter->lumV= sws_getIdentityVec();
}
if (chromaGBlur!=0.0){
filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
}else{
filter->chrH= sws_getIdentityVec();
filter->chrV= sws_getIdentityVec();
}
if (chromaSharpen!=0.0){
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->chrH, -chromaSharpen);
sws_scaleVec(filter->chrV, -chromaSharpen);
sws_addVec(filter->chrH, id);
sws_addVec(filter->chrV, id);
sws_freeVec(id);
}
if (lumaSharpen!=0.0){
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->lumH, -lumaSharpen);
sws_scaleVec(filter->lumV, -lumaSharpen);
sws_addVec(filter->lumH, id);
sws_addVec(filter->lumV, id);
sws_freeVec(id);
}
if (chromaHShift != 0.0)
sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
if (chromaVShift != 0.0)
sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
sws_normalizeVec(filter->chrH, 1.0);
sws_normalizeVec(filter->chrV, 1.0);
sws_normalizeVec(filter->lumH, 1.0);
sws_normalizeVec(filter->lumV, 1.0);
if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
return filter;
}
SwsVector *sws_getGaussianVec(double variance, double quality){
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double *coeff= av_malloc(length*sizeof(double));
double middle= (length-1)*0.5;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++)
{
double dist= i-middle;
coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
}
sws_normalizeVec(vec, 1.0);
return vec;
}
SwsVector *sws_getConstVec(double c, int length){
int i;
double *coeff= av_malloc(length*sizeof(double));
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++)
coeff[i]= c;
return vec;
}
SwsVector *sws_getIdentityVec(void){
return sws_getConstVec(1.0, 1);
}
double sws_dcVec(SwsVector *a){
int i;
double sum=0;
for (i=0; i<a->length; i++)
sum+= a->coeff[i];
return sum;
}
void sws_scaleVec(SwsVector *a, double scalar){
int i;
for (i=0; i<a->length; i++)
a->coeff[i]*= scalar;
}
void sws_normalizeVec(SwsVector *a, double height){
sws_scaleVec(a, height/sws_dcVec(a));
}
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
int length= a->length + b->length - 1;
double *coeff= av_malloc(length*sizeof(double));
int i, j;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++)
{
for (j=0; j<b->length; j++)
{
coeff[i+j]+= a->coeff[i]*b->coeff[j];
}
}
return vec;
}
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
int length= FFMAX(a->length, b->length);
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
return vec;
}
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
int length= FFMAX(a->length, b->length);
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
int length= a->length + FFABS(shift)*2;
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++)
{
coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
}
return vec;
}
void sws_shiftVec(SwsVector *a, int shift){
SwsVector *shifted= sws_getShiftedVec(a, shift);
av_free(a->coeff);
a->coeff= shifted->coeff;
a->length= shifted->length;
av_free(shifted);
}
void sws_addVec(SwsVector *a, SwsVector *b){
SwsVector *sum= sws_sumVec(a, b);
av_free(a->coeff);
a->coeff= sum->coeff;
a->length= sum->length;
av_free(sum);
}
void sws_subVec(SwsVector *a, SwsVector *b){
SwsVector *diff= sws_diffVec(a, b);
av_free(a->coeff);
a->coeff= diff->coeff;
a->length= diff->length;
av_free(diff);
}
void sws_convVec(SwsVector *a, SwsVector *b){
SwsVector *conv= sws_getConvVec(a, b);
av_free(a->coeff);
a->coeff= conv->coeff;
a->length= conv->length;
av_free(conv);
}
SwsVector *sws_cloneVec(SwsVector *a){
double *coeff= av_malloc(a->length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= a->length;
for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
return vec;
}
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
int i;
double max=0;
double min=0;
double range;
for (i=0; i<a->length; i++)
if (a->coeff[i]>max) max= a->coeff[i];
for (i=0; i<a->length; i++)
if (a->coeff[i]<min) min= a->coeff[i];
range= max - min;
for (i=0; i<a->length; i++)
{
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
for (;x>0; x--) av_log(log_ctx, log_level, " ");
av_log(log_ctx, log_level, "|\n");
}
}
#if LIBSWSCALE_VERSION_MAJOR < 1
void sws_printVec(SwsVector *a){
sws_printVec2(a, NULL, AV_LOG_DEBUG);
}
#endif
void sws_freeVec(SwsVector *a){
if (!a) return;
av_freep(&a->coeff);
a->length=0;
av_free(a);
}
void sws_freeFilter(SwsFilter *filter){
if (!filter) return;
if (filter->lumH) sws_freeVec(filter->lumH);
if (filter->lumV) sws_freeVec(filter->lumV);
if (filter->chrH) sws_freeVec(filter->chrH);
if (filter->chrV) sws_freeVec(filter->chrV);
av_free(filter);
}
void sws_freeContext(SwsContext *c){
int i;
if (!c) return;
if (c->lumPixBuf)
{
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->lumPixBuf[i]);
av_freep(&c->lumPixBuf);
}
if (c->chrPixBuf)
{
for (i=0; i<c->vChrBufSize; i++)
av_freep(&c->chrPixBuf[i]);
av_freep(&c->chrPixBuf);
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->alpPixBuf[i]);
av_freep(&c->alpPixBuf);
}
av_freep(&c->vLumFilter);
av_freep(&c->vChrFilter);
av_freep(&c->hLumFilter);
av_freep(&c->hChrFilter);
#if HAVE_ALTIVEC
av_freep(&c->vYCoeffsBank);
av_freep(&c->vCCoeffsBank);
#endif
av_freep(&c->vLumFilterPos);
av_freep(&c->vChrFilterPos);
av_freep(&c->hLumFilterPos);
av_freep(&c->hChrFilterPos);
#if ARCH_X86 && CONFIG_GPL
#ifdef MAP_ANONYMOUS
if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
#elif HAVE_VIRTUALALLOC
if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
#else
av_free(c->funnyYCode );
av_free(c->funnyUVCode);
#endif
c->funnyYCode=NULL;
c->funnyUVCode=NULL;
#endif /* ARCH_X86 && CONFIG_GPL */
av_freep(&c->lumMmx2Filter);
av_freep(&c->chrMmx2Filter);
av_freep(&c->lumMmx2FilterPos);
av_freep(&c->chrMmx2FilterPos);
av_freep(&c->yuvTable);
av_free(c);
}
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
{
static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
if (!param)
param = default_param;
if (context) {
if (context->srcW != srcW || context->srcH != srcH ||
context->srcFormat != srcFormat ||
context->dstW != dstW || context->dstH != dstH ||
context->dstFormat != dstFormat || context->flags != flags ||
context->param[0] != param[0] || context->param[1] != param[1])
{
sws_freeContext(context);
context = NULL;
}
}
if (!context) {
return sws_getContext(srcW, srcH, srcFormat,
dstW, dstH, dstFormat, flags,
srcFilter, dstFilter, param);
}
return context;
}