mpv/video/out/gpu/ra.c

409 lines
14 KiB
C

#include "common/common.h"
#include "common/msg.h"
#include "video/img_format.h"
#include "ra.h"
void ra_add_native_resource(struct ra *ra, const char *name, void *data)
{
struct ra_native_resource r = {
.name = name,
.data = data,
};
MP_TARRAY_APPEND(ra, ra->native_resources, ra->num_native_resources, r);
}
void *ra_get_native_resource(struct ra *ra, const char *name)
{
for (int n = 0; n < ra->num_native_resources; n++) {
struct ra_native_resource *r = &ra->native_resources[n];
if (strcmp(r->name, name) == 0)
return r->data;
}
return NULL;
}
struct ra_tex *ra_tex_create(struct ra *ra, const struct ra_tex_params *params)
{
return ra->fns->tex_create(ra, params);
}
void ra_tex_free(struct ra *ra, struct ra_tex **tex)
{
if (*tex)
ra->fns->tex_destroy(ra, *tex);
*tex = NULL;
}
struct ra_buf *ra_buf_create(struct ra *ra, const struct ra_buf_params *params)
{
return ra->fns->buf_create(ra, params);
}
void ra_buf_free(struct ra *ra, struct ra_buf **buf)
{
if (*buf)
ra->fns->buf_destroy(ra, *buf);
*buf = NULL;
}
void ra_free(struct ra **ra)
{
if (*ra)
(*ra)->fns->destroy(*ra);
talloc_free(*ra);
*ra = NULL;
}
size_t ra_vartype_size(enum ra_vartype type)
{
switch (type) {
case RA_VARTYPE_INT: return sizeof(int);
case RA_VARTYPE_FLOAT: return sizeof(float);
case RA_VARTYPE_BYTE_UNORM: return 1;
default: return 0;
}
}
struct ra_layout ra_renderpass_input_layout(struct ra_renderpass_input *input)
{
size_t el_size = ra_vartype_size(input->type);
if (!el_size)
return (struct ra_layout){0};
// host data is always tightly packed
return (struct ra_layout) {
.align = 1,
.stride = el_size * input->dim_v,
.size = el_size * input->dim_v * input->dim_m,
};
}
static struct ra_renderpass_input *dup_inputs(void *ta_parent,
const struct ra_renderpass_input *inputs, int num_inputs)
{
struct ra_renderpass_input *res =
talloc_memdup(ta_parent, (void *)inputs, num_inputs * sizeof(inputs[0]));
for (int n = 0; n < num_inputs; n++)
res[n].name = talloc_strdup(res, res[n].name);
return res;
}
// Return a newly allocated deep-copy of params.
struct ra_renderpass_params *ra_renderpass_params_copy(void *ta_parent,
const struct ra_renderpass_params *params)
{
struct ra_renderpass_params *res = talloc_ptrtype(ta_parent, res);
*res = *params;
res->inputs = dup_inputs(res, res->inputs, res->num_inputs);
res->vertex_attribs =
dup_inputs(res, res->vertex_attribs, res->num_vertex_attribs);
res->cached_program = bstrdup(res, res->cached_program);
res->vertex_shader = talloc_strdup(res, res->vertex_shader);
res->frag_shader = talloc_strdup(res, res->frag_shader);
res->compute_shader = talloc_strdup(res, res->compute_shader);
return res;
}
struct glsl_fmt {
enum ra_ctype ctype;
int num_components;
int component_depth[4];
const char *glsl_format;
};
// List taken from the GLSL specification, sans snorm and sint formats
static const struct glsl_fmt ra_glsl_fmts[] = {
{RA_CTYPE_FLOAT, 1, {16}, "r16f"},
{RA_CTYPE_FLOAT, 1, {32}, "r32f"},
{RA_CTYPE_FLOAT, 2, {16, 16}, "rg16f"},
{RA_CTYPE_FLOAT, 2, {32, 32}, "rg32f"},
{RA_CTYPE_FLOAT, 4, {16, 16, 16, 16}, "rgba16f"},
{RA_CTYPE_FLOAT, 4, {32, 32, 32, 32}, "rgba32f"},
{RA_CTYPE_FLOAT, 3, {11, 11, 10}, "r11f_g11f_b10f"},
{RA_CTYPE_UNORM, 1, {8}, "r8"},
{RA_CTYPE_UNORM, 1, {16}, "r16"},
{RA_CTYPE_UNORM, 2, {8, 8}, "rg8"},
{RA_CTYPE_UNORM, 2, {16, 16}, "rg16"},
{RA_CTYPE_UNORM, 4, {8, 8, 8, 8}, "rgba8"},
{RA_CTYPE_UNORM, 4, {16, 16, 16, 16}, "rgba16"},
{RA_CTYPE_UNORM, 4, {10, 10, 10, 2}, "rgb10_a2"},
{RA_CTYPE_UINT, 1, {8}, "r8ui"},
{RA_CTYPE_UINT, 1, {16}, "r16ui"},
{RA_CTYPE_UINT, 1, {32}, "r32ui"},
{RA_CTYPE_UINT, 2, {8, 8}, "rg8ui"},
{RA_CTYPE_UINT, 2, {16, 16}, "rg16ui"},
{RA_CTYPE_UINT, 2, {32, 32}, "rg32ui"},
{RA_CTYPE_UINT, 4, {8, 8, 8, 8}, "rgba8ui"},
{RA_CTYPE_UINT, 4, {16, 16, 16, 16}, "rgba16ui"},
{RA_CTYPE_UINT, 4, {32, 32, 32, 32}, "rgba32ui"},
{RA_CTYPE_UINT, 4, {10, 10, 10, 2}, "rgb10_a2ui"},
};
const char *ra_fmt_glsl_format(const struct ra_format *fmt)
{
for (int n = 0; n < MP_ARRAY_SIZE(ra_glsl_fmts); n++) {
const struct glsl_fmt *gfmt = &ra_glsl_fmts[n];
if (fmt->ctype != gfmt->ctype)
continue;
if (fmt->num_components != gfmt->num_components)
continue;
for (int i = 0; i < fmt->num_components; i++) {
if (fmt->component_depth[i] != gfmt->component_depth[i])
goto next_fmt;
}
return gfmt->glsl_format;
next_fmt: ; // equivalent to `continue`
}
return NULL;
}
// Return whether this is a tightly packed format with no external padding and
// with the same bit size/depth in all components, and the shader returns
// components in the same order as in memory.
static bool ra_format_is_regular(const struct ra_format *fmt)
{
if (!fmt->pixel_size || !fmt->num_components || !fmt->ordered)
return false;
for (int n = 1; n < fmt->num_components; n++) {
if (fmt->component_size[n] != fmt->component_size[0] ||
fmt->component_depth[n] != fmt->component_depth[0])
return false;
}
if (fmt->component_size[0] * fmt->num_components != fmt->pixel_size * 8)
return false;
return true;
}
// Return a regular filterable format using RA_CTYPE_UNORM.
const struct ra_format *ra_find_unorm_format(struct ra *ra,
int bytes_per_component,
int n_components)
{
for (int n = 0; n < ra->num_formats; n++) {
const struct ra_format *fmt = ra->formats[n];
if (fmt->ctype == RA_CTYPE_UNORM && fmt->num_components == n_components &&
fmt->pixel_size == bytes_per_component * n_components &&
fmt->component_depth[0] == bytes_per_component * 8 &&
fmt->linear_filter && ra_format_is_regular(fmt))
return fmt;
}
return NULL;
}
// Return a regular format using RA_CTYPE_UINT.
const struct ra_format *ra_find_uint_format(struct ra *ra,
int bytes_per_component,
int n_components)
{
for (int n = 0; n < ra->num_formats; n++) {
const struct ra_format *fmt = ra->formats[n];
if (fmt->ctype == RA_CTYPE_UINT && fmt->num_components == n_components &&
fmt->pixel_size == bytes_per_component * n_components &&
fmt->component_depth[0] == bytes_per_component * 8 &&
ra_format_is_regular(fmt))
return fmt;
}
return NULL;
}
// Find a float format of any precision that matches the C type of the same
// size for upload.
// May drop bits from the mantissa (such as selecting float16 even if
// bytes_per_component == 32); prefers possibly faster formats first.
static const struct ra_format *ra_find_float_format(struct ra *ra,
int bytes_per_component,
int n_components)
{
// Assumes ra_format are ordered by performance.
// The >=16 check is to avoid catching fringe formats.
for (int n = 0; n < ra->num_formats; n++) {
const struct ra_format *fmt = ra->formats[n];
if (fmt->ctype == RA_CTYPE_FLOAT && fmt->num_components == n_components &&
fmt->pixel_size == bytes_per_component * n_components &&
fmt->component_depth[0] >= 16 &&
fmt->linear_filter && ra_format_is_regular(fmt))
return fmt;
}
return NULL;
}
// Return a filterable regular format that uses at least float16 internally, and
// uses a normal C float for transfer on the CPU side. (This is just so we don't
// need 32->16 bit conversion on CPU, which would be messy.)
const struct ra_format *ra_find_float16_format(struct ra *ra, int n_components)
{
return ra_find_float_format(ra, sizeof(float), n_components);
}
const struct ra_format *ra_find_named_format(struct ra *ra, const char *name)
{
for (int n = 0; n < ra->num_formats; n++) {
const struct ra_format *fmt = ra->formats[n];
if (strcmp(fmt->name, name) == 0)
return fmt;
}
return NULL;
}
// Like ra_find_unorm_format(), but if no fixed point format is available,
// return an unsigned integer format.
static const struct ra_format *find_plane_format(struct ra *ra, int bytes,
int n_channels,
enum mp_component_type ctype)
{
switch (ctype) {
case MP_COMPONENT_TYPE_UINT: {
const struct ra_format *f = ra_find_unorm_format(ra, bytes, n_channels);
if (f)
return f;
return ra_find_uint_format(ra, bytes, n_channels);
}
case MP_COMPONENT_TYPE_FLOAT:
return ra_find_float_format(ra, bytes, n_channels);
default: return NULL;
}
}
// Put a mapping of imgfmt to texture formats into *out. Basically it selects
// the correct texture formats needed to represent an imgfmt in a shader, with
// textures using the same memory organization as on the CPU.
// Each plane is represented by a texture, and each texture has a RGBA
// component order. out->components describes the meaning of them.
// May return integer formats for >8 bit formats, if the driver has no
// normalized 16 bit formats.
// Returns false (and *out is not touched) if no format found.
bool ra_get_imgfmt_desc(struct ra *ra, int imgfmt, struct ra_imgfmt_desc *out)
{
struct ra_imgfmt_desc res = {0};
struct mp_regular_imgfmt regfmt;
if (mp_get_regular_imgfmt(&regfmt, imgfmt)) {
enum ra_ctype ctype = RA_CTYPE_UNKNOWN;
res.num_planes = regfmt.num_planes;
res.component_bits = regfmt.component_size * 8;
res.component_pad = regfmt.component_pad;
for (int n = 0; n < regfmt.num_planes; n++) {
struct mp_regular_imgfmt_plane *plane = &regfmt.planes[n];
res.planes[n] = find_plane_format(ra, regfmt.component_size,
plane->num_components,
regfmt.component_type);
if (!res.planes[n])
return false;
for (int i = 0; i < plane->num_components; i++)
res.components[n][i] = plane->components[i];
// Dropping LSBs when shifting will lead to dropped MSBs.
if (res.component_bits > res.planes[n]->component_depth[0] &&
res.component_pad < 0)
return false;
// Renderer restriction, but actually an unwanted corner case.
if (ctype != RA_CTYPE_UNKNOWN && ctype != res.planes[n]->ctype)
return false;
ctype = res.planes[n]->ctype;
}
res.chroma_w = regfmt.chroma_w;
res.chroma_h = regfmt.chroma_h;
goto supported;
}
for (int n = 0; n < ra->num_formats; n++) {
if (imgfmt && ra->formats[n]->special_imgfmt == imgfmt) {
res = *ra->formats[n]->special_imgfmt_desc;
goto supported;
}
}
// Unsupported format
return false;
supported:
*out = res;
return true;
}
void ra_dump_tex_formats(struct ra *ra, int msgl)
{
if (!mp_msg_test(ra->log, msgl))
return;
MP_MSG(ra, msgl, "Texture formats:\n");
MP_MSG(ra, msgl, " NAME COMP*TYPE SIZE DEPTH PER COMP.\n");
for (int n = 0; n < ra->num_formats; n++) {
const struct ra_format *fmt = ra->formats[n];
const char *ctype = "unknown";
switch (fmt->ctype) {
case RA_CTYPE_UNORM: ctype = "unorm"; break;
case RA_CTYPE_UINT: ctype = "uint "; break;
case RA_CTYPE_FLOAT: ctype = "float"; break;
}
char cl[40] = "";
for (int i = 0; i < fmt->num_components; i++) {
mp_snprintf_cat(cl, sizeof(cl), "%s%d", i ? " " : "",
fmt->component_size[i]);
if (fmt->component_size[i] != fmt->component_depth[i])
mp_snprintf_cat(cl, sizeof(cl), "/%d", fmt->component_depth[i]);
}
MP_MSG(ra, msgl, " %-10s %d*%s %3dB %s %s %s %s {%s}\n", fmt->name,
fmt->num_components, ctype, fmt->pixel_size,
fmt->luminance_alpha ? "LA" : " ",
fmt->linear_filter ? "LF" : " ",
fmt->renderable ? "CR" : " ",
fmt->storable ? "ST" : " ", cl);
}
MP_MSG(ra, msgl, " LA = LUMINANCE_ALPHA hack format\n");
MP_MSG(ra, msgl, " LF = linear filterable\n");
MP_MSG(ra, msgl, " CR = can be used for render targets\n");
MP_MSG(ra, msgl, " ST = can be used for storable images\n");
}
void ra_dump_imgfmt_desc(struct ra *ra, const struct ra_imgfmt_desc *desc,
int msgl)
{
char pl[80] = "";
char pf[80] = "";
for (int n = 0; n < desc->num_planes; n++) {
if (n > 0) {
mp_snprintf_cat(pl, sizeof(pl), "/");
mp_snprintf_cat(pf, sizeof(pf), "/");
}
char t[5] = {0};
for (int i = 0; i < 4; i++)
t[i] = "_rgba"[desc->components[n][i]];
for (int i = 3; i > 0 && t[i] == '_'; i--)
t[i] = '\0';
mp_snprintf_cat(pl, sizeof(pl), "%s", t);
mp_snprintf_cat(pf, sizeof(pf), "%s", desc->planes[n]->name);
}
MP_MSG(ra, msgl, "%d planes %dx%d %d/%d [%s] (%s)\n",
desc->num_planes, desc->chroma_w, desc->chroma_h,
desc->component_bits, desc->component_pad, pf, pl);
}
void ra_dump_img_formats(struct ra *ra, int msgl)
{
if (!mp_msg_test(ra->log, msgl))
return;
MP_MSG(ra, msgl, "Image formats:\n");
for (int imgfmt = IMGFMT_START; imgfmt < IMGFMT_END; imgfmt++) {
const char *name = mp_imgfmt_to_name(imgfmt);
if (strcmp(name, "unknown") == 0)
continue;
MP_MSG(ra, msgl, " %s", name);
struct ra_imgfmt_desc desc;
if (ra_get_imgfmt_desc(ra, imgfmt, &desc)) {
MP_MSG(ra, msgl, " => ");
ra_dump_imgfmt_desc(ra, &desc, msgl);
} else {
MP_MSG(ra, msgl, "\n");
}
}
}