mpv/libfaad2/sbr_e_nf.c

215 lines
6.6 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_e_nf.c,v 1.4 2003/09/09 18:37:32 menno Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include <stdlib.h>
#include "sbr_syntax.h"
#include "sbr_e_nf.h"
void extract_envelope_data(sbr_info *sbr, uint8_t ch)
{
uint8_t l, k;
for (l = 0; l < sbr->L_E[ch]; l++)
{
if (sbr->bs_df_env[ch][l] == 0)
{
for (k = 1; k < sbr->n[sbr->f[ch][l]]; k++)
{
sbr->E[ch][k][l] = sbr->E[ch][k - 1][l] + sbr->E[ch][k][l];
}
} else { /* bs_df_env == 1 */
uint8_t g = (l == 0) ? sbr->f_prev[ch] : sbr->f[ch][l-1];
int16_t E_prev;
if (sbr->f[ch][l] == g)
{
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
if (l == 0)
E_prev = sbr->E_prev[ch][k];
else
E_prev = sbr->E[ch][k][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
} else if ((g == 1) && (sbr->f[ch][l] == 0)) {
uint8_t i;
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
for (i = 0; i < sbr->N_high; i++)
{
if (sbr->f_table_res[HI_RES][i] == sbr->f_table_res[LO_RES][k])
{
if (l == 0)
E_prev = sbr->E_prev[ch][i];
else
E_prev = sbr->E[ch][i][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
}
}
} else if ((g == 0) && (sbr->f[ch][l] == 1)) {
uint8_t i;
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
for (i = 0; i < sbr->N_low; i++)
{
if ((sbr->f_table_res[LO_RES][i] <= sbr->f_table_res[HI_RES][k]) &&
(sbr->f_table_res[HI_RES][k] < sbr->f_table_res[LO_RES][i + 1]))
{
if (l == 0)
E_prev = sbr->E_prev[ch][i];
else
E_prev = sbr->E[ch][i][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
}
}
}
}
}
}
void extract_noise_floor_data(sbr_info *sbr, uint8_t ch)
{
uint8_t l, k;
for (l = 0; l < sbr->L_Q[ch]; l++)
{
if (sbr->bs_df_noise[ch][l] == 0)
{
for (k = 1; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q[ch][k][l] + sbr->Q[ch][k-1][l];
}
} else {
if (l == 0)
{
for (k = 0; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q_prev[ch][k] + sbr->Q[ch][k][0];
}
} else {
for (k = 0; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q[ch][k][l - 1] + sbr->Q[ch][k][l];
}
}
}
}
}
/* FIXME: pow() not needed */
void envelope_noise_dequantisation(sbr_info *sbr, uint8_t ch)
{
if (sbr->bs_coupling == 0)
{
uint8_t l, k;
real_t amp = (sbr->amp_res[ch]) ? 1.0f : 0.5f;
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
/* +6 for the *64 */
sbr->E_orig[ch][k][l] = (real_t)pow(2, sbr->E[ch][k][l]*amp + 6);
}
}
for (l = 0; l < sbr->L_Q[ch]; l++)
{
for (k = 0; k < sbr->N_Q; k++)
{
if (sbr->Q[ch][k][l] < 0 || sbr->Q[ch][k][l] > 30)
sbr->Q_orig[ch][k][l] = 0;
else {
sbr->Q_orig[ch][k][l] = (real_t)pow(2, NOISE_FLOOR_OFFSET - sbr->Q[ch][k][l]);
}
}
}
}
}
void unmap_envelope_noise(sbr_info *sbr)
{
uint8_t l, k;
real_t amp0 = (sbr->amp_res[0]) ? (real_t)1.0 : (real_t)0.5;
real_t amp1 = (sbr->amp_res[1]) ? (real_t)1.0 : (real_t)0.5;
for (l = 0; l < sbr->L_E[0]; l++)
{
for (k = 0; k < sbr->n[sbr->f[0][l]]; k++)
{
real_t l_temp, r_temp;
/* +6: * 64 ; +1: * 2 */
l_temp = (real_t)pow(2, sbr->E[0][k][l]*amp0 + 7);
/* UN_MAP removed: (x / 4096) same as (x >> 12) */
r_temp = (real_t)pow(2, sbr->E[1][k][l]*amp1 - 12);
sbr->E_orig[1][k][l] = l_temp / ((real_t)1.0 + r_temp);
sbr->E_orig[0][k][l] = MUL(r_temp, sbr->E_orig[1][k][l]);
}
}
for (l = 0; l < sbr->L_Q[0]; l++)
{
for (k = 0; k < sbr->N_Q; k++)
{
if ((sbr->Q[0][k][l] < 0 || sbr->Q[0][k][l] > 30) ||
(sbr->Q[1][k][l] < 0 || sbr->Q[1][k][l] > 30))
{
sbr->Q_orig[0][k][l] = 0;
sbr->Q_orig[1][k][l] = 0;
} else {
real_t l_temp, r_temp;
l_temp = (real_t)pow(2.0, NOISE_FLOOR_OFFSET - sbr->Q[0][k][l] + 1);
r_temp = (real_t)pow(2.0, sbr->Q[1][k][l] - 12);
sbr->Q_orig[1][k][l] = l_temp / ((real_t)1.0 + r_temp);
sbr->Q_orig[0][k][l] = MUL(r_temp, sbr->Q_orig[1][k][l]);
}
}
}
}
#endif