mpv/libfaad2/decoder.c

1025 lines
30 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: decoder.c,v 1.107 2004/09/08 09:43:11 gcp Exp $
**/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#include <string.h>
#include "decoder.h"
#include "mp4.h"
#include "syntax.h"
#include "error.h"
#include "output.h"
#include "filtbank.h"
#include "drc.h"
#ifdef SBR_DEC
#include "sbr_dec.h"
#include "sbr_syntax.h"
#endif
#ifdef SSR_DEC
#include "ssr.h"
#endif
#ifdef ANALYSIS
uint16_t dbg_count;
#endif
/* static function declarations */
static void* aac_frame_decode(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo,
uint8_t *buffer, uint32_t buffer_size,
void **sample_buffer, uint32_t sample_buffer_size);
static void create_channel_config(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo);
char* NEAACDECAPI NeAACDecGetErrorMessage(uint8_t errcode)
{
if (errcode >= NUM_ERROR_MESSAGES)
return NULL;
return err_msg[errcode];
}
uint32_t NEAACDECAPI NeAACDecGetCapabilities(void)
{
uint32_t cap = 0;
/* can't do without it */
cap += LC_DEC_CAP;
#ifdef MAIN_DEC
cap += MAIN_DEC_CAP;
#endif
#ifdef LTP_DEC
cap += LTP_DEC_CAP;
#endif
#ifdef LD_DEC
cap += LD_DEC_CAP;
#endif
#ifdef ERROR_RESILIENCE
cap += ERROR_RESILIENCE_CAP;
#endif
#ifdef FIXED_POINT
cap += FIXED_POINT_CAP;
#endif
return cap;
}
NeAACDecHandle NEAACDECAPI NeAACDecOpen(void)
{
uint8_t i;
NeAACDecHandle hDecoder = NULL;
if ((hDecoder = (NeAACDecHandle)faad_malloc(sizeof(NeAACDecStruct))) == NULL)
return NULL;
memset(hDecoder, 0, sizeof(NeAACDecStruct));
hDecoder->config.outputFormat = FAAD_FMT_16BIT;
hDecoder->config.defObjectType = MAIN;
hDecoder->config.defSampleRate = 44100; /* Default: 44.1kHz */
hDecoder->config.downMatrix = 0;
hDecoder->adts_header_present = 0;
hDecoder->adif_header_present = 0;
#ifdef ERROR_RESILIENCE
hDecoder->aacSectionDataResilienceFlag = 0;
hDecoder->aacScalefactorDataResilienceFlag = 0;
hDecoder->aacSpectralDataResilienceFlag = 0;
#endif
hDecoder->frameLength = 1024;
hDecoder->frame = 0;
hDecoder->sample_buffer = NULL;
for (i = 0; i < MAX_CHANNELS; i++)
{
hDecoder->window_shape_prev[i] = 0;
hDecoder->time_out[i] = NULL;
hDecoder->fb_intermed[i] = NULL;
#ifdef SSR_DEC
hDecoder->ssr_overlap[i] = NULL;
hDecoder->prev_fmd[i] = NULL;
#endif
#ifdef MAIN_DEC
hDecoder->pred_stat[i] = NULL;
#endif
#ifdef LTP_DEC
hDecoder->ltp_lag[i] = 0;
hDecoder->lt_pred_stat[i] = NULL;
#endif
}
#ifdef SBR_DEC
for (i = 0; i < MAX_SYNTAX_ELEMENTS; i++)
{
hDecoder->sbr[i] = NULL;
}
#endif
hDecoder->drc = drc_init(REAL_CONST(1.0), REAL_CONST(1.0));
return hDecoder;
}
NeAACDecConfigurationPtr NEAACDECAPI NeAACDecGetCurrentConfiguration(NeAACDecHandle hDecoder)
{
if (hDecoder)
{
NeAACDecConfigurationPtr config = &(hDecoder->config);
return config;
}
return NULL;
}
uint8_t NEAACDECAPI NeAACDecSetConfiguration(NeAACDecHandle hDecoder,
NeAACDecConfigurationPtr config)
{
if (hDecoder && config)
{
/* check if we can decode this object type */
if (can_decode_ot(config->defObjectType) < 0)
return 0;
hDecoder->config.defObjectType = config->defObjectType;
/* samplerate: anything but 0 should be possible */
if (config->defSampleRate == 0)
return 0;
hDecoder->config.defSampleRate = config->defSampleRate;
/* check output format */
#ifdef FIXED_POINT
if ((config->outputFormat < 1) || (config->outputFormat > 4))
return 0;
#else
if ((config->outputFormat < 1) || (config->outputFormat > 5))
return 0;
#endif
hDecoder->config.outputFormat = config->outputFormat;
if (config->downMatrix > 1)
return 0;
hDecoder->config.downMatrix = config->downMatrix;
/* OK */
return 1;
}
return 0;
}
int32_t NEAACDECAPI NeAACDecInit(NeAACDecHandle hDecoder, uint8_t *buffer,
uint32_t buffer_size,
uint32_t *samplerate, uint8_t *channels)
{
uint32_t bits = 0;
bitfile ld;
adif_header adif;
adts_header adts;
if ((hDecoder == NULL) || (samplerate == NULL) || (channels == NULL))
return -1;
hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate);
hDecoder->object_type = hDecoder->config.defObjectType;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = 1;
if (buffer != NULL)
{
faad_initbits(&ld, buffer, buffer_size);
/* Check if an ADIF header is present */
if ((buffer[0] == 'A') && (buffer[1] == 'D') &&
(buffer[2] == 'I') && (buffer[3] == 'F'))
{
hDecoder->adif_header_present = 1;
get_adif_header(&adif, &ld);
faad_byte_align(&ld);
hDecoder->sf_index = adif.pce[0].sf_index;
hDecoder->object_type = adif.pce[0].object_type + 1;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = adif.pce[0].channels;
memcpy(&(hDecoder->pce), &(adif.pce[0]), sizeof(program_config));
hDecoder->pce_set = 1;
bits = bit2byte(faad_get_processed_bits(&ld));
/* Check if an ADTS header is present */
} else if (faad_showbits(&ld, 12) == 0xfff) {
hDecoder->adts_header_present = 1;
adts.old_format = hDecoder->config.useOldADTSFormat;
adts_frame(&adts, &ld);
hDecoder->sf_index = adts.sf_index;
hDecoder->object_type = adts.profile + 1;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = (adts.channel_configuration > 6) ?
2 : adts.channel_configuration;
}
if (ld.error)
{
faad_endbits(&ld);
return -1;
}
faad_endbits(&ld);
}
hDecoder->channelConfiguration = *channels;
#if (defined(PS_DEC) || defined(DRM_PS))
/* check if we have a mono file */
if (*channels == 1)
{
/* upMatrix to 2 channels for implicit signalling of PS */
*channels = 2;
}
#endif
#ifdef SBR_DEC
/* implicit signalling */
if (*samplerate <= 24000 && !(hDecoder->config.dontUpSampleImplicitSBR))
{
*samplerate *= 2;
hDecoder->forceUpSampling = 1;
} else if (*samplerate > 24000 && !(hDecoder->config.dontUpSampleImplicitSBR)) {
hDecoder->downSampledSBR = 1;
}
#endif
/* must be done before frameLength is divided by 2 for LD */
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);
else
#endif
hDecoder->fb = filter_bank_init(hDecoder->frameLength);
#ifdef LD_DEC
if (hDecoder->object_type == LD)
hDecoder->frameLength >>= 1;
#endif
if (can_decode_ot(hDecoder->object_type) < 0)
return -1;
return bits;
}
/* Init the library using a DecoderSpecificInfo */
int8_t NEAACDECAPI NeAACDecInit2(NeAACDecHandle hDecoder, uint8_t *pBuffer,
uint32_t SizeOfDecoderSpecificInfo,
uint32_t *samplerate, uint8_t *channels)
{
int8_t rc;
mp4AudioSpecificConfig mp4ASC;
if((hDecoder == NULL)
|| (pBuffer == NULL)
|| (SizeOfDecoderSpecificInfo < 2)
|| (samplerate == NULL)
|| (channels == NULL))
{
return -1;
}
hDecoder->adif_header_present = 0;
hDecoder->adts_header_present = 0;
/* decode the audio specific config */
rc = AudioSpecificConfig2(pBuffer, SizeOfDecoderSpecificInfo, &mp4ASC,
&(hDecoder->pce));
/* copy the relevant info to the decoder handle */
*samplerate = mp4ASC.samplingFrequency;
if (mp4ASC.channelsConfiguration)
{
*channels = mp4ASC.channelsConfiguration;
} else {
*channels = hDecoder->pce.channels;
hDecoder->pce_set = 1;
}
#if (defined(PS_DEC) || defined(DRM_PS))
/* check if we have a mono file */
if (*channels == 1)
{
/* upMatrix to 2 channels for implicit signalling of PS */
*channels = 2;
}
#endif
hDecoder->sf_index = mp4ASC.samplingFrequencyIndex;
hDecoder->object_type = mp4ASC.objectTypeIndex;
#ifdef ERROR_RESILIENCE
hDecoder->aacSectionDataResilienceFlag = mp4ASC.aacSectionDataResilienceFlag;
hDecoder->aacScalefactorDataResilienceFlag = mp4ASC.aacScalefactorDataResilienceFlag;
hDecoder->aacSpectralDataResilienceFlag = mp4ASC.aacSpectralDataResilienceFlag;
#endif
#ifdef SBR_DEC
hDecoder->sbr_present_flag = mp4ASC.sbr_present_flag;
hDecoder->downSampledSBR = mp4ASC.downSampledSBR;
if (hDecoder->config.dontUpSampleImplicitSBR == 0)
hDecoder->forceUpSampling = mp4ASC.forceUpSampling;
else
hDecoder->forceUpSampling = 0;
/* AAC core decoder samplerate is 2 times as low */
if (((hDecoder->sbr_present_flag == 1)&&(!hDecoder->downSampledSBR)) || hDecoder->forceUpSampling == 1)
{
hDecoder->sf_index = get_sr_index(mp4ASC.samplingFrequency / 2);
}
#endif
if (rc != 0)
{
return rc;
}
hDecoder->channelConfiguration = mp4ASC.channelsConfiguration;
if (mp4ASC.frameLengthFlag)
#ifdef ALLOW_SMALL_FRAMELENGTH
hDecoder->frameLength = 960;
#else
return -1;
#endif
/* must be done before frameLength is divided by 2 for LD */
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);
else
#endif
hDecoder->fb = filter_bank_init(hDecoder->frameLength);
#ifdef LD_DEC
if (hDecoder->object_type == LD)
hDecoder->frameLength >>= 1;
#endif
return 0;
}
#ifdef DRM
int8_t NEAACDECAPI NeAACDecInitDRM(NeAACDecHandle *hDecoder, uint32_t samplerate,
uint8_t channels)
{
if (hDecoder == NULL)
return 1; /* error */
NeAACDecClose(*hDecoder);
*hDecoder = NeAACDecOpen();
/* Special object type defined for DRM */
(*hDecoder)->config.defObjectType = DRM_ER_LC;
(*hDecoder)->config.defSampleRate = samplerate;
#ifdef ERROR_RESILIENCE // This shoudl always be defined for DRM
(*hDecoder)->aacSectionDataResilienceFlag = 1; /* VCB11 */
(*hDecoder)->aacScalefactorDataResilienceFlag = 0; /* no RVLC */
(*hDecoder)->aacSpectralDataResilienceFlag = 1; /* HCR */
#endif
(*hDecoder)->frameLength = 960;
(*hDecoder)->sf_index = get_sr_index((*hDecoder)->config.defSampleRate);
(*hDecoder)->object_type = (*hDecoder)->config.defObjectType;
if ((channels == DRMCH_STEREO) || (channels == DRMCH_SBR_STEREO))
(*hDecoder)->channelConfiguration = 2;
else
(*hDecoder)->channelConfiguration = 1;
#ifdef SBR_DEC
if ((channels == DRMCH_MONO) || (channels == DRMCH_STEREO))
(*hDecoder)->sbr_present_flag = 0;
else
(*hDecoder)->sbr_present_flag = 1;
#endif
(*hDecoder)->fb = filter_bank_init((*hDecoder)->frameLength);
return 0;
}
#endif
void NEAACDECAPI NeAACDecClose(NeAACDecHandle hDecoder)
{
uint8_t i;
if (hDecoder == NULL)
return;
#ifdef PROFILE
printf("AAC decoder total: %I64d cycles\n", hDecoder->cycles);
printf("requant: %I64d cycles\n", hDecoder->requant_cycles);
printf("spectral_data: %I64d cycles\n", hDecoder->spectral_cycles);
printf("scalefactors: %I64d cycles\n", hDecoder->scalefac_cycles);
printf("output: %I64d cycles\n", hDecoder->output_cycles);
#endif
for (i = 0; i < MAX_CHANNELS; i++)
{
if (hDecoder->time_out[i]) faad_free(hDecoder->time_out[i]);
if (hDecoder->fb_intermed[i]) faad_free(hDecoder->fb_intermed[i]);
#ifdef SSR_DEC
if (hDecoder->ssr_overlap[i]) faad_free(hDecoder->ssr_overlap[i]);
if (hDecoder->prev_fmd[i]) faad_free(hDecoder->prev_fmd[i]);
#endif
#ifdef MAIN_DEC
if (hDecoder->pred_stat[i]) faad_free(hDecoder->pred_stat[i]);
#endif
#ifdef LTP_DEC
if (hDecoder->lt_pred_stat[i]) faad_free(hDecoder->lt_pred_stat[i]);
#endif
}
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
ssr_filter_bank_end(hDecoder->fb);
else
#endif
filter_bank_end(hDecoder->fb);
drc_end(hDecoder->drc);
if (hDecoder->sample_buffer) faad_free(hDecoder->sample_buffer);
#ifdef SBR_DEC
for (i = 0; i < MAX_SYNTAX_ELEMENTS; i++)
{
if (hDecoder->sbr[i])
sbrDecodeEnd(hDecoder->sbr[i]);
}
#endif
if (hDecoder) faad_free(hDecoder);
}
void NEAACDECAPI NeAACDecPostSeekReset(NeAACDecHandle hDecoder, int32_t frame)
{
if (hDecoder)
{
hDecoder->postSeekResetFlag = 1;
if (frame != -1)
hDecoder->frame = frame;
}
}
static void create_channel_config(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo)
{
hInfo->num_front_channels = 0;
hInfo->num_side_channels = 0;
hInfo->num_back_channels = 0;
hInfo->num_lfe_channels = 0;
memset(hInfo->channel_position, 0, MAX_CHANNELS*sizeof(uint8_t));
if (hDecoder->downMatrix)
{
hInfo->num_front_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;
return;
}
/* check if there is a PCE */
if (hDecoder->pce_set)
{
uint8_t i, chpos = 0;
uint8_t chdir, back_center = 0;
hInfo->num_front_channels = hDecoder->pce.num_front_channels;
hInfo->num_side_channels = hDecoder->pce.num_side_channels;
hInfo->num_back_channels = hDecoder->pce.num_back_channels;
hInfo->num_lfe_channels = hDecoder->pce.num_lfe_channels;
chdir = hInfo->num_front_channels;
if (chdir & 1)
{
hInfo->channel_position[chpos++] = FRONT_CHANNEL_CENTER;
chdir--;
}
for (i = 0; i < chdir; i += 2)
{
hInfo->channel_position[chpos++] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = FRONT_CHANNEL_RIGHT;
}
for (i = 0; i < hInfo->num_side_channels; i += 2)
{
hInfo->channel_position[chpos++] = SIDE_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = SIDE_CHANNEL_RIGHT;
}
chdir = hInfo->num_back_channels;
if (chdir & 1)
{
back_center = 1;
chdir--;
}
for (i = 0; i < chdir; i += 2)
{
hInfo->channel_position[chpos++] = BACK_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = BACK_CHANNEL_RIGHT;
}
if (back_center)
{
hInfo->channel_position[chpos++] = BACK_CHANNEL_CENTER;
}
for (i = 0; i < hInfo->num_lfe_channels; i++)
{
hInfo->channel_position[chpos++] = LFE_CHANNEL;
}
} else {
switch (hDecoder->channelConfiguration)
{
case 1:
hInfo->num_front_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
break;
case 2:
hInfo->num_front_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;
break;
case 3:
hInfo->num_front_channels = 3;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
break;
case 4:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_CENTER;
break;
case 5:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_LEFT;
hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;
break;
case 6:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 2;
hInfo->num_lfe_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_LEFT;
hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;
hInfo->channel_position[5] = LFE_CHANNEL;
break;
case 7:
hInfo->num_front_channels = 3;
hInfo->num_side_channels = 2;
hInfo->num_back_channels = 2;
hInfo->num_lfe_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = SIDE_CHANNEL_LEFT;
hInfo->channel_position[4] = SIDE_CHANNEL_RIGHT;
hInfo->channel_position[5] = BACK_CHANNEL_LEFT;
hInfo->channel_position[6] = BACK_CHANNEL_RIGHT;
hInfo->channel_position[7] = LFE_CHANNEL;
break;
default: /* channelConfiguration == 0 || channelConfiguration > 7 */
{
uint8_t i;
uint8_t ch = hDecoder->fr_channels - hDecoder->has_lfe;
if (ch & 1) /* there's either a center front or a center back channel */
{
uint8_t ch1 = (ch-1)/2;
if (hDecoder->first_syn_ele == ID_SCE)
{
hInfo->num_front_channels = ch1 + 1;
hInfo->num_back_channels = ch1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
for (i = 1; i <= ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1+1; i < ch; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
} else {
hInfo->num_front_channels = ch1;
hInfo->num_back_channels = ch1 + 1;
for (i = 0; i < ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1; i < ch-1; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;
}
} else {
uint8_t ch1 = (ch)/2;
hInfo->num_front_channels = ch1;
hInfo->num_back_channels = ch1;
if (ch1 & 1)
{
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
for (i = 1; i <= ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1+1; i < ch-1; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;
} else {
for (i = 0; i < ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1; i < ch; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
}
}
hInfo->num_lfe_channels = hDecoder->has_lfe;
for (i = ch; i < hDecoder->fr_channels; i++)
{
hInfo->channel_position[i] = LFE_CHANNEL;
}
}
break;
}
}
}
void* NEAACDECAPI NeAACDecDecode(NeAACDecHandle hDecoder,
NeAACDecFrameInfo *hInfo,
uint8_t *buffer, uint32_t buffer_size)
{
return aac_frame_decode(hDecoder, hInfo, buffer, buffer_size, NULL, 0);
}
void* NEAACDECAPI NeAACDecDecode2(NeAACDecHandle hDecoder,
NeAACDecFrameInfo *hInfo,
uint8_t *buffer, uint32_t buffer_size,
void **sample_buffer, uint32_t sample_buffer_size)
{
if ((sample_buffer == NULL) || (sample_buffer_size == 0))
{
hInfo->error = 27;
return NULL;
}
return aac_frame_decode(hDecoder, hInfo, buffer, buffer_size,
sample_buffer, sample_buffer_size);
}
static void* aac_frame_decode(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo,
uint8_t *buffer, uint32_t buffer_size,
void **sample_buffer2, uint32_t sample_buffer_size)
{
uint8_t channels = 0;
uint8_t output_channels = 0;
bitfile ld;
uint32_t bitsconsumed;
uint16_t frame_len;
void *sample_buffer;
#ifdef PROFILE
int64_t count = faad_get_ts();
#endif
/* safety checks */
if ((hDecoder == NULL) || (hInfo == NULL) || (buffer == NULL))
{
return NULL;
}
#if 0
printf("%d\n", buffer_size*8);
#endif
frame_len = hDecoder->frameLength;
memset(hInfo, 0, sizeof(NeAACDecFrameInfo));
memset(hDecoder->internal_channel, 0, MAX_CHANNELS*sizeof(hDecoder->internal_channel[0]));
/* initialize the bitstream */
faad_initbits(&ld, buffer, buffer_size);
#if 0
{
int i;
for (i = 0; i < ((buffer_size+3)>>2); i++)
{
uint8_t *buf;
uint32_t temp = 0;
buf = faad_getbitbuffer(&ld, 32);
//temp = getdword((void*)buf);
temp = *((uint32_t*)buf);
printf("0x%.8X\n", temp);
free(buf);
}
faad_endbits(&ld);
faad_initbits(&ld, buffer, buffer_size);
}
#endif
#ifdef DRM
if (hDecoder->object_type == DRM_ER_LC)
{
/* We do not support stereo right now */
if (0) //(hDecoder->channelConfiguration == 2)
{
hInfo->error = 8; // Throw CRC error
goto error;
}
faad_getbits(&ld, 8
DEBUGVAR(1,1,"NeAACDecDecode(): skip CRC"));
}
#endif
if (hDecoder->adts_header_present)
{
adts_header adts;
adts.old_format = hDecoder->config.useOldADTSFormat;
if ((hInfo->error = adts_frame(&adts, &ld)) > 0)
goto error;
/* MPEG2 does byte_alignment() here,
* but ADTS header is always multiple of 8 bits in MPEG2
* so not needed to actually do it.
*/
}
#ifdef ANALYSIS
dbg_count = 0;
#endif
/* decode the complete bitstream */
#ifdef SCALABLE_DEC
if ((hDecoder->object_type == 6) || (hDecoder->object_type == DRM_ER_LC))
{
aac_scalable_main_element(hDecoder, hInfo, &ld, &hDecoder->pce, hDecoder->drc);
} else {
#endif
raw_data_block(hDecoder, hInfo, &ld, &hDecoder->pce, hDecoder->drc);
#ifdef SCALABLE_DEC
}
#endif
channels = hDecoder->fr_channels;
if (hInfo->error > 0)
goto error;
/* safety check */
if (channels == 0 || channels > MAX_CHANNELS)
{
/* invalid number of channels */
hInfo->error = 12;
goto error;
}
/* no more bit reading after this */
bitsconsumed = faad_get_processed_bits(&ld);
hInfo->bytesconsumed = bit2byte(bitsconsumed);
if (ld.error)
{
hInfo->error = 14;
goto error;
}
faad_endbits(&ld);
if (!hDecoder->adts_header_present && !hDecoder->adif_header_present)
{
if (hDecoder->channelConfiguration == 0)
hDecoder->channelConfiguration = channels;
if (channels == 8) /* 7.1 */
hDecoder->channelConfiguration = 7;
if (channels == 7) /* not a standard channelConfiguration */
hDecoder->channelConfiguration = 0;
}
if ((channels == 5 || channels == 6) && hDecoder->config.downMatrix)
{
hDecoder->downMatrix = 1;
output_channels = 2;
} else {
output_channels = channels;
}
#if (defined(PS_DEC) || defined(DRM_PS))
hDecoder->upMatrix = 0;
/* check if we have a mono file */
if (output_channels == 1)
{
/* upMatrix to 2 channels for implicit signalling of PS */
hDecoder->upMatrix = 1;
output_channels = 2;
}
#endif
/* Make a channel configuration based on either a PCE or a channelConfiguration */
create_channel_config(hDecoder, hInfo);
/* number of samples in this frame */
hInfo->samples = frame_len*output_channels;
/* number of channels in this frame */
hInfo->channels = output_channels;
/* samplerate */
hInfo->samplerate = get_sample_rate(hDecoder->sf_index);
/* object type */
hInfo->object_type = hDecoder->object_type;
/* sbr */
hInfo->sbr = NO_SBR;
/* header type */
hInfo->header_type = RAW;
if (hDecoder->adif_header_present)
hInfo->header_type = ADIF;
if (hDecoder->adts_header_present)
hInfo->header_type = ADTS;
#if (defined(PS_DEC) || defined(DRM_PS))
hInfo->ps = hDecoder->ps_used_global;
#endif
/* check if frame has channel elements */
if (channels == 0)
{
hDecoder->frame++;
return NULL;
}
/* allocate the buffer for the final samples */
if ((hDecoder->sample_buffer == NULL) ||
(hDecoder->alloced_channels != output_channels))
{
static const uint8_t str[] = { sizeof(int16_t), sizeof(int32_t), sizeof(int32_t),
sizeof(float32_t), sizeof(double), sizeof(int16_t), sizeof(int16_t),
sizeof(int16_t), sizeof(int16_t), 0, 0, 0
};
uint8_t stride = str[hDecoder->config.outputFormat-1];
#ifdef SBR_DEC
if (((hDecoder->sbr_present_flag == 1)&&(!hDecoder->downSampledSBR)) || (hDecoder->forceUpSampling == 1))
{
stride = 2 * stride;
}
#endif
/* check if we want to use internal sample_buffer */
if (sample_buffer_size == 0)
{
if (hDecoder->sample_buffer)
faad_free(hDecoder->sample_buffer);
hDecoder->sample_buffer = NULL;
hDecoder->sample_buffer = faad_malloc(frame_len*output_channels*stride);
} else if (sample_buffer_size < frame_len*output_channels*stride) {
/* provided sample buffer is not big enough */
hInfo->error = 27;
return NULL;
}
hDecoder->alloced_channels = output_channels;
}
if (sample_buffer_size == 0)
{
sample_buffer = hDecoder->sample_buffer;
} else {
sample_buffer = *sample_buffer2;
}
#ifdef SBR_DEC
if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
{
uint8_t ele;
/* this data is different when SBR is used or when the data is upsampled */
if (!hDecoder->downSampledSBR)
{
frame_len *= 2;
hInfo->samples *= 2;
hInfo->samplerate *= 2;
}
/* check if every element was provided with SBR data */
for (ele = 0; ele < hDecoder->fr_ch_ele; ele++)
{
if (hDecoder->sbr[ele] == NULL)
{
hInfo->error = 25;
goto error;
}
}
/* sbr */
if (hDecoder->sbr_present_flag == 1)
{
hInfo->object_type = HE_AAC;
hInfo->sbr = SBR_UPSAMPLED;
} else {
hInfo->sbr = NO_SBR_UPSAMPLED;
}
if (hDecoder->downSampledSBR)
{
hInfo->sbr = SBR_DOWNSAMPLED;
}
}
#endif
sample_buffer = output_to_PCM(hDecoder, hDecoder->time_out, sample_buffer,
output_channels, frame_len, hDecoder->config.outputFormat);
hDecoder->postSeekResetFlag = 0;
hDecoder->frame++;
#ifdef LD_DEC
if (hDecoder->object_type != LD)
{
#endif
if (hDecoder->frame <= 1)
hInfo->samples = 0;
#ifdef LD_DEC
} else {
/* LD encoders will give lower delay */
if (hDecoder->frame <= 0)
hInfo->samples = 0;
}
#endif
/* cleanup */
#ifdef ANALYSIS
fflush(stdout);
#endif
#ifdef PROFILE
count = faad_get_ts() - count;
hDecoder->cycles += count;
#endif
return sample_buffer;
error:
faad_endbits(&ld);
/* cleanup */
#ifdef ANALYSIS
fflush(stdout);
#endif
return NULL;
}