mpv/libvo/jpeg_enc.c

528 lines
16 KiB
C

/* Straightforward (to be) optimized JPEG encoder for the YUV422 format
* based on mjpeg code from ffmpeg.
*
* Copyright (c) 2002, Rik Snel
* Parts from ffmpeg Copyright (c) 2000-2002 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* For an excellent introduction to the JPEG format, see:
* http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
*/
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#ifdef USE_FASTMEMCPY
#include "fastmemcpy.h"
#endif
#include "../mp_msg.h"
/* We need this #define because we need ../libavcodec/common.h to #define
* be2me_32, otherwise the linker will complain that it doesn't exist */
#define HAVE_AV_CONFIG_H
#include "../libavcodec/avcodec.h"
#include "../libavcodec/dsputil.h"
#include "../libavcodec/mpegvideo.h"
#include "jpeg_enc.h"
extern int avcodec_inited;
/* zr_mjpeg_encode_mb needs access to these tables for the black & white
* option */
typedef struct MJpegContext {
UINT8 huff_size_dc_luminance[12];
UINT16 huff_code_dc_luminance[12];
UINT8 huff_size_dc_chrominance[12];
UINT16 huff_code_dc_chrominance[12];
UINT8 huff_size_ac_luminance[256];
UINT16 huff_code_ac_luminance[256];
UINT8 huff_size_ac_chrominance[256];
UINT16 huff_code_ac_chrominance[256];
} MJpegContext;
/* Begin excessive code duplication ************************************/
/* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64],
const UINT16 *quant_matrix, int bias)
{
int qscale;
for(qscale=1; qscale<32; qscale++){
int i;
if (s->fdct == ff_jpeg_fdct_islow) {
for (i = 0; i < 64; i++) {
const int j = s->idct_permutation[i];
/* 16 <= qscale * quant_matrix[i] <= 7905
* 19952 <= aanscales[i] * \
* qscale * quant_matrix[i] <= 205026
* (1<<36)/19952 >= (1<<36)/(aanscales[i] * \
* qscale * quant_matrix[i]) >= (1<<36)/249205025
* 3444240 >= (1<<36)/(aanscales[i] *
* qscale * quant_matrix[i]) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT-3))/
(qscale * quant_matrix[j]));
}
} else if (s->fdct == fdct_ifast) {
for(i=0;i<64;i++) {
const int j = s->idct_permutation[i];
/* 16 <= qscale * quant_matrix[i] <= 7905 */
/* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
/* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */
/* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) /
(aanscales[i] * qscale * quant_matrix[j]));
}
} else {
for(i=0;i<64;i++) {
const int j = s->idct_permutation[i];
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
So 16 <= qscale * quant_matrix[i] <= 7905
so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67
*/
qmat [qscale][i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]);
qmat16[qscale][i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[j]);
if(qmat16[qscale][i]==0 || qmat16[qscale][i]==128*256) qmat16[qscale][i]=128*256-1;
qmat16_bias[qscale][i]= ROUNDED_DIV(bias<<(16-QUANT_BIAS_SHIFT), qmat16[qscale][i]);
}
}
}
}
static inline void encode_dc(MpegEncContext *s, int val,
UINT8 *huff_size, UINT16 *huff_code)
{
int mant, nbits;
if (val == 0) {
put_bits(&s->pb, huff_size[0], huff_code[0]);
} else {
mant = val;
if (val < 0) {
val = -val;
mant--;
}
/* compute the log (XXX: optimize) */
nbits = 0;
while (val != 0) {
val = val >> 1;
nbits++;
}
put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
}
}
static void encode_block(MpegEncContext *s, DCTELEM *block, int n)
{
int mant, nbits, code, i, j;
int component, dc, run, last_index, val;
MJpegContext *m = s->mjpeg_ctx;
UINT8 *huff_size_ac;
UINT16 *huff_code_ac;
/* DC coef */
component = (n <= 3 ? 0 : n - 4 + 1);
dc = block[0]; /* overflow is impossible */
val = dc - s->last_dc[component];
if (n < 4) {
encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance);
huff_size_ac = m->huff_size_ac_luminance;
huff_code_ac = m->huff_code_ac_luminance;
} else {
encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
huff_size_ac = m->huff_size_ac_chrominance;
huff_code_ac = m->huff_code_ac_chrominance;
}
s->last_dc[component] = dc;
/* AC coefs */
run = 0;
last_index = s->block_last_index[n];
for(i=1;i<=last_index;i++) {
j = s->intra_scantable.permutated[i];
val = block[j];
if (val == 0) {
run++;
} else {
while (run >= 16) {
put_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
run -= 16;
}
mant = val;
if (val < 0) {
val = -val;
mant--;
}
/* compute the log (XXX: optimize) */
nbits = 0;
while (val != 0) {
val = val >> 1;
nbits++;
}
code = (run << 4) | nbits;
put_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
run = 0;
}
}
/* output EOB only if not already 64 values */
if (last_index < 63 || run != 0)
put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
}
static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block, int last_index)
{
int i;
const int maxlevel= s->max_qcoeff;
const int minlevel= s->min_qcoeff;
for(i=0; i<=last_index; i++){
const int j = s->intra_scantable.permutated[i];
int level = block[j];
if (level>maxlevel) level=maxlevel;
else if(level<minlevel) level=minlevel;
block[j]= level;
}
}
/* End excessive code duplication **************************************/
/* this function is a reproduction of the one in mjpeg, it includes two
* changes, it allows for black&white encoding (it skips the U and V
* macroblocks and it outputs the huffman code for 'no change' (dc) and
* 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420) */
static void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
MJpegContext *m = j->s->mjpeg_ctx;
encode_block(j->s, j->s->block[0], 0);
encode_block(j->s, j->s->block[1], 1);
if (j->bw) {
/* U */
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
m->huff_code_dc_chrominance[0]);
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
m->huff_code_ac_chrominance[0]);
/* V */
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
m->huff_code_dc_chrominance[0]);
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
m->huff_code_ac_chrominance[0]);
} else {
/* we trick encode_block here so that it uses
* chrominance huffman tables instead of luminance ones
* (see the effect of second argument of encode_block) */
encode_block(j->s, j->s->block[2], 4);
encode_block(j->s, j->s->block[3], 5);
}
}
/* this function can take all kinds of YUV colorspaces
* YV12, YVYU, UYVY. The necesary parameters must be set up by the caller
* y_ps means "y pixel size", y_rs means "y row size".
* For YUYV, for example, is u_buf = y_buf + 1, v_buf = y_buf + 3,
* y_ps = 2, u_ps = 4, v_ps = 4, y_rs = u_rs = v_rs.
*
* The actual buffers must be passed with mjpeg_encode_frame, this is
* to make it possible to call encode on the buffer provided by the
* codec in draw_frame.
*
* The data is straightened out at the moment it is put in DCT
* blocks, there are therefore no spurious memcopies involved */
/* Notice that w must be a multiple of 16 and h must be a multiple of 8 */
/* We produce YUV422 jpegs, the colors must be subsampled horizontally,
* if the colors are also subsampled vertically, then this function
* performs cheap upsampling (better solution will be: a DCT that is
* optimized in the case that every two rows are the same) */
/* cu = 0 means 'No cheap upsampling'
* cu = 1 means 'perform cheap upsampling' */
/* The encoder doesn't know anything about interlacing, the halve height
* needs to be passed and the double rowstride. Which field gets encoded
* is decided by what buffers are passed to mjpeg_encode_frame */
jpeg_enc_t *jpeg_enc_init(int w, int h, int y_psize, int y_rsize,
int u_psize, int u_rsize, int v_psize, int v_rsize,
int cu, int q, int b) {
jpeg_enc_t *j;
int i = 0;
mp_msg(MSGT_VO, MSGL_V, "JPEnc init: %dx%d %d %d %d %d %d %d\n",
w, h, y_psize, y_rsize, u_psize,
u_rsize, v_psize, v_rsize);
j = malloc(sizeof(jpeg_enc_t));
if (j == NULL) return NULL;
j->s = malloc(sizeof(MpegEncContext));
if (j->s == NULL) {
free(j);
return NULL;
}
/* info on how to access the pixels */
j->y_ps = y_psize;
j->u_ps = u_psize;
j->v_ps = v_psize;
j->y_rs = y_rsize;
j->u_rs = u_rsize;
j->v_rs = v_rsize;
j->s->width = w;
j->s->height = h;
j->s->qscale = q;
j->s->out_format = FMT_MJPEG;
j->s->intra_only = 1;
j->s->encoding = 1;
j->s->pict_type = I_TYPE;
j->s->y_dc_scale = 8;
j->s->c_dc_scale = 8;
j->s->mjpeg_write_tables = 1;
j->s->mjpeg_vsample[0] = 1;
j->s->mjpeg_vsample[1] = 1;
j->s->mjpeg_vsample[2] = 1;
j->s->mjpeg_hsample[0] = 2;
j->s->mjpeg_hsample[1] = 1;
j->s->mjpeg_hsample[2] = 1;
j->cheap_upsample = cu;
j->bw = b;
/* if libavcodec is used by the decoder then we must not
* initialize again, but if it is not initialized then we must
* initialize it here. */
if (!avcodec_inited) {
/* we need to initialize libavcodec */
avcodec_init();
avcodec_register_all();
avcodec_inited=1;
}
if (mjpeg_init(j->s) < 0) {
free(j->s);
free(j);
return NULL;
}
/* alloc bogus avctx to keep MPV_common_init from segfaulting */
j->s->avctx = calloc(sizeof(*j->s->avctx), 1);
if (MPV_common_init(j->s) < 0) {
free(j->s);
free(j);
return NULL;
}
/* correct the value for sc->mb_height */
j->s->mb_height = j->s->height/8;
j->s->mb_intra = 1;
j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
for (i = 1; i < 64; i++)
j->s->intra_matrix[i] = CLAMP_TO_8BIT(
(ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
j->s->q_intra_matrix16_bias,
j->s->intra_matrix, j->s->intra_quant_bias);
return j;
}
int jpeg_enc_frame(jpeg_enc_t *j, unsigned char *y_data,
unsigned char *u_data, unsigned char *v_data, char *bufr) {
int i, k, mb_x, mb_y, overflow;
short int *dest;
unsigned char *source;
/* initialize the buffer */
init_put_bits(&j->s->pb, bufr, 1024*256, NULL, NULL);
mjpeg_picture_header(j->s);
j->s->header_bits = get_bit_count(&j->s->pb);
j->s->last_dc[0] = 128;
j->s->last_dc[1] = 128;
j->s->last_dc[2] = 128;
for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
/* conversion 8 to 16 bit and filling of blocks
* must be mmx optimized */
/* fill 2 Y macroblocks and one U and one V */
source = mb_y * 8 * j->y_rs +
16 * j->y_ps * mb_x + y_data;
dest = j->s->block[0];
for (i = 0; i < 8; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k*j->y_ps];
}
dest += 8;
source += j->y_rs;
}
source = mb_y * 8 * j->y_rs +
(16*mb_x + 8)*j->y_ps + y_data;
dest = j->s->block[1];
for (i = 0; i < 8; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k*j->y_ps];
}
dest += 8;
source += j->y_rs;
}
if (!j->bw && j->cheap_upsample) {
source = mb_y*4*j->u_rs +
8*mb_x*j->u_ps + u_data;
dest = j->s->block[2];
for (i = 0; i < 4; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k*j->u_ps];
dest[k+8] = source[k*j->u_ps];
}
dest += 16;
source += j->u_rs;
}
source = mb_y*4*j->v_rs +
8*mb_x*j->v_ps + v_data;
dest = j->s->block[3];
for (i = 0; i < 4; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k*j->v_ps];
dest[k+8] = source[k*j->v_ps];
}
dest += 16;
source += j->u_rs;
}
} else if (!j->bw && !j->cheap_upsample) {
source = mb_y*8*j->u_rs +
8*mb_x*j->u_ps + u_data;
dest = j->s->block[2];
for (i = 0; i < 8; i++) {
for (k = 0; k < 8; k++)
dest[k] = source[k*j->u_ps];
dest += 8;
source += j->u_rs;
}
source = mb_y*8*j->v_rs +
8*mb_x*j->v_ps + v_data;
dest = j->s->block[3];
for (i = 0; i < 8; i++) {
for (k = 0; k < 8; k++)
dest[k] = source[k*j->v_ps];
dest += 8;
source += j->u_rs;
}
}
emms_c(); /* is this really needed? */
j->s->block_last_index[0] =
j->s->dct_quantize(j->s, j->s->block[0],
0, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[0],
j->s->block_last_index[0]);
j->s->block_last_index[1] =
j->s->dct_quantize(j->s, j->s->block[1],
1, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[1],
j->s->block_last_index[1]);
if (!j->bw) {
j->s->block_last_index[4] =
j->s->dct_quantize(j->s, j->s->block[2],
4, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[2],
j->s->block_last_index[2]);
j->s->block_last_index[5] =
j->s->dct_quantize(j->s, j->s->block[3],
5, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[3],
j->s->block_last_index[3]);
}
zr_mjpeg_encode_mb(j);
}
}
emms_c();
mjpeg_picture_trailer(j->s);
flush_put_bits(&j->s->pb);
if (j->s->mjpeg_write_tables == 1)
j->s->mjpeg_write_tables = 0;
return pbBufPtr(&(j->s->pb)) - j->s->pb.buf;
}
void jpeg_enc_uninit(jpeg_enc_t *j) {
mjpeg_close(j->s);
free(j->s);
free(j);
}
#if 0
#define W 32
#define H 32
int quant_store[MBR+1][MBC+1];
unsigned char buf[W*H*3/2];
char code[256*1024];
main() {
int i, size;
FILE *fp;
memset(buf, 0, W*H);
memset(buf+W*H, 255, W*H/4);
memset(buf+5*W*H/4, 0, W*H/4);
mjpeg_encoder_init(W, H, 1, W, 1, W/2, 1, W/2, 1, 1, 0);
size = mjpeg_encode_frame(buf, buf+W*H, buf+5*W*H/4, code);
fp = fopen("test.jpg", "w");
fwrite(code, 1, size, fp);
fclose(fp);
}
#endif