1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-15 03:15:52 +00:00
mpv/libao2/pl_volnorm.c
colin 4a24afe93b volnorm for bigendian
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@8219 b3059339-0415-0410-9bf9-f77b7e298cf2
2002-11-17 12:03:01 +00:00

264 lines
5.4 KiB
C

/* Normalizer plugin
*
* Limitations:
* - only AFMT_S16_LE supported
* - no parameters yet => tweak the values by editing the #defines
*
* License: GPLv2
* Author: pl <p_l@gmx.fr> (c) 2002 and beyond...
*
* Sources: some ideas from volnorm plugin for xmms
*
* */
#define PLUGIN
/* Values for AVG:
* 1: uses a 1 value memory and coefficients new=a*old+b*cur (with a+b=1)
*
* 2: uses several samples to smooth the variations (standard weighted mean
* on past samples)
*
* */
#define AVG 1
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h> // for sqrt()
#include "audio_out.h"
#include "audio_plugin.h"
#include "audio_plugin_internal.h"
#include "afmt.h"
#include "../config.h"
static ao_info_t info = {
"Volume normalizer",
"volnorm",
"pl <p_l@gmx.fr>",
""
};
LIBAO_PLUGIN_EXTERN(volnorm)
// mul is the value by which the samples are scaled
// and has to be in [MUL_MIN, MUL_MAX]
#define MUL_INIT 1.0
#define MUL_MIN 0.1
#define MUL_MAX 5.0
static float mul;
#if AVG==1
// "history" value of the filter
static float lastavg;
// SMOOTH_* must be in ]0.0, 1.0[
// The new value accounts for SMOOTH_MUL in the value and history
#define SMOOTH_MUL 0.06
#define SMOOTH_LASTAVG 0.06
#elif AVG==2
// Size of the memory array
// FIXME: should depend on the frequency of the data (should be a few seconds)
#define NSAMPLES 128
// Indicates where to write (in 0..NSAMPLES-1)
static int idx;
// The array
static struct {
float avg; // average level of the sample
int32_t len; // sample size (weight)
} mem[NSAMPLES];
// If summing all the mem[].len is lower than MIN_SAMPLE_SIZE bytes, then we
// choose to ignore the computed value as it's not significant enough
// FIXME: should depend on the frequency of the data (0.5s maybe)
#define MIN_SAMPLE_SIZE 32000
#else
// Kab00m !
#error "Unknown AVG"
#endif
// Some limits
#define MIN_S16 -32768
#define MAX_S16 32767
// "Ideal" level
#define MID_S16 (MAX_S16 * 0.25)
// Silence level
// FIXME: should be relative to the level of the samples
#define SIL_S16 (MAX_S16 * 0.01)
// Local data
static struct {
int inuse; // This plugin is in use TRUE, FALSE
int format; // sample fomat
} pl_volnorm = {0, 0};
// minimal interface
static int control(int cmd,int arg){
switch(cmd){
case AOCONTROL_PLUGIN_SET_LEN:
return CONTROL_OK;
}
return CONTROL_UNKNOWN;
}
// minimal interface
// open & setup audio device
// return: 1=success 0=fail
static int init(){
switch(ao_plugin_data.format){
#ifndef WORDS_BIGENDIAN
case(AFMT_S16_LE):
#else
case(AFMT_S16_BE):
#endif
break;
default:
fprintf(stderr,"[pl_volnorm] Audio format not yet supported.\n");
return 0;
}
pl_volnorm.format = ao_plugin_data.format;
pl_volnorm.inuse = 1;
reset();
printf("[pl_volnorm] Normalizer plugin in use.\n");
return 1;
}
// close plugin
static void uninit(){
pl_volnorm.inuse=0;
}
// empty buffers
static void reset(){
int i;
mul = MUL_INIT;
switch(ao_plugin_data.format) {
#ifndef WORDS_BIGENDIAN
case(AFMT_S16_LE):
#else
case(AFMT_S16_BE):
#endif
#if AVG==1
lastavg = MID_S16;
#elif AVG==2
for(i=0; i < NSAMPLES; ++i) {
mem[i].len = 0;
mem[i].avg = 0;
}
idx = 0;
#endif
break;
default:
fprintf(stderr,"[pl_volnorm] internal inconsistency - bugreport !\n");
*(char *) 0 = 0;
}
}
// processes 'ao_plugin_data.len' bytes of 'data'
// called for every block of data
static int play(){
switch(pl_volnorm.format){
#ifndef WORDS_BIGENDIAN
case(AFMT_S16_LE): {
#else
case(AFMT_S16_BE): {
#endif
#define CLAMP(x,m,M) do { if ((x)<(m)) (x) = (m); else if ((x)>(M)) (x) = (M); } while(0)
int16_t* data=(int16_t*)ao_plugin_data.data;
int len=ao_plugin_data.len / 2; // 16 bits samples
int32_t i, tmp;
float curavg, newavg;
#if AVG==1
float neededmul;
#elif AVG==2
float avg;
int32_t totallen;
#endif
// Evaluate current samples average level
curavg = 0.0;
for (i = 0; i < len ; ++i) {
tmp = data[i];
curavg += tmp * tmp;
}
curavg = sqrt(curavg / (float) len);
// Evaluate an adequate 'mul' coefficient based on previous state, current
// samples level, etc
#if AVG==1
if (curavg > SIL_S16) {
neededmul = MID_S16 / ( curavg * mul);
mul = (1.0 - SMOOTH_MUL) * mul + SMOOTH_MUL * neededmul;
// Clamp the mul coefficient
CLAMP(mul, MUL_MIN, MUL_MAX);
}
#elif AVG==2
avg = 0.0;
totallen = 0;
for (i = 0; i < NSAMPLES; ++i) {
avg += mem[i].avg * (float) mem[i].len;
totallen += mem[i].len;
}
if (totallen > MIN_SAMPLE_SIZE) {
avg /= (float) totallen;
if (avg >= SIL_S16) {
mul = (float) MID_S16 / avg;
CLAMP(mul, MUL_MIN, MUL_MAX);
}
}
#endif
// Scale & clamp the samples
for (i = 0; i < len ; ++i) {
tmp = mul * data[i];
CLAMP(tmp, MIN_S16, MAX_S16);
data[i] = tmp;
}
// Evaluation of newavg (not 100% accurate because of values clamping)
newavg = mul * curavg;
// Stores computed values for future smoothing
#if AVG==1
lastavg = (1.0 - SMOOTH_LASTAVG) * lastavg + SMOOTH_LASTAVG * newavg;
//printf("\rmul=%02.1f ", mul);
#elif AVG==2
mem[idx].len = len;
mem[idx].avg = newavg;
idx = (idx + 1) % NSAMPLES;
//printf("\rmul=%02.1f (%04dKiB) ", mul, totallen/1024);
#endif
//fflush(stdout);
break;
}
default:
return 0;
}
return 1;
}