mpv/liba52/imdct.c

1299 lines
39 KiB
C

/*
* imdct.c
* Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* The ifft algorithms in this file have been largely inspired by Dan
* Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
*
* This file is part of a52dec, a free ATSC A-52 stream decoder.
* See http://liba52.sourceforge.net/ for updates.
*
* Modified for use with MPlayer, changes contained in liba52_changes.diff.
* detailed changelog at http://svn.mplayerhq.hu/mplayer/trunk/
* $Id$
*
* a52dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* a52dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* SSE optimizations from Michael Niedermayer (michaelni@gmx.at)
* 3DNOW optimizations from Nick Kurshev <nickols_k@mail.ru>
* michael did port them from libac3 (untested, perhaps totally broken)
* AltiVec optimizations from Romain Dolbeau (romain@dolbeau.org)
*/
#include "config.h"
#include <math.h>
#include <stdio.h>
#ifdef LIBA52_DJBFFT
#include <fftc4.h>
#endif
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795029
#endif
#include <inttypes.h>
#include "a52.h"
#include "a52_internal.h"
#include "mm_accel.h"
#include "mangle.h"
void (*a52_imdct_512) (sample_t * data, sample_t * delay, sample_t bias);
#ifdef RUNTIME_CPUDETECT
#undef HAVE_3DNOWEX
#endif
typedef struct complex_s {
sample_t real;
sample_t imag;
} complex_t;
static const int pm128[128] attribute_used __attribute__((aligned(16))) =
{
0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120,
4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124,
2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122,
6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126,
1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121,
5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125,
3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123,
7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127
};
static uint8_t attribute_used bit_reverse_512[] = {
0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
static uint8_t fftorder[] = {
0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,
252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,
2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,
10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,
254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,
6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86
};
static complex_t __attribute__((aligned(16))) buf[128];
/* Twiddle factor LUT */
static complex_t __attribute__((aligned(16))) w_1[1];
static complex_t __attribute__((aligned(16))) w_2[2];
static complex_t __attribute__((aligned(16))) w_4[4];
static complex_t __attribute__((aligned(16))) w_8[8];
static complex_t __attribute__((aligned(16))) w_16[16];
static complex_t __attribute__((aligned(16))) w_32[32];
static complex_t __attribute__((aligned(16))) w_64[64];
static complex_t __attribute__((aligned(16))) * w[7] = {w_1, w_2, w_4, w_8, w_16, w_32, w_64};
/* Twiddle factors for IMDCT */
static sample_t __attribute__((aligned(16))) xcos1[128];
static sample_t __attribute__((aligned(16))) xsin1[128];
#if defined(ARCH_X86) || defined(ARCH_X86_64)
// NOTE: SSE needs 16byte alignment or it will segfault
//
static float __attribute__((aligned(16))) sseSinCos1c[256];
static float __attribute__((aligned(16))) sseSinCos1d[256];
static float attribute_used __attribute__((aligned(16))) ps111_1[4]={1,1,1,-1};
//static float __attribute__((aligned(16))) sseW0[4];
static float __attribute__((aligned(16))) sseW1[8];
static float __attribute__((aligned(16))) sseW2[16];
static float __attribute__((aligned(16))) sseW3[32];
static float __attribute__((aligned(16))) sseW4[64];
static float __attribute__((aligned(16))) sseW5[128];
static float __attribute__((aligned(16))) sseW6[256];
static float __attribute__((aligned(16))) *sseW[7]=
{NULL /*sseW0*/,sseW1,sseW2,sseW3,sseW4,sseW5,sseW6};
static float __attribute__((aligned(16))) sseWindow[512];
#endif
/* Root values for IFFT */
static sample_t roots16[3];
static sample_t roots32[7];
static sample_t roots64[15];
static sample_t roots128[31];
/* Twiddle factors for IMDCT */
static complex_t pre1[128];
static complex_t post1[64];
static complex_t pre2[64];
static complex_t post2[32];
static sample_t a52_imdct_window[256];
static void (* ifft128) (complex_t * buf);
static void (* ifft64) (complex_t * buf);
static inline void ifft2 (complex_t * buf)
{
double r, i;
r = buf[0].real;
i = buf[0].imag;
buf[0].real += buf[1].real;
buf[0].imag += buf[1].imag;
buf[1].real = r - buf[1].real;
buf[1].imag = i - buf[1].imag;
}
static inline void ifft4 (complex_t * buf)
{
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
tmp1 = buf[0].real + buf[1].real;
tmp2 = buf[3].real + buf[2].real;
tmp3 = buf[0].imag + buf[1].imag;
tmp4 = buf[2].imag + buf[3].imag;
tmp5 = buf[0].real - buf[1].real;
tmp6 = buf[0].imag - buf[1].imag;
tmp7 = buf[2].imag - buf[3].imag;
tmp8 = buf[3].real - buf[2].real;
buf[0].real = tmp1 + tmp2;
buf[0].imag = tmp3 + tmp4;
buf[2].real = tmp1 - tmp2;
buf[2].imag = tmp3 - tmp4;
buf[1].real = tmp5 + tmp7;
buf[1].imag = tmp6 + tmp8;
buf[3].real = tmp5 - tmp7;
buf[3].imag = tmp6 - tmp8;
}
/* the basic split-radix ifft butterfly */
#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \
tmp5 = a2.real * wr + a2.imag * wi; \
tmp6 = a2.imag * wr - a2.real * wi; \
tmp7 = a3.real * wr - a3.imag * wi; \
tmp8 = a3.imag * wr + a3.real * wi; \
tmp1 = tmp5 + tmp7; \
tmp2 = tmp6 + tmp8; \
tmp3 = tmp6 - tmp8; \
tmp4 = tmp7 - tmp5; \
a2.real = a0.real - tmp1; \
a2.imag = a0.imag - tmp2; \
a3.real = a1.real - tmp3; \
a3.imag = a1.imag - tmp4; \
a0.real += tmp1; \
a0.imag += tmp2; \
a1.real += tmp3; \
a1.imag += tmp4; \
} while (0)
/* split-radix ifft butterfly, specialized for wr=1 wi=0 */
#define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \
tmp1 = a2.real + a3.real; \
tmp2 = a2.imag + a3.imag; \
tmp3 = a2.imag - a3.imag; \
tmp4 = a3.real - a2.real; \
a2.real = a0.real - tmp1; \
a2.imag = a0.imag - tmp2; \
a3.real = a1.real - tmp3; \
a3.imag = a1.imag - tmp4; \
a0.real += tmp1; \
a0.imag += tmp2; \
a1.real += tmp3; \
a1.imag += tmp4; \
} while (0)
/* split-radix ifft butterfly, specialized for wr=wi */
#define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \
tmp5 = (a2.real + a2.imag) * w; \
tmp6 = (a2.imag - a2.real) * w; \
tmp7 = (a3.real - a3.imag) * w; \
tmp8 = (a3.imag + a3.real) * w; \
tmp1 = tmp5 + tmp7; \
tmp2 = tmp6 + tmp8; \
tmp3 = tmp6 - tmp8; \
tmp4 = tmp7 - tmp5; \
a2.real = a0.real - tmp1; \
a2.imag = a0.imag - tmp2; \
a3.real = a1.real - tmp3; \
a3.imag = a1.imag - tmp4; \
a0.real += tmp1; \
a0.imag += tmp2; \
a1.real += tmp3; \
a1.imag += tmp4; \
} while (0)
static inline void ifft8 (complex_t * buf)
{
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
ifft4 (buf);
ifft2 (buf + 4);
ifft2 (buf + 6);
BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);
BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);
}
static void ifft_pass (complex_t * buf, sample_t * weight, int n)
{
complex_t * buf1;
complex_t * buf2;
complex_t * buf3;
double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
int i;
buf++;
buf1 = buf + n;
buf2 = buf + 2 * n;
buf3 = buf + 3 * n;
BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);
i = n - 1;
do {
BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]);
buf++;
buf1++;
buf2++;
buf3++;
weight++;
} while (--i);
}
static void ifft16 (complex_t * buf)
{
ifft8 (buf);
ifft4 (buf + 8);
ifft4 (buf + 12);
ifft_pass (buf, roots16 - 4, 4);
}
static void ifft32 (complex_t * buf)
{
ifft16 (buf);
ifft8 (buf + 16);
ifft8 (buf + 24);
ifft_pass (buf, roots32 - 8, 8);
}
static void ifft64_c (complex_t * buf)
{
ifft32 (buf);
ifft16 (buf + 32);
ifft16 (buf + 48);
ifft_pass (buf, roots64 - 16, 16);
}
static void ifft128_c (complex_t * buf)
{
ifft32 (buf);
ifft16 (buf + 32);
ifft16 (buf + 48);
ifft_pass (buf, roots64 - 16, 16);
ifft32 (buf + 64);
ifft32 (buf + 96);
ifft_pass (buf, roots128 - 32, 32);
}
void imdct_do_512 (sample_t * data, sample_t * delay, sample_t bias)
{
int i, k;
sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
const sample_t * window = a52_imdct_window;
complex_t buf[128];
for (i = 0; i < 128; i++) {
k = fftorder[i];
t_r = pre1[i].real;
t_i = pre1[i].imag;
buf[i].real = t_i * data[255-k] + t_r * data[k];
buf[i].imag = t_r * data[255-k] - t_i * data[k];
}
ifft128 (buf);
/* Post IFFT complex multiply plus IFFT complex conjugate*/
/* Window and convert to real valued signal */
for (i = 0; i < 64; i++) {
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
t_r = post1[i].real;
t_i = post1[i].imag;
a_r = t_r * buf[i].real + t_i * buf[i].imag;
a_i = t_i * buf[i].real - t_r * buf[i].imag;
b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag;
b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag;
w_1 = window[2*i];
w_2 = window[255-2*i];
data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
delay[2*i] = a_i;
w_1 = window[2*i+1];
w_2 = window[254-2*i];
data[2*i+1] = delay[2*i+1] * w_2 + b_r * w_1 + bias;
data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias;
delay[2*i+1] = b_i;
}
}
#ifdef HAVE_ALTIVEC
#ifdef HAVE_ALTIVEC_H
#include <altivec.h>
#endif
// used to build registers permutation vectors (vcprm)
// the 's' are for words in the _s_econd vector
#define WORD_0 0x00,0x01,0x02,0x03
#define WORD_1 0x04,0x05,0x06,0x07
#define WORD_2 0x08,0x09,0x0a,0x0b
#define WORD_3 0x0c,0x0d,0x0e,0x0f
#define WORD_s0 0x10,0x11,0x12,0x13
#define WORD_s1 0x14,0x15,0x16,0x17
#define WORD_s2 0x18,0x19,0x1a,0x1b
#define WORD_s3 0x1c,0x1d,0x1e,0x1f
#define vcprm(a,b,c,d) (const vector unsigned char){WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d}
#define vcii(a,b,c,d) (const vector float){FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d}
#define FOUROF(a) {a,a,a,a}
// vcprmle is used to keep the same index as in the SSE version.
// it's the same as vcprm, with the index inversed
// ('le' is Little Endian)
#define vcprmle(a,b,c,d) vcprm(d,c,b,a)
// used to build inverse/identity vectors (vcii)
// n is _n_egative, p is _p_ositive
#define FLOAT_n -1.
#define FLOAT_p 1.
void
imdct_do_512_altivec(sample_t data[],sample_t delay[], sample_t bias)
{
int i;
int k;
int p,q;
int m;
long two_m;
long two_m_plus_one;
sample_t tmp_b_i;
sample_t tmp_b_r;
sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
/* 512 IMDCT with source and dest data in 'data' */
/* Pre IFFT complex multiply plus IFFT cmplx conjugate & reordering*/
for( i=0; i < 128; i++) {
/* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
int j= bit_reverse_512[i];
buf[i].real = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]);
buf[i].imag = -1.0 * ((data[2*j] * xcos1[j]) + (data[256-2*j-1] * xsin1[j]));
}
/* 1. iteration */
for(i = 0; i < 128; i += 2) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+1].real;
tmp_b_i = buf[i+1].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+1].real = tmp_a_r - tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
#else
vector float temp, bufv;
bufv = vec_ld(i << 3, (float*)buf);
temp = vec_perm(bufv, bufv, vcprm(2,3,0,1));
bufv = vec_madd(bufv, vcii(p,p,n,n), temp);
vec_st(bufv, i << 3, (float*)buf);
#endif
}
/* 2. iteration */
// Note w[1]={{1,0}, {0,-1}}
for(i = 0; i < 128; i += 4) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+2].real;
tmp_b_i = buf[i+2].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+2].real = tmp_a_r - tmp_b_r;
buf[i+2].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+1].real;
tmp_a_i = buf[i+1].imag;
/* WARNING: im <-> re here ! */
tmp_b_r = buf[i+3].imag;
tmp_b_i = buf[i+3].real;
buf[i+1].real = tmp_a_r + tmp_b_r;
buf[i+1].imag = tmp_a_i - tmp_b_i;
buf[i+3].real = tmp_a_r - tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
#else
vector float buf01, buf23, temp1, temp2;
buf01 = vec_ld((i + 0) << 3, (float*)buf);
buf23 = vec_ld((i + 2) << 3, (float*)buf);
buf23 = vec_perm(buf23,buf23,vcprm(0,1,3,2));
temp1 = vec_madd(buf23, vcii(p,p,p,n), buf01);
temp2 = vec_madd(buf23, vcii(n,n,n,p), buf01);
vec_st(temp1, (i + 0) << 3, (float*)buf);
vec_st(temp2, (i + 2) << 3, (float*)buf);
#endif
}
/* 3. iteration */
for(i = 0; i < 128; i += 8) {
#if 0
tmp_a_r = buf[i].real;
tmp_a_i = buf[i].imag;
tmp_b_r = buf[i+4].real;
tmp_b_i = buf[i+4].imag;
buf[i].real = tmp_a_r + tmp_b_r;
buf[i].imag = tmp_a_i + tmp_b_i;
buf[i+4].real = tmp_a_r - tmp_b_r;
buf[i+4].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[1+i].real;
tmp_a_i = buf[1+i].imag;
tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
buf[1+i].real = tmp_a_r + tmp_b_r;
buf[1+i].imag = tmp_a_i + tmp_b_i;
buf[i+5].real = tmp_a_r - tmp_b_r;
buf[i+5].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+2].real;
tmp_a_i = buf[i+2].imag;
/* WARNING re <-> im & sign */
tmp_b_r = buf[i+6].imag;
tmp_b_i = - buf[i+6].real;
buf[i+2].real = tmp_a_r + tmp_b_r;
buf[i+2].imag = tmp_a_i + tmp_b_i;
buf[i+6].real = tmp_a_r - tmp_b_r;
buf[i+6].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[i+3].real;
tmp_a_i = buf[i+3].imag;
tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
buf[i+3].real = tmp_a_r + tmp_b_r;
buf[i+3].imag = tmp_a_i + tmp_b_i;
buf[i+7].real = tmp_a_r - tmp_b_r;
buf[i+7].imag = tmp_a_i - tmp_b_i;
#else
vector float buf01, buf23, buf45, buf67;
buf01 = vec_ld((i + 0) << 3, (float*)buf);
buf23 = vec_ld((i + 2) << 3, (float*)buf);
tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
buf[i+5].real = tmp_b_r;
buf[i+5].imag = tmp_b_i;
tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
buf[i+7].real = tmp_b_r;
buf[i+7].imag = tmp_b_i;
buf23 = vec_ld((i + 2) << 3, (float*)buf);
buf45 = vec_ld((i + 4) << 3, (float*)buf);
buf67 = vec_ld((i + 6) << 3, (float*)buf);
buf67 = vec_perm(buf67, buf67, vcprm(1,0,2,3));
vec_st(vec_add(buf01, buf45), (i + 0) << 3, (float*)buf);
vec_st(vec_madd(buf67, vcii(p,n,p,p), buf23), (i + 2) << 3, (float*)buf);
vec_st(vec_sub(buf01, buf45), (i + 4) << 3, (float*)buf);
vec_st(vec_nmsub(buf67, vcii(p,n,p,p), buf23), (i + 6) << 3, (float*)buf);
#endif
}
/* 4-7. iterations */
for (m=3; m < 7; m++) {
two_m = (1 << m);
two_m_plus_one = two_m<<1;
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k+=2) {
#if 0
int p = k + i;
int q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r =
buf[q].real * w[m][k].real -
buf[q].imag * w[m][k].imag;
tmp_b_i =
buf[q].imag * w[m][k].real +
buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
tmp_a_r = buf[(p + 1)].real;
tmp_a_i = buf[(p + 1)].imag;
tmp_b_r =
buf[(q + 1)].real * w[m][(k + 1)].real -
buf[(q + 1)].imag * w[m][(k + 1)].imag;
tmp_b_i =
buf[(q + 1)].imag * w[m][(k + 1)].real +
buf[(q + 1)].real * w[m][(k + 1)].imag;
buf[(p + 1)].real = tmp_a_r + tmp_b_r;
buf[(p + 1)].imag = tmp_a_i + tmp_b_i;
buf[(q + 1)].real = tmp_a_r - tmp_b_r;
buf[(q + 1)].imag = tmp_a_i - tmp_b_i;
#else
int p = k + i;
int q = p + two_m;
vector float vecp, vecq, vecw, temp1, temp2, temp3, temp4;
const vector float vczero = (const vector float)FOUROF(0.);
// first compute buf[q] and buf[q+1]
vecq = vec_ld(q << 3, (float*)buf);
vecw = vec_ld(0, (float*)&(w[m][k]));
temp1 = vec_madd(vecq, vecw, vczero);
temp2 = vec_perm(vecq, vecq, vcprm(1,0,3,2));
temp2 = vec_madd(temp2, vecw, vczero);
temp3 = vec_perm(temp1, temp2, vcprm(0,s0,2,s2));
temp4 = vec_perm(temp1, temp2, vcprm(1,s1,3,s3));
vecq = vec_madd(temp4, vcii(n,p,n,p), temp3);
// then butterfly with buf[p] and buf[p+1]
vecp = vec_ld(p << 3, (float*)buf);
temp1 = vec_add(vecp, vecq);
temp2 = vec_sub(vecp, vecq);
vec_st(temp1, p << 3, (float*)buf);
vec_st(temp2, q << 3, (float*)buf);
#endif
}
}
}
/* Post IFFT complex multiply plus IFFT complex conjugate*/
for( i=0; i < 128; i+=4) {
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
#if 0
tmp_a_r = buf[(i + 0)].real;
tmp_a_i = -1.0 * buf[(i + 0)].imag;
buf[(i + 0)].real =
(tmp_a_r * xcos1[(i + 0)]) - (tmp_a_i * xsin1[(i + 0)]);
buf[(i + 0)].imag =
(tmp_a_r * xsin1[(i + 0)]) + (tmp_a_i * xcos1[(i + 0)]);
tmp_a_r = buf[(i + 1)].real;
tmp_a_i = -1.0 * buf[(i + 1)].imag;
buf[(i + 1)].real =
(tmp_a_r * xcos1[(i + 1)]) - (tmp_a_i * xsin1[(i + 1)]);
buf[(i + 1)].imag =
(tmp_a_r * xsin1[(i + 1)]) + (tmp_a_i * xcos1[(i + 1)]);
tmp_a_r = buf[(i + 2)].real;
tmp_a_i = -1.0 * buf[(i + 2)].imag;
buf[(i + 2)].real =
(tmp_a_r * xcos1[(i + 2)]) - (tmp_a_i * xsin1[(i + 2)]);
buf[(i + 2)].imag =
(tmp_a_r * xsin1[(i + 2)]) + (tmp_a_i * xcos1[(i + 2)]);
tmp_a_r = buf[(i + 3)].real;
tmp_a_i = -1.0 * buf[(i + 3)].imag;
buf[(i + 3)].real =
(tmp_a_r * xcos1[(i + 3)]) - (tmp_a_i * xsin1[(i + 3)]);
buf[(i + 3)].imag =
(tmp_a_r * xsin1[(i + 3)]) + (tmp_a_i * xcos1[(i + 3)]);
#else
vector float bufv_0, bufv_2, cosv, sinv, temp1, temp2;
vector float temp0022, temp1133, tempCS01;
const vector float vczero = (const vector float)FOUROF(0.);
bufv_0 = vec_ld((i + 0) << 3, (float*)buf);
bufv_2 = vec_ld((i + 2) << 3, (float*)buf);
cosv = vec_ld(i << 2, xcos1);
sinv = vec_ld(i << 2, xsin1);
temp0022 = vec_perm(bufv_0, bufv_0, vcprm(0,0,2,2));
temp1133 = vec_perm(bufv_0, bufv_0, vcprm(1,1,3,3));
tempCS01 = vec_perm(cosv, sinv, vcprm(0,s0,1,s1));
temp1 = vec_madd(temp0022, tempCS01, vczero);
tempCS01 = vec_perm(cosv, sinv, vcprm(s0,0,s1,1));
temp2 = vec_madd(temp1133, tempCS01, vczero);
bufv_0 = vec_madd(temp2, vcii(p,n,p,n), temp1);
vec_st(bufv_0, (i + 0) << 3, (float*)buf);
/* idem with bufv_2 and high-order cosv/sinv */
temp0022 = vec_perm(bufv_2, bufv_2, vcprm(0,0,2,2));
temp1133 = vec_perm(bufv_2, bufv_2, vcprm(1,1,3,3));
tempCS01 = vec_perm(cosv, sinv, vcprm(2,s2,3,s3));
temp1 = vec_madd(temp0022, tempCS01, vczero);
tempCS01 = vec_perm(cosv, sinv, vcprm(s2,2,s3,3));
temp2 = vec_madd(temp1133, tempCS01, vczero);
bufv_2 = vec_madd(temp2, vcii(p,n,p,n), temp1);
vec_st(bufv_2, (i + 2) << 3, (float*)buf);
#endif
}
data_ptr = data;
delay_ptr = delay;
window_ptr = a52_imdct_window;
/* Window and convert to real valued signal */
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[64+i].imag * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias;
}
for(i=0; i< 64; i++) {
*data_ptr++ = -buf[i].real * *window_ptr++ + *delay_ptr++ + bias;
*data_ptr++ = buf[128-i-1].imag * *window_ptr++ + *delay_ptr++ + bias;
}
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
for(i=0; i< 64; i++) {
*delay_ptr++ = -buf[64+i].real * *--window_ptr;
*delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
}
for(i=0; i<64; i++) {
*delay_ptr++ = buf[i].imag * *--window_ptr;
*delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
}
}
#endif
// Stuff below this line is borrowed from libac3
#include "srfftp.h"
#if defined(ARCH_X86) || defined(ARCH_X86_64)
#ifndef HAVE_3DNOW
#define HAVE_3DNOW 1
#endif
#include "srfftp_3dnow.h"
const i_cmplx_t x_plus_minus_3dnow __attribute__ ((aligned (8))) = {{ 0x00000000UL, 0x80000000UL }};
const i_cmplx_t x_minus_plus_3dnow __attribute__ ((aligned (8))) = {{ 0x80000000UL, 0x00000000UL }};
const complex_t HSQRT2_3DNOW __attribute__ ((aligned (8))) = { 0.707106781188, 0.707106781188 };
#undef HAVE_3DNOWEX
#include "imdct_3dnow.h"
#define HAVE_3DNOWEX
#include "imdct_3dnow.h"
void
imdct_do_512_sse(sample_t data[],sample_t delay[], sample_t bias)
{
/* int i,k;
int p,q;*/
int m;
long two_m;
long two_m_plus_one;
long two_m_plus_one_shl3;
complex_t *buf_offset;
/* sample_t tmp_a_i;
sample_t tmp_a_r;
sample_t tmp_b_i;
sample_t tmp_b_r;*/
sample_t *data_ptr;
sample_t *delay_ptr;
sample_t *window_ptr;
/* 512 IMDCT with source and dest data in 'data' */
/* see the c version (dct_do_512()), its allmost identical, just in C */
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
/* Bit reversed shuffling */
__asm__ volatile(
"xor %%"REG_S", %%"REG_S" \n\t"
"lea "MANGLE(bit_reverse_512)", %%"REG_a"\n\t"
"mov $1008, %%"REG_D" \n\t"
"push %%"REG_BP" \n\t" //use ebp without telling gcc
ASMALIGN(4)
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // XXXI
"movhps 8(%0, %%"REG_D"), %%xmm0 \n\t" // RXXI
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // XXXi
"movhps (%0, %%"REG_D"), %%xmm1 \n\t" // rXXi
"shufps $0x33, %%xmm1, %%xmm0 \n\t" // irIR
"movaps "MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm2\n\t"
"mulps %%xmm0, %%xmm2 \n\t"
"shufps $0xB1, %%xmm0, %%xmm0 \n\t" // riRI
"mulps "MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
"subps %%xmm0, %%xmm2 \n\t"
"movzb (%%"REG_a"), %%"REG_d" \n\t"
"movzb 1(%%"REG_a"), %%"REG_BP" \n\t"
"movlps %%xmm2, (%1, %%"REG_d", 8) \n\t"
"movhps %%xmm2, (%1, %%"REG_BP", 8) \n\t"
"add $16, %%"REG_S" \n\t"
"add $2, %%"REG_a" \n\t" // avoid complex addressing for P4 crap
"sub $16, %%"REG_D" \n\t"
"jnc 1b \n\t"
"pop %%"REG_BP" \n\t"//no we didnt touch ebp *g*
:: "b" (data), "c" (buf)
: "%"REG_S, "%"REG_D, "%"REG_a, "%"REG_d
);
/* FFT Merge */
/* unoptimized variant
for (m=1; m < 7; m++) {
if(m)
two_m = (1 << m);
else
two_m = 1;
two_m_plus_one = (1 << (m+1));
for(i = 0; i < 128; i += two_m_plus_one) {
for(k = 0; k < two_m; k++) {
p = k + i;
q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
*/
/* 1. iteration */
// Note w[0][0]={1,0}
__asm__ volatile(
"xorps %%xmm1, %%xmm1 \n\t"
"xorps %%xmm2, %%xmm2 \n\t"
"mov %0, %%"REG_S" \n\t"
ASMALIGN(4)
"1: \n\t"
"movlps (%%"REG_S"), %%xmm0\n\t" //buf[p]
"movlps 8(%%"REG_S"), %%xmm1\n\t" //buf[q]
"movhps (%%"REG_S"), %%xmm0\n\t" //buf[p]
"movhps 8(%%"REG_S"), %%xmm2\n\t" //buf[q]
"addps %%xmm1, %%xmm0 \n\t"
"subps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%%"REG_S")\n\t"
"add $16, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 2. iteration */
// Note w[1]={{1,0}, {0,-1}}
__asm__ volatile(
"movaps "MANGLE(ps111_1)", %%xmm7\n\t" // 1,1,1,-1
"mov %0, %%"REG_S" \n\t"
ASMALIGN(4)
"1: \n\t"
"movaps 16(%%"REG_S"), %%xmm2 \n\t" //r2,i2,r3,i3
"shufps $0xB4, %%xmm2, %%xmm2 \n\t" //r2,i2,i3,r3
"mulps %%xmm7, %%xmm2 \n\t" //r2,i2,i3,-r3
"movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
"movaps (%%"REG_S"), %%xmm1 \n\t" //r0,i0,r1,i1
"addps %%xmm2, %%xmm0 \n\t"
"subps %%xmm2, %%xmm1 \n\t"
"movaps %%xmm0, (%%"REG_S") \n\t"
"movaps %%xmm1, 16(%%"REG_S") \n\t"
"add $32, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 3. iteration */
/*
Note sseW2+0={1,1,sqrt(2),sqrt(2))
Note sseW2+16={0,0,sqrt(2),-sqrt(2))
Note sseW2+32={0,0,-sqrt(2),-sqrt(2))
Note sseW2+48={1,-1,sqrt(2),-sqrt(2))
*/
__asm__ volatile(
"movaps 48+"MANGLE(sseW2)", %%xmm6\n\t"
"movaps 16+"MANGLE(sseW2)", %%xmm7\n\t"
"xorps %%xmm5, %%xmm5 \n\t"
"xorps %%xmm2, %%xmm2 \n\t"
"mov %0, %%"REG_S" \n\t"
ASMALIGN(4)
"1: \n\t"
"movaps 32(%%"REG_S"), %%xmm2 \n\t" //r4,i4,r5,i5
"movaps 48(%%"REG_S"), %%xmm3 \n\t" //r6,i6,r7,i7
"movaps "MANGLE(sseW2)", %%xmm4 \n\t" //r4,i4,r5,i5
"movaps 32+"MANGLE(sseW2)", %%xmm5\n\t" //r6,i6,r7,i7
"mulps %%xmm2, %%xmm4 \n\t"
"mulps %%xmm3, %%xmm5 \n\t"
"shufps $0xB1, %%xmm2, %%xmm2 \n\t" //i4,r4,i5,r5
"shufps $0xB1, %%xmm3, %%xmm3 \n\t" //i6,r6,i7,r7
"mulps %%xmm6, %%xmm3 \n\t"
"mulps %%xmm7, %%xmm2 \n\t"
"movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
"movaps 16(%%"REG_S"), %%xmm1 \n\t" //r2,i2,r3,i3
"addps %%xmm4, %%xmm2 \n\t"
"addps %%xmm5, %%xmm3 \n\t"
"movaps %%xmm2, %%xmm4 \n\t"
"movaps %%xmm3, %%xmm5 \n\t"
"addps %%xmm0, %%xmm2 \n\t"
"addps %%xmm1, %%xmm3 \n\t"
"subps %%xmm4, %%xmm0 \n\t"
"subps %%xmm5, %%xmm1 \n\t"
"movaps %%xmm2, (%%"REG_S") \n\t"
"movaps %%xmm3, 16(%%"REG_S") \n\t"
"movaps %%xmm0, 32(%%"REG_S") \n\t"
"movaps %%xmm1, 48(%%"REG_S") \n\t"
"add $64, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "r" (buf + 128)
: "%"REG_S
);
/* 4-7. iterations */
for (m=3; m < 7; m++) {
two_m = (1 << m);
two_m_plus_one = two_m<<1;
two_m_plus_one_shl3 = (two_m_plus_one<<3);
buf_offset = buf+128;
__asm__ volatile(
"mov %0, %%"REG_S" \n\t"
ASMALIGN(4)
"1: \n\t"
"xor %%"REG_D", %%"REG_D" \n\t" // k
"lea (%%"REG_S", %3), %%"REG_d" \n\t"
"2: \n\t"
"movaps (%%"REG_d", %%"REG_D"), %%xmm1 \n\t"
"movaps (%4, %%"REG_D", 2), %%xmm2 \n\t"
"mulps %%xmm1, %%xmm2 \n\t"
"shufps $0xB1, %%xmm1, %%xmm1 \n\t"
"mulps 16(%4, %%"REG_D", 2), %%xmm1 \n\t"
"movaps (%%"REG_S", %%"REG_D"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm1 \n\t"
"movaps %%xmm1, %%xmm2 \n\t"
"addps %%xmm0, %%xmm1 \n\t"
"subps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm1, (%%"REG_S", %%"REG_D") \n\t"
"movaps %%xmm0, (%%"REG_d", %%"REG_D") \n\t"
"add $16, %%"REG_D" \n\t"
"cmp %3, %%"REG_D" \n\t" //FIXME (opt) count against 0
"jb 2b \n\t"
"add %2, %%"REG_S" \n\t"
"cmp %1, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "g" (buf), "m" (buf_offset), "m" (two_m_plus_one_shl3), "r" (two_m<<3),
"r" (sseW[m])
: "%"REG_S, "%"REG_D, "%"REG_d
);
}
/* Post IFFT complex multiply plus IFFT complex conjugate*/
__asm__ volatile(
"mov $-1024, %%"REG_S" \n\t"
ASMALIGN(4)
"1: \n\t"
"movaps (%0, %%"REG_S"), %%xmm0 \n\t"
"movaps (%0, %%"REG_S"), %%xmm1 \n\t"
"shufps $0xB1, %%xmm0, %%xmm0 \n\t"
"mulps 1024+"MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm1\n\t"
"mulps 1024+"MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
"addps %%xmm1, %%xmm0 \n\t"
"movaps %%xmm0, (%0, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
" jnz 1b \n\t"
:: "r" (buf+128)
: "%"REG_S
);
data_ptr = data;
delay_ptr = delay;
window_ptr = a52_imdct_window;
/* Window and convert to real valued signal */
__asm__ volatile(
"xor %%"REG_D", %%"REG_D" \n\t" // 0
"xor %%"REG_S", %%"REG_S" \n\t" // 0
"movss %3, %%xmm2 \n\t" // bias
"shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
ASMALIGN(4)
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
"shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps "MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"addps (%2, %%"REG_S"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf+64), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
: "%"REG_S, "%"REG_D
);
data_ptr+=128;
delay_ptr+=128;
// window_ptr+=128;
__asm__ volatile(
"mov $1024, %%"REG_D" \n\t" // 512
"xor %%"REG_S", %%"REG_S" \n\t" // 0
"movss %3, %%xmm2 \n\t" // bias
"shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
ASMALIGN(4)
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
"shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 512+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"addps (%2, %%"REG_S"), %%xmm0 \n\t"
"addps %%xmm2, %%xmm0 \n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
: "%"REG_S, "%"REG_D
);
data_ptr+=128;
// window_ptr+=128;
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
__asm__ volatile(
"xor %%"REG_D", %%"REG_D" \n\t" // 0
"xor %%"REG_S", %%"REG_S" \n\t" // 0
ASMALIGN(4)
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
"shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 1024+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf+64), "r" (delay_ptr)
: "%"REG_S, "%"REG_D
);
delay_ptr+=128;
// window_ptr-=128;
__asm__ volatile(
"mov $1024, %%"REG_D" \n\t" // 1024
"xor %%"REG_S", %%"REG_S" \n\t" // 0
ASMALIGN(4)
"1: \n\t"
"movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
"movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
"movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
"movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
"shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
"mulps 1536+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
"movaps %%xmm0, (%1, %%"REG_S") \n\t"
"add $16, %%"REG_S" \n\t"
"sub $16, %%"REG_D" \n\t"
"cmp $512, %%"REG_S" \n\t"
" jb 1b \n\t"
:: "r" (buf), "r" (delay_ptr)
: "%"REG_S, "%"REG_D
);
}
#endif // ARCH_X86 || ARCH_X86_64
void a52_imdct_256(sample_t * data, sample_t * delay, sample_t bias)
{
int i, k;
sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
const sample_t * window = a52_imdct_window;
complex_t buf1[64], buf2[64];
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
for (i = 0; i < 64; i++) {
k = fftorder[i];
t_r = pre2[i].real;
t_i = pre2[i].imag;
buf1[i].real = t_i * data[254-k] + t_r * data[k];
buf1[i].imag = t_r * data[254-k] - t_i * data[k];
buf2[i].real = t_i * data[255-k] + t_r * data[k+1];
buf2[i].imag = t_r * data[255-k] - t_i * data[k+1];
}
ifft64 (buf1);
ifft64 (buf2);
/* Post IFFT complex multiply */
/* Window and convert to real valued signal */
for (i = 0; i < 32; i++) {
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
t_r = post2[i].real;
t_i = post2[i].imag;
a_r = t_r * buf1[i].real + t_i * buf1[i].imag;
a_i = t_i * buf1[i].real - t_r * buf1[i].imag;
b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag;
b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag;
c_r = t_r * buf2[i].real + t_i * buf2[i].imag;
c_i = t_i * buf2[i].real - t_r * buf2[i].imag;
d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag;
d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag;
w_1 = window[2*i];
w_2 = window[255-2*i];
data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
delay[2*i] = c_i;
w_1 = window[128+2*i];
w_2 = window[127-2*i];
data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias;
data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias;
delay[127-2*i] = c_r;
w_1 = window[2*i+1];
w_2 = window[254-2*i];
data[2*i+1] = delay[2*i+1] * w_2 - b_i * w_1 + bias;
data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias;
delay[2*i+1] = d_r;
w_1 = window[129+2*i];
w_2 = window[126-2*i];
data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias;
data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias;
delay[126-2*i] = d_i;
}
}
static double besselI0 (double x)
{
double bessel = 1;
int i = 100;
do
bessel = bessel * x / (i * i) + 1;
while (--i);
return bessel;
}
void a52_imdct_init (uint32_t mm_accel)
{
int i, j, k;
double sum;
/* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
sum = 0;
for (i = 0; i < 256; i++) {
sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
a52_imdct_window[i] = sum;
}
sum++;
for (i = 0; i < 256; i++)
a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum);
for (i = 0; i < 3; i++)
roots16[i] = cos ((M_PI / 8) * (i + 1));
for (i = 0; i < 7; i++)
roots32[i] = cos ((M_PI / 16) * (i + 1));
for (i = 0; i < 15; i++)
roots64[i] = cos ((M_PI / 32) * (i + 1));
for (i = 0; i < 31; i++)
roots128[i] = cos ((M_PI / 64) * (i + 1));
for (i = 0; i < 64; i++) {
k = fftorder[i] / 2 + 64;
pre1[i].real = cos ((M_PI / 256) * (k - 0.25));
pre1[i].imag = sin ((M_PI / 256) * (k - 0.25));
}
for (i = 64; i < 128; i++) {
k = fftorder[i] / 2 + 64;
pre1[i].real = -cos ((M_PI / 256) * (k - 0.25));
pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25));
}
for (i = 0; i < 64; i++) {
post1[i].real = cos ((M_PI / 256) * (i + 0.5));
post1[i].imag = sin ((M_PI / 256) * (i + 0.5));
}
for (i = 0; i < 64; i++) {
k = fftorder[i] / 4;
pre2[i].real = cos ((M_PI / 128) * (k - 0.25));
pre2[i].imag = sin ((M_PI / 128) * (k - 0.25));
}
for (i = 0; i < 32; i++) {
post2[i].real = cos ((M_PI / 128) * (i + 0.5));
post2[i].imag = sin ((M_PI / 128) * (i + 0.5));
}
for (i = 0; i < 128; i++) {
xcos1[i] = -cos ((M_PI / 2048) * (8 * i + 1));
xsin1[i] = -sin ((M_PI / 2048) * (8 * i + 1));
}
for (i = 0; i < 7; i++) {
j = 1 << i;
for (k = 0; k < j; k++) {
w[i][k].real = cos (-M_PI * k / j);
w[i][k].imag = sin (-M_PI * k / j);
}
}
#if defined(ARCH_X86) || defined(ARCH_X86_64)
for (i = 0; i < 128; i++) {
sseSinCos1c[2*i+0]= xcos1[i];
sseSinCos1c[2*i+1]= -xcos1[i];
sseSinCos1d[2*i+0]= xsin1[i];
sseSinCos1d[2*i+1]= xsin1[i];
}
for (i = 1; i < 7; i++) {
j = 1 << i;
for (k = 0; k < j; k+=2) {
sseW[i][4*k + 0] = w[i][k+0].real;
sseW[i][4*k + 1] = w[i][k+0].real;
sseW[i][4*k + 2] = w[i][k+1].real;
sseW[i][4*k + 3] = w[i][k+1].real;
sseW[i][4*k + 4] = -w[i][k+0].imag;
sseW[i][4*k + 5] = w[i][k+0].imag;
sseW[i][4*k + 6] = -w[i][k+1].imag;
sseW[i][4*k + 7] = w[i][k+1].imag;
//we multiply more or less uninitalized numbers so we need to use exactly 0.0
if(k==0)
{
// sseW[i][4*k + 0]= sseW[i][4*k + 1]= 1.0;
sseW[i][4*k + 4]= sseW[i][4*k + 5]= 0.0;
}
if(2*k == j)
{
sseW[i][4*k + 0]= sseW[i][4*k + 1]= 0.0;
// sseW[i][4*k + 4]= -(sseW[i][4*k + 5]= -1.0);
}
}
}
for(i=0; i<128; i++)
{
sseWindow[2*i+0]= -a52_imdct_window[2*i+0];
sseWindow[2*i+1]= a52_imdct_window[2*i+1];
}
for(i=0; i<64; i++)
{
sseWindow[256 + 2*i+0]= -a52_imdct_window[254 - 2*i+1];
sseWindow[256 + 2*i+1]= a52_imdct_window[254 - 2*i+0];
sseWindow[384 + 2*i+0]= a52_imdct_window[126 - 2*i+1];
sseWindow[384 + 2*i+1]= -a52_imdct_window[126 - 2*i+0];
}
#endif
a52_imdct_512 = imdct_do_512;
ifft128 = ifft128_c;
ifft64 = ifft64_c;
#if defined(ARCH_X86) || defined(ARCH_X86_64)
if(mm_accel & MM_ACCEL_X86_SSE)
{
fprintf (stderr, "Using SSE optimized IMDCT transform\n");
a52_imdct_512 = imdct_do_512_sse;
}
else
if(mm_accel & MM_ACCEL_X86_3DNOWEXT)
{
fprintf (stderr, "Using 3DNowEx optimized IMDCT transform\n");
a52_imdct_512 = imdct_do_512_3dnowex;
}
else
if(mm_accel & MM_ACCEL_X86_3DNOW)
{
fprintf (stderr, "Using 3DNow optimized IMDCT transform\n");
a52_imdct_512 = imdct_do_512_3dnow;
}
else
#endif // ARCH_X86 || ARCH_X86_64
#ifdef HAVE_ALTIVEC
if (mm_accel & MM_ACCEL_PPC_ALTIVEC)
{
fprintf(stderr, "Using AltiVec optimized IMDCT transform\n");
a52_imdct_512 = imdct_do_512_altivec;
}
else
#endif
#ifdef LIBA52_DJBFFT
if (mm_accel & MM_ACCEL_DJBFFT) {
fprintf (stderr, "Using djbfft for IMDCT transform\n");
ifft128 = (void (*) (complex_t *)) fftc4_un128;
ifft64 = (void (*) (complex_t *)) fftc4_un64;
} else
#endif
{
fprintf (stderr, "No accelerated IMDCT transform found\n");
}
}