1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-21 15:12:48 +00:00
mpv/audio/out/buffer.c
Dudemanguy 41c0321208 audio: drain ao before setting pause
There's an edge cause with gapless audio and pausing. Since, gapless
audio works by sending an EOF immediately, it's possible to pause on the
next file before audio actually finishes playing and thus the sound gets
cut off. The fix is to simply just always do an ao_drain if the ao is
about to set a pause on EOF and we still have audio playing.
Fixes #8898.
2023-08-11 22:28:50 +00:00

709 lines
20 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <pthread.h>
#include <inttypes.h>
#include <math.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include "ao.h"
#include "internal.h"
#include "audio/aframe.h"
#include "audio/format.h"
#include "common/msg.h"
#include "common/common.h"
#include "filters/f_async_queue.h"
#include "filters/filter_internal.h"
#include "osdep/timer.h"
#include "osdep/threads.h"
struct buffer_state {
// Buffer and AO
pthread_mutex_t lock;
pthread_cond_t wakeup;
// Playthread sleep
pthread_mutex_t pt_lock;
pthread_cond_t pt_wakeup;
// Access from AO driver's thread only.
char *convert_buffer;
// Immutable.
struct mp_async_queue *queue;
// --- protected by lock
struct mp_filter *filter_root;
struct mp_filter *input; // connected to queue
struct mp_aframe *pending; // last, not fully consumed output
bool streaming; // AO streaming active
bool playing; // logically playing audio from buffer
bool paused; // logically paused
int64_t end_time_us; // absolute output time of last played sample
bool initial_unblocked;
// "Push" AOs only (AOs with driver->write).
bool hw_paused; // driver->set_pause() was used successfully
bool recover_pause; // non-hw_paused: needs to recover delay
struct mp_pcm_state prepause_state;
pthread_t thread; // thread shoveling data to AO
bool thread_valid; // thread is running
struct mp_aframe *temp_buf;
// --- protected by pt_lock
bool need_wakeup;
bool terminate; // exit thread
};
static void *playthread(void *arg);
void ao_wakeup_playthread(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->pt_lock);
p->need_wakeup = true;
pthread_cond_broadcast(&p->pt_wakeup);
pthread_mutex_unlock(&p->pt_lock);
}
// called locked
static void get_dev_state(struct ao *ao, struct mp_pcm_state *state)
{
struct buffer_state *p = ao->buffer_state;
if (p->paused && p->playing && !ao->stream_silence) {
*state = p->prepause_state;
return;
}
*state = (struct mp_pcm_state){
.free_samples = -1,
.queued_samples = -1,
.delay = -1,
};
ao->driver->get_state(ao, state);
}
struct mp_async_queue *ao_get_queue(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
return p->queue;
}
// Special behavior with data==NULL: caller uses p->pending.
static int read_buffer(struct ao *ao, void **data, int samples, bool *eof)
{
struct buffer_state *p = ao->buffer_state;
int pos = 0;
*eof = false;
while (p->playing && !p->paused && pos < samples) {
if (!p->pending || !mp_aframe_get_size(p->pending)) {
TA_FREEP(&p->pending);
struct mp_frame frame = mp_pin_out_read(p->input->pins[0]);
if (!frame.type)
break; // we can't/don't want to block
if (frame.type != MP_FRAME_AUDIO) {
if (frame.type == MP_FRAME_EOF)
*eof = true;
mp_frame_unref(&frame);
continue;
}
p->pending = frame.data;
}
if (!data)
break;
int copy = mp_aframe_get_size(p->pending);
uint8_t **fdata = mp_aframe_get_data_ro(p->pending);
copy = MPMIN(copy, samples - pos);
for (int n = 0; n < ao->num_planes; n++) {
memcpy((char *)data[n] + pos * ao->sstride,
fdata[n], copy * ao->sstride);
}
mp_aframe_skip_samples(p->pending, copy);
pos += copy;
*eof = false;
}
if (!data) {
if (!p->pending)
return 0;
void **pd = (void *)mp_aframe_get_data_rw(p->pending);
if (pd)
ao_post_process_data(ao, pd, mp_aframe_get_size(p->pending));
return 1;
}
// pad with silence (underflow/paused/eof)
for (int n = 0; n < ao->num_planes; n++) {
af_fill_silence((char *)data[n] + pos * ao->sstride,
(samples - pos) * ao->sstride,
ao->format);
}
ao_post_process_data(ao, data, pos);
return pos;
}
// Read the given amount of samples in the user-provided data buffer. Returns
// the number of samples copied. If there is not enough data (buffer underrun
// or EOF), return the number of samples that could be copied, and fill the
// rest of the user-provided buffer with silence.
// This basically assumes that the audio device doesn't care about underruns.
// If this is called in paused mode, it will always return 0.
// The caller should set out_time_us to the expected delay until the last sample
// reaches the speakers, in microseconds, using mp_time_us() as reference.
int ao_read_data(struct ao *ao, void **data, int samples, int64_t out_time_us)
{
struct buffer_state *p = ao->buffer_state;
assert(!ao->driver->write);
pthread_mutex_lock(&p->lock);
int pos = read_buffer(ao, data, samples, &(bool){0});
if (pos > 0)
p->end_time_us = out_time_us;
if (pos < samples && p->playing && !p->paused) {
p->playing = false;
ao->wakeup_cb(ao->wakeup_ctx);
// For ao_drain().
pthread_cond_broadcast(&p->wakeup);
}
pthread_mutex_unlock(&p->lock);
return pos;
}
// Same as ao_read_data(), but convert data according to *fmt.
// fmt->src_fmt and fmt->channels must be the same as the AO parameters.
int ao_read_data_converted(struct ao *ao, struct ao_convert_fmt *fmt,
void **data, int samples, int64_t out_time_us)
{
struct buffer_state *p = ao->buffer_state;
void *ndata[MP_NUM_CHANNELS] = {0};
if (!ao_need_conversion(fmt))
return ao_read_data(ao, data, samples, out_time_us);
assert(ao->format == fmt->src_fmt);
assert(ao->channels.num == fmt->channels);
bool planar = af_fmt_is_planar(fmt->src_fmt);
int planes = planar ? fmt->channels : 1;
int plane_samples = samples * (planar ? 1: fmt->channels);
int src_plane_size = plane_samples * af_fmt_to_bytes(fmt->src_fmt);
int dst_plane_size = plane_samples * fmt->dst_bits / 8;
int needed = src_plane_size * planes;
if (needed > talloc_get_size(p->convert_buffer) || !p->convert_buffer) {
talloc_free(p->convert_buffer);
p->convert_buffer = talloc_size(NULL, needed);
}
for (int n = 0; n < planes; n++)
ndata[n] = p->convert_buffer + n * src_plane_size;
int res = ao_read_data(ao, ndata, samples, out_time_us);
ao_convert_inplace(fmt, ndata, samples);
for (int n = 0; n < planes; n++)
memcpy(data[n], ndata[n], dst_plane_size);
return res;
}
int ao_control(struct ao *ao, enum aocontrol cmd, void *arg)
{
struct buffer_state *p = ao->buffer_state;
int r = CONTROL_UNKNOWN;
if (ao->driver->control) {
// Only need to lock in push mode.
if (ao->driver->write)
pthread_mutex_lock(&p->lock);
r = ao->driver->control(ao, cmd, arg);
if (ao->driver->write)
pthread_mutex_unlock(&p->lock);
}
return r;
}
double ao_get_delay(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
double driver_delay;
if (ao->driver->write) {
struct mp_pcm_state state;
get_dev_state(ao, &state);
driver_delay = state.delay;
} else {
int64_t end = p->end_time_us;
int64_t now = mp_time_us();
driver_delay = MPMAX(0, (end - now) / (1000.0 * 1000.0));
}
int pending = mp_async_queue_get_samples(p->queue);
if (p->pending)
pending += mp_aframe_get_size(p->pending);
pthread_mutex_unlock(&p->lock);
return driver_delay + pending / (double)ao->samplerate;
}
// Fully stop playback; clear buffers, including queue.
void ao_reset(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
bool wakeup = false;
bool do_reset = false;
pthread_mutex_lock(&p->lock);
TA_FREEP(&p->pending);
mp_async_queue_reset(p->queue);
mp_filter_reset(p->filter_root);
mp_async_queue_resume_reading(p->queue);
if (!ao->stream_silence && ao->driver->reset) {
if (ao->driver->write) {
ao->driver->reset(ao);
} else {
// Pull AOs may wait for ao_read_data() to return.
// That would deadlock if called from within the lock.
do_reset = true;
}
p->streaming = false;
}
wakeup = p->playing;
p->playing = false;
p->recover_pause = false;
p->hw_paused = false;
p->end_time_us = 0;
pthread_mutex_unlock(&p->lock);
if (do_reset)
ao->driver->reset(ao);
if (wakeup)
ao_wakeup_playthread(ao);
}
// Initiate playback. This moves from the stop/underrun state to actually
// playing (orthogonally taking the paused state into account). Plays all
// data in the queue, and goes into underrun state if no more data available.
// No-op if already running.
void ao_start(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
bool do_start = false;
pthread_mutex_lock(&p->lock);
p->playing = true;
if (!ao->driver->write && !p->paused && !p->streaming) {
p->streaming = true;
do_start = true;
}
pthread_mutex_unlock(&p->lock);
// Pull AOs might call ao_read_data() so do this outside the lock.
if (do_start)
ao->driver->start(ao);
ao_wakeup_playthread(ao);
}
void ao_set_paused(struct ao *ao, bool paused, bool eof)
{
struct buffer_state *p = ao->buffer_state;
bool wakeup = false;
bool do_reset = false, do_start = false;
// If we are going to pause on eof and ao is still playing,
// be sure to drain the ao first for gapless.
if (eof && paused && ao_is_playing(ao))
ao_drain(ao);
pthread_mutex_lock(&p->lock);
if ((p->playing || !ao->driver->write) && !p->paused && paused) {
if (p->streaming && !ao->stream_silence) {
if (ao->driver->write) {
if (!p->recover_pause)
get_dev_state(ao, &p->prepause_state);
if (ao->driver->set_pause && ao->driver->set_pause(ao, true)) {
p->hw_paused = true;
} else {
ao->driver->reset(ao);
p->streaming = false;
p->recover_pause = !ao->untimed;
}
} else if (ao->driver->reset) {
// See ao_reset() why this is done outside of the lock.
do_reset = true;
p->streaming = false;
}
}
wakeup = true;
} else if (p->playing && p->paused && !paused) {
if (ao->driver->write) {
if (p->hw_paused)
ao->driver->set_pause(ao, false);
p->hw_paused = false;
} else {
if (!p->streaming)
do_start = true;
p->streaming = true;
}
wakeup = true;
}
p->paused = paused;
pthread_mutex_unlock(&p->lock);
if (do_reset)
ao->driver->reset(ao);
if (do_start)
ao->driver->start(ao);
if (wakeup)
ao_wakeup_playthread(ao);
}
// Whether audio is playing. This means that there is still data in the buffers,
// and ao_start() was called. This returns true even if playback was logically
// paused. On false, EOF was reached, or an underrun happened, or ao_reset()
// was called.
bool ao_is_playing(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
bool playing = p->playing;
pthread_mutex_unlock(&p->lock);
return playing;
}
// Block until the current audio buffer has played completely.
void ao_drain(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
while (!p->paused && p->playing) {
pthread_mutex_unlock(&p->lock);
double delay = ao_get_delay(ao);
pthread_mutex_lock(&p->lock);
// Limit to buffer + arbitrary ~250ms max. waiting for robustness.
delay += mp_async_queue_get_samples(p->queue) / (double)ao->samplerate;
struct timespec ts = mp_rel_time_to_timespec(MPMAX(delay, 0) + 0.25);
// Wait for EOF signal from AO.
if (pthread_cond_timedwait(&p->wakeup, &p->lock, &ts)) {
MP_VERBOSE(ao, "drain timeout\n");
break;
}
if (!p->playing && mp_async_queue_get_samples(p->queue)) {
MP_WARN(ao, "underrun during draining\n");
pthread_mutex_unlock(&p->lock);
ao_start(ao);
pthread_mutex_lock(&p->lock);
}
}
pthread_mutex_unlock(&p->lock);
ao_reset(ao);
}
static void wakeup_filters(void *ctx)
{
struct ao *ao = ctx;
ao_wakeup_playthread(ao);
}
void ao_uninit(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
if (p && p->thread_valid) {
pthread_mutex_lock(&p->pt_lock);
p->terminate = true;
pthread_cond_broadcast(&p->pt_wakeup);
pthread_mutex_unlock(&p->pt_lock);
pthread_join(p->thread, NULL);
p->thread_valid = false;
}
if (ao->driver_initialized)
ao->driver->uninit(ao);
if (p) {
talloc_free(p->filter_root);
talloc_free(p->queue);
talloc_free(p->pending);
talloc_free(p->convert_buffer);
talloc_free(p->temp_buf);
pthread_cond_destroy(&p->wakeup);
pthread_mutex_destroy(&p->lock);
pthread_cond_destroy(&p->pt_wakeup);
pthread_mutex_destroy(&p->pt_lock);
}
talloc_free(ao);
}
void init_buffer_pre(struct ao *ao)
{
ao->buffer_state = talloc_zero(ao, struct buffer_state);
}
bool init_buffer_post(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
assert(ao->driver->start);
if (ao->driver->write) {
assert(ao->driver->reset);
assert(ao->driver->get_state);
}
pthread_mutex_init(&p->lock, NULL);
pthread_cond_init(&p->wakeup, NULL);
pthread_mutex_init(&p->pt_lock, NULL);
pthread_cond_init(&p->pt_wakeup, NULL);
p->queue = mp_async_queue_create();
p->filter_root = mp_filter_create_root(ao->global);
p->input = mp_async_queue_create_filter(p->filter_root, MP_PIN_OUT, p->queue);
mp_async_queue_resume_reading(p->queue);
struct mp_async_queue_config cfg = {
.sample_unit = AQUEUE_UNIT_SAMPLES,
.max_samples = ao->buffer,
.max_bytes = INT64_MAX,
};
mp_async_queue_set_config(p->queue, cfg);
if (ao->driver->write) {
mp_filter_graph_set_wakeup_cb(p->filter_root, wakeup_filters, ao);
p->thread_valid = true;
if (pthread_create(&p->thread, NULL, playthread, ao)) {
p->thread_valid = false;
return false;
}
} else {
if (ao->stream_silence) {
ao->driver->start(ao);
p->streaming = true;
}
}
if (ao->stream_silence) {
MP_WARN(ao, "The --audio-stream-silence option is set. This will break "
"certain player behavior.\n");
}
return true;
}
static bool realloc_buf(struct ao *ao, int samples)
{
struct buffer_state *p = ao->buffer_state;
samples = MPMAX(1, samples);
if (!p->temp_buf || samples > mp_aframe_get_size(p->temp_buf)) {
TA_FREEP(&p->temp_buf);
p->temp_buf = mp_aframe_create();
if (!mp_aframe_set_format(p->temp_buf, ao->format) ||
!mp_aframe_set_chmap(p->temp_buf, &ao->channels) ||
!mp_aframe_set_rate(p->temp_buf, ao->samplerate) ||
!mp_aframe_alloc_data(p->temp_buf, samples))
{
TA_FREEP(&p->temp_buf);
return false;
}
}
return true;
}
// called locked
static bool ao_play_data(struct ao *ao)
{
struct buffer_state *p = ao->buffer_state;
if ((!p->playing || p->paused) && !ao->stream_silence)
return false;
struct mp_pcm_state state;
get_dev_state(ao, &state);
if (p->streaming && !state.playing && !ao->untimed)
goto eof;
void **planes = NULL;
int space = state.free_samples;
if (!space)
return false;
assert(space >= 0);
int samples = 0;
bool got_eof = false;
if (ao->driver->write_frames) {
TA_FREEP(&p->pending);
samples = read_buffer(ao, NULL, 1, &got_eof);
planes = (void **)&p->pending;
} else {
if (!realloc_buf(ao, space)) {
MP_ERR(ao, "Failed to allocate buffer.\n");
return false;
}
planes = (void **)mp_aframe_get_data_rw(p->temp_buf);
assert(planes);
if (p->recover_pause) {
samples = MPCLAMP(p->prepause_state.delay * ao->samplerate, 0, space);
p->recover_pause = false;
mp_aframe_set_silence(p->temp_buf, 0, space);
}
if (!samples) {
samples = read_buffer(ao, planes, space, &got_eof);
if (p->paused || (ao->stream_silence && !p->playing))
samples = space; // read_buffer() sets remainder to silent
}
}
if (samples) {
MP_STATS(ao, "start ao fill");
if (!ao->driver->write(ao, planes, samples))
MP_ERR(ao, "Error writing audio to device.\n");
MP_STATS(ao, "end ao fill");
if (!p->streaming) {
MP_VERBOSE(ao, "starting AO\n");
ao->driver->start(ao);
p->streaming = true;
state.playing = true;
}
}
MP_TRACE(ao, "in=%d space=%d(%d) pl=%d, eof=%d\n",
samples, space, state.free_samples, p->playing, got_eof);
if (got_eof)
goto eof;
return samples > 0 && (samples < space || ao->untimed);
eof:
MP_VERBOSE(ao, "audio end or underrun\n");
// Normal AOs signal EOF on underrun, untimed AOs never signal underruns.
if (ao->untimed || !state.playing || ao->stream_silence) {
p->streaming = state.playing && !ao->untimed;
p->playing = false;
}
ao->wakeup_cb(ao->wakeup_ctx);
// For ao_drain().
pthread_cond_broadcast(&p->wakeup);
return true;
}
static void *playthread(void *arg)
{
struct ao *ao = arg;
struct buffer_state *p = ao->buffer_state;
mpthread_set_name("ao");
while (1) {
pthread_mutex_lock(&p->lock);
bool retry = false;
if (!ao->driver->initially_blocked || p->initial_unblocked)
retry = ao_play_data(ao);
// Wait until the device wants us to write more data to it.
// Fallback to guessing.
double timeout = INFINITY;
if (p->streaming && !retry && (!p->paused || ao->stream_silence)) {
// Wake up again if half of the audio buffer has been played.
// Since audio could play at a faster or slower pace, wake up twice
// as often as ideally needed.
timeout = ao->device_buffer / (double)ao->samplerate * 0.25;
}
pthread_mutex_unlock(&p->lock);
pthread_mutex_lock(&p->pt_lock);
if (p->terminate) {
pthread_mutex_unlock(&p->pt_lock);
break;
}
if (!p->need_wakeup && !retry) {
MP_STATS(ao, "start audio wait");
struct timespec ts = mp_rel_time_to_timespec(timeout);
pthread_cond_timedwait(&p->pt_wakeup, &p->pt_lock, &ts);
MP_STATS(ao, "end audio wait");
}
p->need_wakeup = false;
pthread_mutex_unlock(&p->pt_lock);
}
return NULL;
}
void ao_unblock(struct ao *ao)
{
if (ao->driver->write) {
struct buffer_state *p = ao->buffer_state;
pthread_mutex_lock(&p->lock);
p->initial_unblocked = true;
pthread_mutex_unlock(&p->lock);
ao_wakeup_playthread(ao);
}
}