1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-20 06:11:10 +00:00
mpv/player/audio.c
wm4 c4ad2732f9 audio: stop being dumb
Obvious mistake: we entered EOF drain mode if the decoder returned
AD_WAIT, which is very wrong. AD_WAIT means we should retry after
waiting for a while (or to be precise, until the demuxer/decoder
have more data). We should just pass down this status, and not
change the audio chain state.

This was exposed by a libavfilter EOF handling bug. Feeding a filter
chain with af_dynaudnorm, and sending an EOF before a frame is returned
makes it stuck and keeps returning EAGAIN, instead of returning the
buffered audio. In combination with the bug at hand, which entered
EOG drain mode, it could happen that it got stuck due to libavfilter
discarding buffered data each time the demuxer ran out of data.

Fixes #3997.
2017-01-08 14:47:53 +01:00

1120 lines
36 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <stdbool.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <assert.h>
#include "config.h"
#include "mpv_talloc.h"
#include "common/msg.h"
#include "common/encode.h"
#include "options/options.h"
#include "common/common.h"
#include "osdep/timer.h"
#include "audio/audio.h"
#include "audio/audio_buffer.h"
#include "audio/decode/dec_audio.h"
#include "audio/filter/af.h"
#include "audio/out/ao.h"
#include "demux/demux.h"
#include "video/decode/dec_video.h"
#include "core.h"
#include "command.h"
enum {
AD_OK = 0,
AD_ERR = -1,
AD_EOF = -2,
AD_NEW_FMT = -3,
AD_WAIT = -4,
AD_NO_PROGRESS = -5,
};
// Use pitch correction only for speed adjustments by the user, not minor sync
// correction ones.
static int get_speed_method(struct MPContext *mpctx)
{
return mpctx->opts->pitch_correction && mpctx->opts->playback_speed != 1.0
? AF_CONTROL_SET_PLAYBACK_SPEED : AF_CONTROL_SET_PLAYBACK_SPEED_RESAMPLE;
}
// Try to reuse the existing filters to change playback speed. If it works,
// return true; if filter recreation is needed, return false.
static bool update_speed_filters(struct MPContext *mpctx)
{
struct af_stream *afs = mpctx->ao_chain->af;
double speed = mpctx->audio_speed;
if (afs->initialized < 1)
return false;
// Make sure only exactly one filter changes speed; resetting them all
// and setting 1 filter is the easiest way to achieve this.
af_control_all(afs, AF_CONTROL_SET_PLAYBACK_SPEED, &(double){1});
af_control_all(afs, AF_CONTROL_SET_PLAYBACK_SPEED_RESAMPLE, &(double){1});
if (speed == 1.0)
return !af_find_by_label(afs, "playback-speed");
// Compatibility: if the user uses --af=scaletempo, always use this
// filter to change speed. Don't insert a second filter (any) either.
if (!af_find_by_label(afs, "playback-speed") &&
af_control_any_rev(afs, AF_CONTROL_SET_PLAYBACK_SPEED, &speed))
return true;
return !!af_control_any_rev(afs, get_speed_method(mpctx), &speed);
}
// Update speed, and insert/remove filters if necessary.
static void recreate_speed_filters(struct MPContext *mpctx)
{
struct af_stream *afs = mpctx->ao_chain->af;
if (update_speed_filters(mpctx))
return;
if (af_remove_by_label(afs, "playback-speed") < 0)
goto fail;
if (mpctx->audio_speed == 1.0)
return;
int method = get_speed_method(mpctx);
char *filter = method == AF_CONTROL_SET_PLAYBACK_SPEED
? "scaletempo" : "lavrresample";
if (!af_add(afs, filter, "playback-speed", NULL))
goto fail;
if (!update_speed_filters(mpctx))
goto fail;
return;
fail:
mpctx->opts->playback_speed = 1.0;
mpctx->speed_factor_a = 1.0;
mpctx->audio_speed = 1.0;
mp_notify(mpctx, MP_EVENT_CHANGE_ALL, NULL);
}
// Called when opts->softvol_volume or opts->softvol_mute were changed.
void audio_update_volume(struct MPContext *mpctx)
{
struct MPOpts *opts = mpctx->opts;
struct ao_chain *ao_c = mpctx->ao_chain;
if (!ao_c || ao_c->af->initialized < 1)
return;
float gain = MPMAX(opts->softvol_volume / 100.0, 0);
if (opts->softvol_mute == 1)
gain = 0.0;
if (!af_control_any_rev(ao_c->af, AF_CONTROL_SET_VOLUME, &gain)) {
if (gain == 1.0)
return;
MP_VERBOSE(mpctx, "Inserting volume filter.\n");
if (!(af_add(ao_c->af, "volume", "softvol", NULL)
&& af_control_any_rev(ao_c->af, AF_CONTROL_SET_VOLUME, &gain)))
MP_ERR(mpctx, "No volume control available.\n");
}
}
/* NOTE: Currently the balance code is seriously buggy: it always changes
* the af_pan mapping between the first two input channels and first two
* output channels to particular values. These values make sense for an
* af_pan instance that was automatically inserted for balance control
* only and is otherwise an identity transform, but if the filter was
* there for another reason, then ignoring and overriding the original
* values is completely wrong.
*/
void audio_update_balance(struct MPContext *mpctx)
{
struct MPOpts *opts = mpctx->opts;
struct ao_chain *ao_c = mpctx->ao_chain;
if (!ao_c || ao_c->af->initialized < 1)
return;
float val = opts->balance;
if (af_control_any_rev(ao_c->af, AF_CONTROL_SET_PAN_BALANCE, &val))
return;
if (val == 0)
return;
struct af_instance *af_pan_balance;
if (!(af_pan_balance = af_add(ao_c->af, "pan", "autopan", NULL))) {
MP_ERR(mpctx, "No balance control available.\n");
return;
}
/* make all other channels pass through since by default pan blocks all */
for (int i = 2; i < AF_NCH; i++) {
float level[AF_NCH] = {0};
level[i] = 1.f;
af_control_ext_t arg_ext = { .ch = i, .arg = level };
af_pan_balance->control(af_pan_balance, AF_CONTROL_SET_PAN_LEVEL,
&arg_ext);
}
af_pan_balance->control(af_pan_balance, AF_CONTROL_SET_PAN_BALANCE, &val);
}
static int recreate_audio_filters(struct MPContext *mpctx)
{
assert(mpctx->ao_chain);
struct af_stream *afs = mpctx->ao_chain->af;
if (afs->initialized < 1 && af_init(afs) < 0)
goto fail;
recreate_speed_filters(mpctx);
if (afs->initialized < 1 && af_init(afs) < 0)
goto fail;
if (mpctx->opts->softvol == SOFTVOL_NO)
MP_ERR(mpctx, "--softvol=no is not supported anymore.\n");
audio_update_volume(mpctx);
audio_update_balance(mpctx);
mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL);
return 0;
fail:
MP_ERR(mpctx, "Couldn't find matching filter/ao format!\n");
return -1;
}
int reinit_audio_filters(struct MPContext *mpctx)
{
struct ao_chain *ao_c = mpctx->ao_chain;
if (!ao_c)
return 0;
double delay = 0;
if (ao_c->af->initialized > 0)
delay = af_calc_delay(ao_c->af);
af_uninit(ao_c->af);
if (recreate_audio_filters(mpctx) < 0)
return -1;
// Only force refresh if the amount of dropped buffered data is going to
// cause "issues" for the A/V sync logic.
if (mpctx->audio_status == STATUS_PLAYING &&
mpctx->playback_pts != MP_NOPTS_VALUE && delay > 0.2)
{
queue_seek(mpctx, MPSEEK_ABSOLUTE, mpctx->playback_pts,
MPSEEK_EXACT, 0);
}
return 1;
}
// Call this if opts->playback_speed or mpctx->speed_factor_* change.
void update_playback_speed(struct MPContext *mpctx)
{
mpctx->audio_speed = mpctx->opts->playback_speed * mpctx->speed_factor_a;
mpctx->video_speed = mpctx->opts->playback_speed * mpctx->speed_factor_v;
if (!mpctx->ao_chain || mpctx->ao_chain->af->initialized < 1)
return;
if (!update_speed_filters(mpctx))
recreate_audio_filters(mpctx);
}
static void ao_chain_reset_state(struct ao_chain *ao_c)
{
ao_c->pts = MP_NOPTS_VALUE;
ao_c->pts_reset = false;
talloc_free(ao_c->input_frame);
ao_c->input_frame = NULL;
af_seek_reset(ao_c->af);
mp_audio_buffer_clear(ao_c->ao_buffer);
if (ao_c->audio_src)
audio_reset_decoding(ao_c->audio_src);
}
void reset_audio_state(struct MPContext *mpctx)
{
if (mpctx->ao_chain)
ao_chain_reset_state(mpctx->ao_chain);
mpctx->audio_status = mpctx->ao_chain ? STATUS_SYNCING : STATUS_EOF;
mpctx->delay = 0;
mpctx->audio_drop_throttle = 0;
mpctx->audio_stat_start = 0;
mpctx->audio_allow_second_chance_seek = false;
}
void uninit_audio_out(struct MPContext *mpctx)
{
if (mpctx->ao) {
// Note: with gapless_audio, stop_play is not correctly set
if (mpctx->opts->gapless_audio || mpctx->stop_play == AT_END_OF_FILE)
ao_drain(mpctx->ao);
ao_uninit(mpctx->ao);
mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL);
}
mpctx->ao = NULL;
talloc_free(mpctx->ao_decoder_fmt);
mpctx->ao_decoder_fmt = NULL;
}
static void ao_chain_uninit(struct ao_chain *ao_c)
{
struct track *track = ao_c->track;
if (track) {
assert(track->ao_c == ao_c);
track->ao_c = NULL;
assert(track->d_audio == ao_c->audio_src);
track->d_audio = NULL;
audio_uninit(ao_c->audio_src);
}
if (ao_c->filter_src)
lavfi_set_connected(ao_c->filter_src, false);
af_destroy(ao_c->af);
talloc_free(ao_c->input_frame);
talloc_free(ao_c->ao_buffer);
talloc_free(ao_c);
}
void uninit_audio_chain(struct MPContext *mpctx)
{
if (mpctx->ao_chain) {
ao_chain_uninit(mpctx->ao_chain);
mpctx->ao_chain = NULL;
mpctx->audio_status = STATUS_EOF;
mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL);
}
}
static void reinit_audio_filters_and_output(struct MPContext *mpctx)
{
struct MPOpts *opts = mpctx->opts;
struct ao_chain *ao_c = mpctx->ao_chain;
assert(ao_c);
struct track *track = ao_c->track;
struct af_stream *afs = ao_c->af;
if (ao_c->input_frame)
mp_audio_copy_config(&ao_c->input_format, ao_c->input_frame);
struct mp_audio in_format = ao_c->input_format;
if (!mp_audio_config_valid(&in_format)) {
// We don't know the audio format yet - so configure it later as we're
// resyncing. fill_audio_buffers() will call this function again.
mp_wakeup_core(mpctx);
return;
}
// Weak gapless audio: drain AO on decoder format changes
if (mpctx->ao_decoder_fmt && mpctx->ao && opts->gapless_audio < 0 &&
!mp_audio_config_equals(mpctx->ao_decoder_fmt, &in_format))
{
uninit_audio_out(mpctx);
}
if (mpctx->ao && mp_audio_config_equals(&in_format, &afs->input))
return;
afs->output = (struct mp_audio){0};
if (mpctx->ao) {
ao_get_format(mpctx->ao, &afs->output);
} else if (af_fmt_is_pcm(in_format.format)) {
afs->output.rate = opts->force_srate;
mp_audio_set_format(&afs->output, opts->audio_output_format);
if (opts->audio_output_channels.num_chmaps == 1) {
mp_audio_set_channels(&afs->output,
&opts->audio_output_channels.chmaps[0]);
}
}
// filter input format: same as codec's output format:
afs->input = in_format;
// Determine what the filter chain outputs. recreate_audio_filters() also
// needs this for testing whether playback speed is changed by resampling
// or using a special filter.
if (af_init(afs) < 0) {
MP_ERR(mpctx, "Error at audio filter chain pre-init!\n");
goto init_error;
}
if (!mpctx->ao) {
int ao_flags = 0;
bool spdif_fallback = af_fmt_is_spdif(afs->output.format) &&
ao_c->spdif_passthrough;
if (opts->ao_null_fallback && !spdif_fallback)
ao_flags |= AO_INIT_NULL_FALLBACK;
if (opts->audio_stream_silence)
ao_flags |= AO_INIT_STREAM_SILENCE;
if (opts->audio_exclusive)
ao_flags |= AO_INIT_EXCLUSIVE;
if (af_fmt_is_pcm(afs->output.format)) {
if (!opts->audio_output_channels.set ||
opts->audio_output_channels.auto_safe)
ao_flags |= AO_INIT_SAFE_MULTICHANNEL_ONLY;
mp_chmap_sel_list(&afs->output.channels,
opts->audio_output_channels.chmaps,
opts->audio_output_channels.num_chmaps);
}
mp_audio_set_channels(&afs->output, &afs->output.channels);
mpctx->ao = ao_init_best(mpctx->global, ao_flags, mp_wakeup_core_cb,
mpctx, mpctx->encode_lavc_ctx, afs->output.rate,
afs->output.format, afs->output.channels);
ao_c->ao = mpctx->ao;
struct mp_audio fmt = {0};
if (mpctx->ao)
ao_get_format(mpctx->ao, &fmt);
// Verify passthrough format was not changed.
if (mpctx->ao && af_fmt_is_spdif(afs->output.format)) {
if (!mp_audio_config_equals(&afs->output, &fmt)) {
MP_ERR(mpctx, "Passthrough format unsupported.\n");
ao_uninit(mpctx->ao);
mpctx->ao = NULL;
ao_c->ao = NULL;
}
}
if (!mpctx->ao) {
// If spdif was used, try to fallback to PCM.
if (spdif_fallback && ao_c->audio_src) {
MP_VERBOSE(mpctx, "Falling back to PCM output.\n");
ao_c->spdif_passthrough = false;
ao_c->spdif_failed = true;
ao_c->audio_src->try_spdif = false;
if (!audio_init_best_codec(ao_c->audio_src))
goto init_error;
reset_audio_state(mpctx);
ao_c->input_format = (struct mp_audio){0};
mp_wakeup_core(mpctx); // reinit with new format next time
return;
}
MP_ERR(mpctx, "Could not open/initialize audio device -> no sound.\n");
mpctx->error_playing = MPV_ERROR_AO_INIT_FAILED;
goto init_error;
}
mp_audio_buffer_reinit(ao_c->ao_buffer, &fmt);
afs->output = fmt;
if (!mp_audio_config_equals(&afs->output, &afs->filter_output))
afs->initialized = 0;
mpctx->ao_decoder_fmt = talloc(NULL, struct mp_audio);
*mpctx->ao_decoder_fmt = in_format;
MP_INFO(mpctx, "AO: [%s] %s\n", ao_get_name(mpctx->ao),
mp_audio_config_to_str(&fmt));
MP_VERBOSE(mpctx, "AO: Description: %s\n", ao_get_description(mpctx->ao));
update_window_title(mpctx, true);
ao_c->ao_resume_time =
opts->audio_wait_open > 0 ? mp_time_sec() + opts->audio_wait_open : 0;
}
if (recreate_audio_filters(mpctx) < 0)
goto init_error;
update_playback_speed(mpctx);
mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL);
return;
init_error:
uninit_audio_chain(mpctx);
uninit_audio_out(mpctx);
error_on_track(mpctx, track);
}
int init_audio_decoder(struct MPContext *mpctx, struct track *track)
{
assert(!track->d_audio);
if (!track->stream)
goto init_error;
track->d_audio = talloc_zero(NULL, struct dec_audio);
struct dec_audio *d_audio = track->d_audio;
d_audio->log = mp_log_new(d_audio, mpctx->log, "!ad");
d_audio->global = mpctx->global;
d_audio->opts = mpctx->opts;
d_audio->header = track->stream;
d_audio->codec = track->stream->codec;
d_audio->try_spdif = true;
if (!audio_init_best_codec(d_audio))
goto init_error;
return 1;
init_error:
if (track->sink)
lavfi_set_connected(track->sink, false);
track->sink = NULL;
audio_uninit(track->d_audio);
track->d_audio = NULL;
error_on_track(mpctx, track);
return 0;
}
void reinit_audio_chain(struct MPContext *mpctx)
{
reinit_audio_chain_src(mpctx, NULL);
}
void reinit_audio_chain_src(struct MPContext *mpctx, struct lavfi_pad *src)
{
struct track *track = NULL;
struct sh_stream *sh = NULL;
if (!src) {
track = mpctx->current_track[0][STREAM_AUDIO];
if (!track)
return;
sh = track->stream;
if (!sh) {
uninit_audio_out(mpctx);
goto no_audio;
}
}
assert(!mpctx->ao_chain);
mp_notify(mpctx, MPV_EVENT_AUDIO_RECONFIG, NULL);
struct ao_chain *ao_c = talloc_zero(NULL, struct ao_chain);
mpctx->ao_chain = ao_c;
ao_c->log = mpctx->log;
ao_c->af = af_new(mpctx->global);
if (sh)
ao_c->af->replaygain_data = sh->codec->replaygain_data;
ao_c->spdif_passthrough = true;
ao_c->pts = MP_NOPTS_VALUE;
ao_c->ao_buffer = mp_audio_buffer_create(NULL);
ao_c->ao = mpctx->ao;
ao_c->filter_src = src;
if (!ao_c->filter_src) {
ao_c->track = track;
track->ao_c = ao_c;
if (!init_audio_decoder(mpctx, track))
goto init_error;
ao_c->audio_src = track->d_audio;
}
reset_audio_state(mpctx);
if (mpctx->ao) {
struct mp_audio fmt;
ao_get_format(mpctx->ao, &fmt);
mp_audio_buffer_reinit(ao_c->ao_buffer, &fmt);
}
mp_wakeup_core(mpctx);
return;
init_error:
uninit_audio_chain(mpctx);
uninit_audio_out(mpctx);
no_audio:
error_on_track(mpctx, track);
}
// Return pts value corresponding to the end point of audio written to the
// ao so far.
double written_audio_pts(struct MPContext *mpctx)
{
struct ao_chain *ao_c = mpctx->ao_chain;
if (!ao_c)
return MP_NOPTS_VALUE;
struct mp_audio in_format = ao_c->input_format;
if (!mp_audio_config_valid(&in_format) || ao_c->af->initialized < 1)
return MP_NOPTS_VALUE;
// first calculate the end pts of audio that has been output by decoder
double a_pts = ao_c->pts;
if (a_pts == MP_NOPTS_VALUE)
return MP_NOPTS_VALUE;
// Data buffered in audio filters, measured in seconds of "missing" output
double buffered_output = af_calc_delay(ao_c->af);
// Data that was ready for ao but was buffered because ao didn't fully
// accept everything to internal buffers yet
buffered_output += mp_audio_buffer_seconds(ao_c->ao_buffer);
// Filters divide audio length by audio_speed, so multiply by it
// to get the length in original units without speedup or slowdown
a_pts -= buffered_output * mpctx->audio_speed;
return a_pts;
}
// Return pts value corresponding to currently playing audio.
double playing_audio_pts(struct MPContext *mpctx)
{
double pts = written_audio_pts(mpctx);
if (pts == MP_NOPTS_VALUE || !mpctx->ao)
return pts;
return pts - mpctx->audio_speed * ao_get_delay(mpctx->ao);
}
static int write_to_ao(struct MPContext *mpctx, struct mp_audio *data, int flags)
{
if (mpctx->paused)
return 0;
struct ao *ao = mpctx->ao;
struct mp_audio out_format;
ao_get_format(ao, &out_format);
#if HAVE_ENCODING
encode_lavc_set_audio_pts(mpctx->encode_lavc_ctx, playing_audio_pts(mpctx));
#endif
if (data->samples == 0)
return 0;
double real_samplerate = out_format.rate / mpctx->audio_speed;
int played = ao_play(mpctx->ao, data->planes, data->samples, flags);
assert(played <= data->samples);
if (played > 0) {
mpctx->shown_aframes += played;
mpctx->delay += played / real_samplerate;
mpctx->written_audio += played / (double)out_format.rate;
return played;
}
return 0;
}
static void dump_audio_stats(struct MPContext *mpctx)
{
if (!mp_msg_test(mpctx->log, MSGL_STATS))
return;
if (mpctx->audio_status != STATUS_PLAYING || !mpctx->ao || mpctx->paused) {
mpctx->audio_stat_start = 0;
return;
}
double delay = ao_get_delay(mpctx->ao);
if (!mpctx->audio_stat_start) {
mpctx->audio_stat_start = mp_time_us();
mpctx->written_audio = delay;
}
double current_audio = mpctx->written_audio - delay;
double current_time = (mp_time_us() - mpctx->audio_stat_start) / 1e6;
MP_STATS(mpctx, "value %f ao-dev", current_audio - current_time);
}
// Return the number of samples that must be skipped or prepended to reach the
// target audio pts after a seek (for A/V sync or hr-seek).
// Return value (*skip):
// >0: skip this many samples
// =0: don't do anything
// <0: prepend this many samples of silence
// Returns false if PTS is not known yet.
static bool get_sync_samples(struct MPContext *mpctx, int *skip)
{
struct MPOpts *opts = mpctx->opts;
*skip = 0;
if (mpctx->audio_status != STATUS_SYNCING)
return true;
struct mp_audio out_format = {0};
ao_get_format(mpctx->ao, &out_format);
double play_samplerate = out_format.rate / mpctx->audio_speed;
if (!opts->initial_audio_sync) {
mpctx->audio_status = STATUS_FILLING;
return true;
}
double written_pts = written_audio_pts(mpctx);
if (written_pts == MP_NOPTS_VALUE &&
!mp_audio_buffer_samples(mpctx->ao_chain->ao_buffer))
return false; // no audio read yet
bool sync_to_video = mpctx->vo_chain && !mpctx->vo_chain->is_coverart &&
mpctx->video_status != STATUS_EOF;
double sync_pts = MP_NOPTS_VALUE;
if (sync_to_video) {
if (mpctx->video_status < STATUS_READY)
return false; // wait until we know a video PTS
if (mpctx->video_pts != MP_NOPTS_VALUE)
sync_pts = mpctx->video_pts - opts->audio_delay;
} else if (mpctx->hrseek_active) {
sync_pts = mpctx->hrseek_pts;
} else {
// If audio-only is enabled mid-stream during playback, sync accordingly.
sync_pts = mpctx->playback_pts;
}
if (sync_pts == MP_NOPTS_VALUE) {
mpctx->audio_status = STATUS_FILLING;
return true; // syncing disabled
}
double ptsdiff = written_pts - sync_pts;
// Missing timestamp, or PTS reset, or just broken.
if (written_pts == MP_NOPTS_VALUE) {
MP_WARN(mpctx, "Failed audio resync.\n");
mpctx->audio_status = STATUS_FILLING;
return true;
}
ptsdiff = MPCLAMP(ptsdiff, -3600, 3600);
// Heuristic: if audio is "too far" ahead, and one of them is a separate
// track, allow a refresh seek to the correct position to fix it.
if (ptsdiff > 0.2 && mpctx->audio_allow_second_chance_seek && sync_to_video) {
struct ao_chain *ao_c = mpctx->ao_chain;
if (ao_c && ao_c->track && mpctx->vo_chain && mpctx->vo_chain->track &&
ao_c->track->demuxer != mpctx->vo_chain->track->demuxer)
{
struct track *track = ao_c->track;
double pts = mpctx->video_pts;
if (pts != MP_NOPTS_VALUE)
pts += get_track_seek_offset(mpctx, track);
// (disable it first to make it take any effect)
demuxer_select_track(track->demuxer, track->stream, pts, false);
demuxer_select_track(track->demuxer, track->stream, pts, true);
reset_audio_state(mpctx);
MP_VERBOSE(mpctx, "retrying audio seek\n");
return false;
}
}
mpctx->audio_allow_second_chance_seek = false;
int align = af_format_sample_alignment(out_format.format);
*skip = (int)(-ptsdiff * play_samplerate) / align * align;
return true;
}
static bool copy_output(struct MPContext *mpctx, struct mp_audio_buffer *outbuf,
int minsamples, double endpts, bool eof, bool *seteof)
{
struct af_stream *afs = mpctx->ao_chain->af;
while (mp_audio_buffer_samples(outbuf) < minsamples) {
if (af_output_frame(afs, eof) < 0)
return true; // error, stop doing stuff
int cursamples = mp_audio_buffer_samples(outbuf);
int maxsamples = INT_MAX;
if (endpts != MP_NOPTS_VALUE) {
double rate = afs->output.rate / mpctx->audio_speed;
double curpts = written_audio_pts(mpctx);
if (curpts != MP_NOPTS_VALUE)
maxsamples = (endpts - curpts - mpctx->opts->audio_delay) * rate;
}
struct mp_audio *mpa = af_read_output_frame(afs);
if (!mpa)
return false; // out of data
if (cursamples + mpa->samples > maxsamples) {
if (cursamples < maxsamples) {
struct mp_audio pre = *mpa;
pre.samples = maxsamples - cursamples;
mp_audio_buffer_append(outbuf, &pre);
mp_audio_skip_samples(mpa, pre.samples);
}
af_unread_output_frame(afs, mpa);
*seteof = true;
return true;
}
mp_audio_buffer_append(outbuf, mpa);
talloc_free(mpa);
}
return true;
}
static int decode_new_frame(struct ao_chain *ao_c)
{
if (ao_c->input_frame)
return AD_OK;
int res = DATA_EOF;
if (ao_c->filter_src) {
res = lavfi_request_frame_a(ao_c->filter_src, &ao_c->input_frame);
} else if (ao_c->audio_src) {
audio_work(ao_c->audio_src);
res = audio_get_frame(ao_c->audio_src, &ao_c->input_frame);
}
switch (res) {
case DATA_OK: return AD_OK;
case DATA_WAIT: return AD_WAIT;
case DATA_AGAIN: return AD_NO_PROGRESS;
case DATA_EOF: return AD_EOF;
default: abort();
}
}
/* Try to get at least minsamples decoded+filtered samples in outbuf
* (total length including possible existing data).
* Return 0 on success, or negative AD_* error code.
* In the former case outbuf has at least minsamples buffered on return.
* In case of EOF/error it might or might not be. */
static int filter_audio(struct MPContext *mpctx, struct mp_audio_buffer *outbuf,
int minsamples)
{
struct ao_chain *ao_c = mpctx->ao_chain;
struct af_stream *afs = ao_c->af;
if (afs->initialized < 1)
return AD_ERR;
MP_STATS(ao_c, "start audio");
double endpts = get_play_end_pts(mpctx);
bool eof = false;
int res;
while (1) {
res = 0;
if (copy_output(mpctx, outbuf, minsamples, endpts, false, &eof))
break;
res = decode_new_frame(ao_c);
if (res == AD_NO_PROGRESS || res == AD_WAIT)
break;
if (res < 0) {
// drain filters first (especially for true EOF case)
copy_output(mpctx, outbuf, minsamples, endpts, true, &eof);
break;
}
// On format change, make sure to drain the filter chain.
if (!mp_audio_config_equals(&afs->input, ao_c->input_frame)) {
copy_output(mpctx, outbuf, minsamples, endpts, true, &eof);
res = AD_NEW_FMT;
break;
}
struct mp_audio *mpa = ao_c->input_frame;
ao_c->input_frame = NULL;
if (mpa->pts == MP_NOPTS_VALUE) {
ao_c->pts = MP_NOPTS_VALUE;
} else {
// Attempt to detect jumps in PTS. Even for the lowest sample rates
// and with worst container rounded timestamp, this should be a
// margin more than enough.
double desync = mpa->pts - ao_c->pts;
if (ao_c->pts != MP_NOPTS_VALUE && fabs(desync) > 0.1) {
MP_WARN(ao_c, "Invalid audio PTS: %f -> %f\n",
ao_c->pts, mpa->pts);
if (desync >= 5)
ao_c->pts_reset = true;
}
ao_c->pts = mpa->pts + mpa->samples / (double)mpa->rate;
}
if (af_filter_frame(afs, mpa) < 0)
return AD_ERR;
}
if (res == 0 && mp_audio_buffer_samples(outbuf) < minsamples && eof)
res = AD_EOF;
MP_STATS(ao_c, "end audio");
return res;
}
void reload_audio_output(struct MPContext *mpctx)
{
if (!mpctx->ao)
return;
ao_reset(mpctx->ao);
uninit_audio_out(mpctx);
reinit_audio_filters(mpctx); // mostly to issue refresh seek
// Whether we can use spdif might have changed. If we failed to use spdif
// in the previous initialization, try it with spdif again (we'll fallback
// to PCM again if necessary).
struct ao_chain *ao_c = mpctx->ao_chain;
if (ao_c) {
struct dec_audio *d_audio = ao_c->audio_src;
if (d_audio && ao_c->spdif_failed) {
ao_c->spdif_passthrough = true;
ao_c->spdif_failed = false;
d_audio->try_spdif = true;
ao_c->af->initialized = 0;
if (!audio_init_best_codec(d_audio)) {
MP_ERR(mpctx, "Error reinitializing audio.\n");
error_on_track(mpctx, ao_c->track);
}
}
}
mp_wakeup_core(mpctx);
}
void fill_audio_out_buffers(struct MPContext *mpctx)
{
struct MPOpts *opts = mpctx->opts;
bool was_eof = mpctx->audio_status == STATUS_EOF;
dump_audio_stats(mpctx);
if (mpctx->ao && ao_query_and_reset_events(mpctx->ao, AO_EVENT_RELOAD))
reload_audio_output(mpctx);
struct ao_chain *ao_c = mpctx->ao_chain;
if (!ao_c)
return;
if (ao_c->af->initialized < 1 || !mpctx->ao) {
// Probe the initial audio format. Returns AD_OK (and does nothing) if
// the format is already known.
int r = decode_new_frame(mpctx->ao_chain);
if (r == AD_WAIT)
return; // continue later when new data is available
if (r == AD_EOF) {
mpctx->audio_status = STATUS_EOF;
return;
}
reinit_audio_filters_and_output(mpctx);
mp_wakeup_core(mpctx);
return; // try again next iteration
}
if (ao_c->ao_resume_time > mp_time_sec()) {
double remaining = ao_c->ao_resume_time - mp_time_sec();
mp_set_timeout(mpctx, remaining);
return;
}
if (mpctx->vo_chain && ao_c->pts_reset) {
MP_VERBOSE(mpctx, "Reset playback due to audio timestamp reset.\n");
reset_playback_state(mpctx);
mp_wakeup_core(mpctx);
return;
}
struct mp_audio out_format = {0};
ao_get_format(mpctx->ao, &out_format);
double play_samplerate = out_format.rate / mpctx->audio_speed;
int align = af_format_sample_alignment(out_format.format);
// If audio is infinitely fast, somehow try keeping approximate A/V sync.
if (mpctx->audio_status == STATUS_PLAYING && ao_untimed(mpctx->ao) &&
mpctx->video_status != STATUS_EOF && mpctx->delay > 0)
return;
int playsize = ao_get_space(mpctx->ao);
int skip = 0;
bool sync_known = get_sync_samples(mpctx, &skip);
if (skip > 0) {
playsize = MPMIN(skip + 1, MPMAX(playsize, 2500)); // buffer extra data
} else if (skip < 0) {
playsize = MPMAX(1, playsize + skip); // silence will be prepended
}
int skip_duplicate = 0; // >0: skip, <0: duplicate
double drop_limit =
(opts->sync_max_audio_change + opts->sync_max_video_change) / 100;
if (mpctx->display_sync_active && opts->video_sync == VS_DISP_ADROP &&
fabs(mpctx->last_av_difference) >= opts->sync_audio_drop_size &&
mpctx->audio_drop_throttle < drop_limit &&
mpctx->audio_status == STATUS_PLAYING)
{
int samples = ceil(opts->sync_audio_drop_size * play_samplerate);
samples = (samples + align / 2) / align * align;
skip_duplicate = mpctx->last_av_difference >= 0 ? -samples : samples;
playsize = MPMAX(playsize, samples);
mpctx->audio_drop_throttle += 1 - drop_limit - samples / play_samplerate;
}
playsize = playsize / align * align;
int status = mpctx->audio_status >= STATUS_DRAINING ? AD_EOF : AD_OK;
bool working = false;
if (playsize > mp_audio_buffer_samples(ao_c->ao_buffer)) {
status = filter_audio(mpctx, ao_c->ao_buffer, playsize);
if (status == AD_WAIT)
return;
if (status == AD_NO_PROGRESS) {
mp_wakeup_core(mpctx);
return;
}
if (status == AD_NEW_FMT) {
/* The format change isn't handled too gracefully. A more precise
* implementation would require draining buffered old-format audio
* while displaying video, then doing the output format switch.
*/
if (mpctx->opts->gapless_audio < 1)
uninit_audio_out(mpctx);
reinit_audio_filters_and_output(mpctx);
mp_wakeup_core(mpctx);
return; // retry on next iteration
}
if (status == AD_ERR)
mp_wakeup_core(mpctx);
working = true;
}
// If EOF was reached before, but now something can be decoded, try to
// restart audio properly. This helps with video files where audio starts
// later. Retrying is needed to get the correct sync PTS.
if (mpctx->audio_status >= STATUS_DRAINING &&
mp_audio_buffer_samples(ao_c->ao_buffer) > 0)
{
mpctx->audio_status = STATUS_SYNCING;
return; // retry on next iteration
}
bool end_sync = false;
if (skip >= 0) {
int max = mp_audio_buffer_samples(ao_c->ao_buffer);
mp_audio_buffer_skip(ao_c->ao_buffer, MPMIN(skip, max));
// If something is left, we definitely reached the target time.
end_sync |= sync_known && skip < max;
working |= skip > 0;
} else if (skip < 0) {
if (-skip > playsize) { // heuristic against making the buffer too large
ao_reset(mpctx->ao); // some AOs repeat data on underflow
mpctx->audio_status = STATUS_DRAINING;
mpctx->delay = 0;
return;
}
mp_audio_buffer_prepend_silence(ao_c->ao_buffer, -skip);
end_sync = true;
}
if (skip_duplicate) {
int max = mp_audio_buffer_samples(ao_c->ao_buffer);
if (abs(skip_duplicate) > max)
skip_duplicate = skip_duplicate >= 0 ? max : -max;
mpctx->last_av_difference += skip_duplicate / play_samplerate;
if (skip_duplicate >= 0) {
mp_audio_buffer_skip(ao_c->ao_buffer, skip_duplicate);
MP_STATS(mpctx, "drop-audio");
} else {
mp_audio_buffer_duplicate(ao_c->ao_buffer, -skip_duplicate);
MP_STATS(mpctx, "duplicate-audio");
}
MP_VERBOSE(mpctx, "audio skip_duplicate=%d\n", skip_duplicate);
}
if (mpctx->audio_status == STATUS_SYNCING) {
if (end_sync)
mpctx->audio_status = STATUS_FILLING;
if (status != AD_OK && !mp_audio_buffer_samples(ao_c->ao_buffer))
mpctx->audio_status = STATUS_EOF;
if (working || end_sync)
mp_wakeup_core(mpctx);
return; // continue on next iteration
}
assert(mpctx->audio_status >= STATUS_FILLING);
// We already have as much data as the audio device wants, and can start
// writing it any time.
if (mpctx->audio_status == STATUS_FILLING)
mpctx->audio_status = STATUS_READY;
// Even if we're done decoding and syncing, let video start first - this is
// required, because sending audio to the AO already starts playback.
if (mpctx->audio_status == STATUS_READY) {
if (mpctx->vo_chain && !mpctx->vo_chain->is_coverart &&
mpctx->video_status <= STATUS_READY)
return;
MP_VERBOSE(mpctx, "starting audio playback\n");
}
bool audio_eof = status == AD_EOF;
bool partial_fill = false;
int playflags = 0;
if (playsize > mp_audio_buffer_samples(ao_c->ao_buffer)) {
playsize = mp_audio_buffer_samples(ao_c->ao_buffer);
partial_fill = true;
}
audio_eof &= partial_fill;
// With gapless audio, delay this to ao_uninit. There must be only
// 1 final chunk, and that is handled when calling ao_uninit().
if (audio_eof && !opts->gapless_audio)
playflags |= AOPLAY_FINAL_CHUNK;
struct mp_audio data;
mp_audio_buffer_peek(ao_c->ao_buffer, &data);
if (audio_eof || data.samples >= align)
data.samples = data.samples / align * align;
data.samples = MPMIN(data.samples, mpctx->paused ? 0 : playsize);
int played = write_to_ao(mpctx, &data, playflags);
assert(played >= 0 && played <= data.samples);
mp_audio_buffer_skip(ao_c->ao_buffer, played);
mpctx->audio_drop_throttle =
MPMAX(0, mpctx->audio_drop_throttle - played / play_samplerate);
dump_audio_stats(mpctx);
mpctx->audio_status = STATUS_PLAYING;
if (audio_eof && !playsize) {
mpctx->audio_status = STATUS_DRAINING;
// Wait until the AO has played all queued data. In the gapless case,
// we trigger EOF immediately, and let it play asynchronously.
if (ao_eof_reached(mpctx->ao) || opts->gapless_audio) {
mpctx->audio_status = STATUS_EOF;
if (!was_eof)
mp_wakeup_core(mpctx);
}
}
}
// Drop data queued for output, or which the AO is currently outputting.
void clear_audio_output_buffers(struct MPContext *mpctx)
{
if (mpctx->ao)
ao_reset(mpctx->ao);
}