1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-22 06:42:03 +00:00
mpv/sub/img_convert.c
Marcin Kurczewski f43017bfe9 Update license headers
Signed-off-by: wm4 <wm4@nowhere>
2015-04-13 12:10:01 +02:00

408 lines
13 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include "talloc.h"
#include "common/common.h"
#include "img_convert.h"
#include "osd.h"
#include "video/img_format.h"
#include "video/mp_image.h"
#include "video/sws_utils.h"
struct osd_conv_cache {
struct sub_bitmap part[MP_SUB_BB_LIST_MAX];
struct sub_bitmap *parts;
void *scratch;
};
struct osd_conv_cache *osd_conv_cache_new(void)
{
return talloc_zero(NULL, struct osd_conv_cache);
}
static void rgba_to_premultiplied_rgba(uint32_t *colors, size_t count)
{
for (int n = 0; n < count; n++) {
uint32_t c = colors[n];
unsigned b = c & 0xFF;
unsigned g = (c >> 8) & 0xFF;
unsigned r = (c >> 16) & 0xFF;
unsigned a = (c >> 24) & 0xFF;
b = b * a / 255;
g = g * a / 255;
r = r * a / 255;
colors[n] = b | (g << 8) | (r << 16) | (a << 24);
}
}
bool osd_conv_idx_to_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_INDEXED)
return false;
imgs->format = SUBBITMAP_RGBA;
talloc_free(c->parts);
imgs->parts = c->parts = talloc_array(c, struct sub_bitmap, src.num_parts);
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *d = &imgs->parts[n];
struct sub_bitmap *s = &src.parts[n];
struct osd_bmp_indexed sb = *(struct osd_bmp_indexed *)s->bitmap;
rgba_to_premultiplied_rgba(sb.palette, 256);
*d = *s;
struct mp_image *image = mp_image_alloc(IMGFMT_BGRA, s->w, s->h);
talloc_steal(c->parts, image);
if (!image) {
// on OOM, skip the region by making it 0 sized
d->w = d->h = d->dw = d->dh = 0;
continue;
}
d->stride = image->stride[0];
d->bitmap = image->planes[0];
for (int y = 0; y < s->h; y++) {
uint8_t *inbmp = sb.bitmap + y * s->stride;
uint32_t *outbmp = (uint32_t*)((uint8_t*)d->bitmap + y * d->stride);
for (int x = 0; x < s->w; x++)
*outbmp++ = sb.palette[*inbmp++];
}
}
return true;
}
bool osd_conv_blur_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs,
double gblur)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_RGBA)
return false;
talloc_free(c->parts);
imgs->parts = c->parts = talloc_array(c, struct sub_bitmap, src.num_parts);
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *d = &imgs->parts[n];
struct sub_bitmap *s = &src.parts[n];
// add a transparent padding border to reduce artifacts
int pad = 5;
struct mp_image *temp = mp_image_alloc(IMGFMT_BGRA, s->w + pad * 2,
s->h + pad * 2);
if (!temp)
continue; // on OOM, skip region
memset_pic(temp->planes[0], 0, temp->w * 4, temp->h, temp->stride[0]);
uint8_t *p0 = temp->planes[0] + pad * 4 + pad * temp->stride[0];
memcpy_pic(p0, s->bitmap, s->w * 4, s->h, temp->stride[0], s->stride);
double sx = (double)s->dw / s->w;
double sy = (double)s->dh / s->h;
d->x = s->x - pad * sx;
d->y = s->y - pad * sy;
d->w = d->dw = s->dw + pad * 2 * sx;
d->h = d->dh = s->dh + pad * 2 * sy;
struct mp_image *image = mp_image_alloc(IMGFMT_BGRA, d->w, d->h);
talloc_steal(c->parts, image);
if (image) {
d->stride = image->stride[0];
d->bitmap = image->planes[0];
mp_image_sw_blur_scale(image, temp, gblur);
} else {
// on OOM, skip region
*d = *s;
}
talloc_free(temp);
}
return true;
}
// If RGBA parts need scaling, scale them.
bool osd_scale_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_RGBA)
return false;
bool need_scale = false;
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *sb = &src.parts[n];
if (sb->w != sb->dw || sb->h != sb->dh)
need_scale = true;
}
if (!need_scale)
return false;
talloc_free(c->parts);
imgs->parts = c->parts = talloc_array(c, struct sub_bitmap, src.num_parts);
// Note: we scale all parts, since most likely all need scaling anyway, and
// to get a proper copy of all data in the imgs list.
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *d = &imgs->parts[n];
struct sub_bitmap *s = &src.parts[n];
struct mp_image src_image = {0};
mp_image_setfmt(&src_image, IMGFMT_BGRA);
mp_image_set_size(&src_image, s->w, s->h);
src_image.planes[0] = s->bitmap;
src_image.stride[0] = s->stride;
d->x = s->x;
d->y = s->y;
d->w = d->dw = s->dw;
d->h = d->dh = s->dh;
struct mp_image *image = mp_image_alloc(IMGFMT_BGRA, d->w, d->h);
talloc_steal(c->parts, image);
if (image) {
d->stride = image->stride[0];
d->bitmap = image->planes[0];
mp_image_swscale(image, &src_image, mp_sws_fast_flags);
} else {
// on OOM, skip the region; just don't scale it
*d = *s;
}
}
return true;
}
static void rgba_to_gray(uint32_t *colors, size_t count)
{
for (int n = 0; n < count; n++) {
uint32_t c = colors[n];
int b = c & 0xFF;
int g = (c >> 8) & 0xFF;
int r = (c >> 16) & 0xFF;
int a = (c >> 24) & 0xFF;
r = g = b = (r + g + b) / 3;
colors[n] = b | (g << 8) | (r << 16) | (a << 24);
}
}
bool osd_conv_idx_to_gray(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_INDEXED)
return false;
talloc_free(c->parts);
imgs->parts = c->parts = talloc_array(c, struct sub_bitmap, src.num_parts);
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *d = &imgs->parts[n];
struct sub_bitmap *s = &src.parts[n];
struct osd_bmp_indexed sb = *(struct osd_bmp_indexed *)s->bitmap;
rgba_to_gray(sb.palette, 256);
*d = *s;
d->bitmap = talloc_memdup(c->parts, &sb, sizeof(sb));
}
return true;
}
static void draw_ass_rgba(unsigned char *src, int src_w, int src_h,
int src_stride, unsigned char *dst, size_t dst_stride,
int dst_x, int dst_y, uint32_t color)
{
const unsigned int r = (color >> 24) & 0xff;
const unsigned int g = (color >> 16) & 0xff;
const unsigned int b = (color >> 8) & 0xff;
const unsigned int a = 0xff - (color & 0xff);
dst += dst_y * dst_stride + dst_x * 4;
for (int y = 0; y < src_h; y++, dst += dst_stride, src += src_stride) {
uint32_t *dstrow = (uint32_t *) dst;
for (int x = 0; x < src_w; x++) {
const unsigned int v = src[x];
int rr = (r * a * v);
int gg = (g * a * v);
int bb = (b * a * v);
int aa = a * v;
uint32_t dstpix = dstrow[x];
unsigned int dstb = dstpix & 0xFF;
unsigned int dstg = (dstpix >> 8) & 0xFF;
unsigned int dstr = (dstpix >> 16) & 0xFF;
unsigned int dsta = (dstpix >> 24) & 0xFF;
dstb = (bb + dstb * (255 * 255 - aa)) / (255 * 255);
dstg = (gg + dstg * (255 * 255 - aa)) / (255 * 255);
dstr = (rr + dstr * (255 * 255 - aa)) / (255 * 255);
dsta = (aa * 255 + dsta * (255 * 255 - aa)) / (255 * 255);
dstrow[x] = dstb | (dstg << 8) | (dstr << 16) | (dsta << 24);
}
}
}
bool osd_conv_ass_to_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_LIBASS)
return false;
assert(!src.scaled); // ASS is always unscaled
struct mp_rect bb_list[MP_SUB_BB_LIST_MAX];
int num_bb = mp_get_sub_bb_list(&src, bb_list, MP_SUB_BB_LIST_MAX);
imgs->format = SUBBITMAP_RGBA;
imgs->parts = c->part;
imgs->num_parts = num_bb;
size_t newsize = 0;
for (int n = 0; n < num_bb; n++) {
struct mp_rect bb = bb_list[n];
int w = bb.x1 - bb.x0;
int h = bb.y1 - bb.y0;
int stride = w * 4;
newsize += h * stride;
}
if (talloc_get_size(c->scratch) < newsize) {
talloc_free(c->scratch);
c->scratch = talloc_array(c, uint8_t, newsize);
}
uint8_t *data = c->scratch;
for (int n = 0; n < num_bb; n++) {
struct mp_rect bb = bb_list[n];
struct sub_bitmap *bmp = &c->part[n];
bmp->x = bb.x0;
bmp->y = bb.y0;
bmp->w = bmp->dw = bb.x1 - bb.x0;
bmp->h = bmp->dh = bb.y1 - bb.y0;
bmp->stride = bmp->w * 4;
bmp->bitmap = data;
data += bmp->h * bmp->stride;
memset_pic(bmp->bitmap, 0, bmp->w * 4, bmp->h, bmp->stride);
for (int p = 0; p < src.num_parts; p++) {
struct sub_bitmap *s = &src.parts[p];
// Assume mp_get_sub_bb_list() never splits sub bitmaps
// So we don't clip/adjust the size of the sub bitmap
if (s->x > bb.x1 || s->x + s->w < bb.x0 ||
s->y > bb.y1 || s->y + s->h < bb.y0)
continue;
draw_ass_rgba(s->bitmap, s->w, s->h, s->stride,
bmp->bitmap, bmp->stride,
s->x - bb.x0, s->y - bb.y0,
s->libass.color);
}
}
return true;
}
bool mp_sub_bitmaps_bb(struct sub_bitmaps *imgs, struct mp_rect *out_bb)
{
struct mp_rect bb = {INT_MAX, INT_MAX, INT_MIN, INT_MIN};
for (int n = 0; n < imgs->num_parts; n++) {
struct sub_bitmap *p = &imgs->parts[n];
bb.x0 = FFMIN(bb.x0, p->x);
bb.y0 = FFMIN(bb.y0, p->y);
bb.x1 = FFMAX(bb.x1, p->x + p->dw);
bb.y1 = FFMAX(bb.y1, p->y + p->dh);
}
// avoid degenerate bounding box if empty
bb.x0 = FFMIN(bb.x0, bb.x1);
bb.y0 = FFMIN(bb.y0, bb.y1);
*out_bb = bb;
return bb.x0 < bb.x1 && bb.y0 < bb.y1;
}
// Merge bounding rectangles if they're closer than the given amount of pixels.
// Avoids having too many rectangles due to spacing between letter.
#define MERGE_RC_PIXELS 50
static void remove_intersecting_rcs(struct mp_rect *list, int *count)
{
int M = MERGE_RC_PIXELS;
bool changed = true;
while (changed) {
changed = false;
for (int a = 0; a < *count; a++) {
struct mp_rect *rc_a = &list[a];
for (int b = *count - 1; b > a; b--) {
struct mp_rect *rc_b = &list[b];
if (rc_a->x0 - M <= rc_b->x1 && rc_a->x1 + M >= rc_b->x0 &&
rc_a->y0 - M <= rc_b->y1 && rc_a->y1 + M >= rc_b->y0)
{
mp_rect_union(rc_a, rc_b);
MP_TARRAY_REMOVE_AT(list, *count, b);
changed = true;
}
}
}
}
}
// Cluster the given subrectangles into a small numbers of bounding rectangles,
// and store them into list. E.g. when subtitles and toptitles are visible at
// the same time, there should be two bounding boxes, so that the video between
// the text is left untouched (need to resample less pixels -> faster).
// Returns number of rectangles added to out_rc_list (<= rc_list_count)
// NOTE: some callers assume that sub bitmaps are never split or partially
// covered by returned rectangles.
int mp_get_sub_bb_list(struct sub_bitmaps *sbs, struct mp_rect *out_rc_list,
int rc_list_count)
{
int M = MERGE_RC_PIXELS;
int num_rc = 0;
for (int n = 0; n < sbs->num_parts; n++) {
struct sub_bitmap *sb = &sbs->parts[n];
struct mp_rect bb = {sb->x, sb->y, sb->x + sb->dw, sb->y + sb->dh};
bool intersects = false;
for (int r = 0; r < num_rc; r++) {
struct mp_rect *rc = &out_rc_list[r];
if ((bb.x0 - M <= rc->x1 && bb.x1 + M >= rc->x0 &&
bb.y0 - M <= rc->y1 && bb.y1 + M >= rc->y0) ||
num_rc == rc_list_count)
{
mp_rect_union(rc, &bb);
intersects = true;
break;
}
}
if (!intersects) {
out_rc_list[num_rc++] = bb;
remove_intersecting_rcs(out_rc_list, &num_rc);
}
}
remove_intersecting_rcs(out_rc_list, &num_rc);
return num_rc;
}