mirror of https://github.com/mpv-player/mpv
997 lines
28 KiB
C
997 lines
28 KiB
C
|
|
/*
|
|
Written by Mark Podlipec <podlipec@ici.net>.
|
|
|
|
Most of this code comes from a GSM 06.10 library by
|
|
Jutta Degener and Carsten Bormann, available via
|
|
<http://www.pobox.com/~jutta/toast.html>.
|
|
|
|
That library is distributed with the following copyright:
|
|
|
|
Copyright 1992 by Jutta Degener and Carsten Bormann,
|
|
Technische Universitaet Berlin
|
|
|
|
Any use of this software is permitted provided that this notice is not
|
|
removed and that neither the authors nor the Technische Universitaet Berlin
|
|
are deemed to have made any representations as to the suitability of this
|
|
software for any purpose nor are held responsible for any defects of
|
|
this software. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
|
|
As a matter of courtesy, the authors request to be informed about uses
|
|
this software has found, about bugs in this software, and about any
|
|
improvements that may be of general interest.
|
|
|
|
Berlin, 15.09.1992
|
|
Jutta Degener
|
|
Carsten Bormann
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h> /* POD optional */
|
|
#include "xa_gsm_int.h"
|
|
|
|
//void XA_MSGSM_Decoder();
|
|
static void GSM_Decode();
|
|
static void Gsm_RPE_Decoding();
|
|
|
|
//static short gsm_buf[320];
|
|
static XA_GSM_STATE gsm_state;
|
|
|
|
unsigned char xa_sign_2_ulaw[256];
|
|
|
|
unsigned char XA_Signed_To_uLaw(long ch)
|
|
{
|
|
long mask;
|
|
if (ch < 0) { ch = -ch; mask = 0x7f; }
|
|
else { mask = 0xff; }
|
|
if (ch < 32) { ch = 0xF0 | (15 - (ch / 2)); }
|
|
else if (ch < 96) { ch = 0xE0 | (15 - (ch - 32) / 4); }
|
|
else if (ch < 224) { ch = 0xD0 | (15 - (ch - 96) / 8); }
|
|
else if (ch < 480) { ch = 0xC0 | (15 - (ch - 224) / 16); }
|
|
else if (ch < 992) { ch = 0xB0 | (15 - (ch - 480) / 32); }
|
|
else if (ch < 2016) { ch = 0xA0 | (15 - (ch - 992) / 64); }
|
|
else if (ch < 4064) { ch = 0x90 | (15 - (ch - 2016) / 128); }
|
|
else if (ch < 8160) { ch = 0x80 | (15 - (ch - 4064) / 256); }
|
|
else { ch = 0x80; }
|
|
return (mask & ch);
|
|
}
|
|
|
|
void Gen_Signed_2_uLaw()
|
|
{
|
|
unsigned long i;
|
|
for(i=0;i<256;i++)
|
|
{ unsigned char d;
|
|
char ch = i;
|
|
long chr = ch;
|
|
d = XA_Signed_To_uLaw(chr * 16);
|
|
xa_sign_2_ulaw[i] = d;
|
|
}
|
|
}
|
|
|
|
|
|
void GSM_Init()
|
|
{
|
|
memset((char *)(&gsm_state), 0, sizeof(XA_GSM_STATE));
|
|
gsm_state.nrp = 40;
|
|
Gen_Signed_2_uLaw();
|
|
}
|
|
|
|
|
|
/* Table 4.3b Quantization levels of the LTP gain quantizer
|
|
*/
|
|
/* bc 0 1 2 3 */
|
|
static word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
|
|
|
|
/* Table 4.6 Normalized direct mantissa used to compute xM/xmax
|
|
*/
|
|
/* i 0 1 2 3 4 5 6 7 */
|
|
static word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
|
|
|
|
|
|
|
|
/****************/
|
|
#define saturate(x) \
|
|
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
|
|
|
|
/****************/
|
|
static word gsm_sub (a,b)
|
|
word a;
|
|
word b;
|
|
{
|
|
longword diff = (longword)a - (longword)b;
|
|
return saturate(diff);
|
|
}
|
|
|
|
/****************/
|
|
static word gsm_asr (a,n)
|
|
word a;
|
|
int n;
|
|
{
|
|
if (n >= 16) return -(a < 0);
|
|
if (n <= -16) return 0;
|
|
if (n < 0) return a << -n;
|
|
|
|
# ifdef SASR
|
|
return a >> n;
|
|
# else
|
|
if (a >= 0) return a >> n;
|
|
else return -(word)( -(uword)a >> n );
|
|
# endif
|
|
}
|
|
|
|
/****************/
|
|
static word gsm_asl (a,n)
|
|
word a;
|
|
int n;
|
|
{
|
|
if (n >= 16) return 0;
|
|
if (n <= -16) return -(a < 0);
|
|
if (n < 0) return gsm_asr(a, -n);
|
|
return a << n;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
|
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
|
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
*/
|
|
|
|
/**** 4.2.17 */
|
|
static void RPE_grid_positioning(Mc,xMp,ep)
|
|
word Mc; /* grid position IN */
|
|
register word * xMp; /* [0..12] IN */
|
|
register word * ep; /* [0..39] OUT */
|
|
/*
|
|
* This procedure computes the reconstructed long term residual signal
|
|
* ep[0..39] for the LTP analysis filter. The inputs are the Mc
|
|
* which is the grid position selection and the xMp[0..12] decoded
|
|
* RPE samples which are upsampled by a factor of 3 by inserting zero
|
|
* values.
|
|
*/
|
|
{
|
|
int i = 13;
|
|
|
|
assert(0 <= Mc && Mc <= 3);
|
|
|
|
switch (Mc) {
|
|
case 3: *ep++ = 0;
|
|
case 2: do {
|
|
*ep++ = 0;
|
|
case 1: *ep++ = 0;
|
|
case 0: *ep++ = *xMp++;
|
|
} while (--i);
|
|
}
|
|
while (++Mc < 4) *ep++ = 0;
|
|
|
|
/*
|
|
|
|
int i, k;
|
|
for (k = 0; k <= 39; k++) ep[k] = 0;
|
|
for (i = 0; i <= 12; i++) {
|
|
ep[ Mc + (3*i) ] = xMp[i];
|
|
}
|
|
*/
|
|
}
|
|
|
|
|
|
/**** 4.2.16 */
|
|
static void APCM_inverse_quantization (xMc,mant,exp,xMp)
|
|
register word * xMc; /* [0..12] IN */
|
|
word mant;
|
|
word exp;
|
|
register word * xMp; /* [0..12] OUT */
|
|
/*
|
|
* This part is for decoding the RPE sequence of coded xMc[0..12]
|
|
* samples to obtain the xMp[0..12] array. Table 4.6 is used to get
|
|
* the mantissa of xmaxc (FAC[0..7]).
|
|
*/
|
|
{
|
|
int i;
|
|
word temp, temp1, temp2, temp3;
|
|
longword ltmp;
|
|
|
|
assert( mant >= 0 && mant <= 7 );
|
|
|
|
temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
|
|
temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
|
|
temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
|
|
|
|
for (i = 13; i--;) {
|
|
|
|
assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
|
|
|
|
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
|
|
temp = (*xMc++ << 1) - 7; /* restore sign */
|
|
assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
|
|
|
|
temp <<= 12; /* 16 bit signed */
|
|
temp = GSM_MULT_R( temp1, temp );
|
|
temp = GSM_ADD( temp, temp3 );
|
|
*xMp++ = gsm_asr( temp, temp2 );
|
|
}
|
|
}
|
|
|
|
|
|
/**** 4.12.15 */
|
|
static void APCM_quantization_xmaxc_to_exp_mant (xmaxc,exp_out,mant_out)
|
|
word xmaxc; /* IN */
|
|
word * exp_out; /* OUT */
|
|
word * mant_out; /* OUT */
|
|
{
|
|
word exp, mant;
|
|
|
|
/* Compute exponent and mantissa of the decoded version of xmaxc
|
|
*/
|
|
|
|
exp = 0;
|
|
if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
|
|
mant = xmaxc - (exp << 3);
|
|
|
|
if (mant == 0) {
|
|
exp = -4;
|
|
mant = 7;
|
|
}
|
|
else {
|
|
while (mant <= 7) {
|
|
mant = mant << 1 | 1;
|
|
exp--;
|
|
}
|
|
mant -= 8;
|
|
}
|
|
|
|
assert( exp >= -4 && exp <= 6 );
|
|
assert( mant >= 0 && mant <= 7 );
|
|
|
|
*exp_out = exp;
|
|
*mant_out = mant;
|
|
}
|
|
|
|
static void Gsm_RPE_Decoding (S, xmaxcr, Mcr, xMcr, erp)
|
|
XA_GSM_STATE * S;
|
|
word xmaxcr;
|
|
word Mcr;
|
|
word * xMcr; /* [0..12], 3 bits IN */
|
|
word * erp; /* [0..39] OUT */
|
|
|
|
{
|
|
word exp, mant;
|
|
word xMp[ 13 ];
|
|
|
|
APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
|
|
APCM_inverse_quantization( xMcr, mant, exp, xMp );
|
|
RPE_grid_positioning( Mcr, xMp, erp );
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
|
|
*/
|
|
|
|
static void Postprocessing(S,s)
|
|
XA_GSM_STATE * S;
|
|
register word * s;
|
|
{
|
|
register int k;
|
|
register word msr = S->msr;
|
|
register longword ltmp; /* for GSM_ADD */
|
|
register word tmp;
|
|
|
|
for (k = 160; k--; s++)
|
|
{
|
|
tmp = GSM_MULT_R( msr, 28180 );
|
|
msr = GSM_ADD(*s, tmp); /* Deemphasis */
|
|
*s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */
|
|
}
|
|
S->msr = msr;
|
|
}
|
|
|
|
/**** 4.3.2 */
|
|
void Gsm_Long_Term_Synthesis_Filtering (S,Ncr,bcr,erp,drp)
|
|
XA_GSM_STATE * S;
|
|
word Ncr;
|
|
word bcr;
|
|
register word * erp; /* [0..39] IN */
|
|
register word * drp; /* [-120..-1] IN, [-120..40] OUT */
|
|
|
|
/*
|
|
* This procedure uses the bcr and Ncr parameter to realize the
|
|
* long term synthesis filtering. The decoding of bcr needs
|
|
* table 4.3b.
|
|
*/
|
|
{
|
|
register longword ltmp; /* for ADD */
|
|
register int k;
|
|
word brp, drpp, Nr;
|
|
|
|
/* Check the limits of Nr.
|
|
*/
|
|
Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
|
|
S->nrp = Nr;
|
|
assert(Nr >= 40 && Nr <= 120);
|
|
|
|
/* Decoding of the LTP gain bcr
|
|
*/
|
|
brp = gsm_QLB[ bcr ];
|
|
|
|
/* Computation of the reconstructed short term residual
|
|
* signal drp[0..39]
|
|
*/
|
|
assert(brp != MIN_WORD);
|
|
|
|
for (k = 0; k <= 39; k++) {
|
|
drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
|
|
drp[k] = GSM_ADD( erp[k], drpp );
|
|
}
|
|
|
|
/*
|
|
* Update of the reconstructed short term residual signal
|
|
* drp[ -1..-120 ]
|
|
*/
|
|
|
|
for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
|
|
}
|
|
|
|
static void Short_term_synthesis_filtering (S,rrp,k,wt,sr)
|
|
XA_GSM_STATE *S;
|
|
register word *rrp; /* [0..7] IN */
|
|
register int k; /* k_end - k_start */
|
|
register word *wt; /* [0..k-1] IN */
|
|
register word *sr; /* [0..k-1] OUT */
|
|
{
|
|
register word * v = S->v;
|
|
register int i;
|
|
register word sri, tmp1, tmp2;
|
|
register longword ltmp; /* for GSM_ADD & GSM_SUB */
|
|
|
|
while (k--) {
|
|
sri = *wt++;
|
|
for (i = 8; i--;) {
|
|
|
|
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
|
|
*/
|
|
tmp1 = rrp[i];
|
|
tmp2 = v[i];
|
|
tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
|
|
? MAX_WORD
|
|
: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
|
|
+ 16384) >> 15)) ;
|
|
|
|
sri = GSM_SUB( sri, tmp2 );
|
|
|
|
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
|
|
*/
|
|
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
|
|
? MAX_WORD
|
|
: 0x0FFFF & (( (longword)tmp1 * (longword)sri
|
|
+ 16384) >> 15)) ;
|
|
|
|
v[i+1] = GSM_ADD( v[i], tmp1);
|
|
}
|
|
*sr++ = v[0] = sri;
|
|
}
|
|
}
|
|
|
|
/* 4.2.8 */
|
|
|
|
static void Decoding_of_the_coded_Log_Area_Ratios (LARc,LARpp)
|
|
word * LARc; /* coded log area ratio [0..7] IN */
|
|
word * LARpp; /* out: decoded .. */
|
|
{
|
|
register word temp1 /* , temp2 */;
|
|
register long ltmp; /* for GSM_ADD */
|
|
|
|
/* This procedure requires for efficient implementation
|
|
* two tables.
|
|
*
|
|
* INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
|
|
* MIC[1..8] = minimum value of the LARc[1..8]
|
|
*/
|
|
|
|
/* Compute the LARpp[1..8]
|
|
*/
|
|
|
|
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
|
|
*
|
|
* temp1 = GSM_ADD( *LARc, *MIC ) << 10;
|
|
* temp2 = *B << 1;
|
|
* temp1 = GSM_SUB( temp1, temp2 );
|
|
*
|
|
* assert(*INVA != MIN_WORD);
|
|
*
|
|
* temp1 = GSM_MULT_R( *INVA, temp1 );
|
|
* *LARpp = GSM_ADD( temp1, temp1 );
|
|
* }
|
|
*/
|
|
|
|
#undef STEP
|
|
#define STEP( B, MIC, INVA ) \
|
|
temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
|
|
temp1 = GSM_SUB( temp1, B << 1 ); \
|
|
temp1 = GSM_MULT_R( INVA, temp1 ); \
|
|
*LARpp++ = GSM_ADD( temp1, temp1 );
|
|
|
|
STEP( 0, -32, 13107 );
|
|
STEP( 0, -32, 13107 );
|
|
STEP( 2048, -16, 13107 );
|
|
STEP( -2560, -16, 13107 );
|
|
|
|
STEP( 94, -8, 19223 );
|
|
STEP( -1792, -8, 17476 );
|
|
STEP( -341, -4, 31454 );
|
|
STEP( -1144, -4, 29708 );
|
|
|
|
/* NOTE: the addition of *MIC is used to restore
|
|
* the sign of *LARc.
|
|
*/
|
|
}
|
|
|
|
/* 4.2.9 */
|
|
/* Computation of the quantized reflection coefficients
|
|
*/
|
|
|
|
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
|
|
*/
|
|
|
|
/*
|
|
* Within each frame of 160 analyzed speech samples the short term
|
|
* analysis and synthesis filters operate with four different sets of
|
|
* coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
|
|
* and the actual set of decoded LARs (LARpp(j))
|
|
*
|
|
* (Initial value: LARpp(j-1)[1..8] = 0.)
|
|
*/
|
|
|
|
static void Coefficients_0_12 (LARpp_j_1, LARpp_j, LARp)
|
|
register word * LARpp_j_1;
|
|
register word * LARpp_j;
|
|
register word * LARp;
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
|
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
|
|
}
|
|
}
|
|
|
|
static void Coefficients_13_26 (LARpp_j_1, LARpp_j, LARp)
|
|
register word * LARpp_j_1;
|
|
register word * LARpp_j;
|
|
register word * LARp;
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
|
|
}
|
|
}
|
|
|
|
static void Coefficients_27_39 (LARpp_j_1, LARpp_j, LARp)
|
|
register word * LARpp_j_1;
|
|
register word * LARpp_j;
|
|
register word * LARp;
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
|
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
|
|
}
|
|
}
|
|
|
|
|
|
static void Coefficients_40_159 (LARpp_j, LARp)
|
|
register word * LARpp_j;
|
|
register word * LARp;
|
|
{
|
|
register int i;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
|
|
*LARp = *LARpp_j;
|
|
}
|
|
/* 4.2.9.2 */
|
|
|
|
static void LARp_to_rp (LARp)
|
|
register word * LARp; /* [0..7] IN/OUT */
|
|
/*
|
|
* The input of this procedure is the interpolated LARp[0..7] array.
|
|
* The reflection coefficients, rp[i], are used in the analysis
|
|
* filter and in the synthesis filter.
|
|
*/
|
|
{
|
|
register int i;
|
|
register word temp;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++) {
|
|
|
|
/* temp = GSM_ABS( *LARp );
|
|
*
|
|
* if (temp < 11059) temp <<= 1;
|
|
* else if (temp < 20070) temp += 11059;
|
|
* else temp = GSM_ADD( temp >> 2, 26112 );
|
|
*
|
|
* *LARp = *LARp < 0 ? -temp : temp;
|
|
*/
|
|
|
|
if (*LARp < 0) {
|
|
temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
|
|
*LARp = - ((temp < 11059) ? temp << 1
|
|
: ((temp < 20070) ? temp + 11059
|
|
: GSM_ADD( temp >> 2, 26112 )));
|
|
} else {
|
|
temp = *LARp;
|
|
*LARp = (temp < 11059) ? temp << 1
|
|
: ((temp < 20070) ? temp + 11059
|
|
: GSM_ADD( temp >> 2, 26112 ));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**** */
|
|
static void Gsm_Short_Term_Synthesis_Filter (S, LARcr, wt, s)
|
|
XA_GSM_STATE * S;
|
|
word * LARcr; /* received log area ratios [0..7] IN */
|
|
word * wt; /* received d [0..159] IN */
|
|
word * s; /* signal s [0..159] OUT */
|
|
{
|
|
word * LARpp_j = S->LARpp[ S->j ];
|
|
word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
|
|
|
|
word LARp[8];
|
|
|
|
#undef FILTER
|
|
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
|
|
|
# define FILTER (* (S->fast \
|
|
? Fast_Short_term_synthesis_filtering \
|
|
: Short_term_synthesis_filtering ))
|
|
#else
|
|
# define FILTER Short_term_synthesis_filtering
|
|
#endif
|
|
|
|
Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
|
|
|
|
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 13, wt, s );
|
|
|
|
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 14, wt + 13, s + 13 );
|
|
|
|
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 13, wt + 27, s + 27 );
|
|
|
|
Coefficients_40_159( LARpp_j, LARp );
|
|
LARp_to_rp( LARp );
|
|
FILTER(S, LARp, 120, wt + 40, s + 40);
|
|
}
|
|
|
|
|
|
|
|
|
|
static void GSM_Decode(S,LARcr, Ncr,bcr,Mcr,xmaxcr,xMcr,s)
|
|
XA_GSM_STATE *S;
|
|
word *LARcr; /* [0..7] IN */
|
|
word *Ncr; /* [0..3] IN */
|
|
word *bcr; /* [0..3] IN */
|
|
word *Mcr; /* [0..3] IN */
|
|
word *xmaxcr; /* [0..3] IN */
|
|
word *xMcr; /* [0..13*4] IN */
|
|
word *s; /* [0..159] OUT */
|
|
{
|
|
int j, k;
|
|
word erp[40], wt[160];
|
|
word *drp = S->dp0 + 120;
|
|
|
|
for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13)
|
|
{
|
|
Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
|
|
Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
|
|
for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ];
|
|
}
|
|
|
|
Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
|
|
Postprocessing(S, s);
|
|
}
|
|
|
|
|
|
|
|
/****-------------------------------------------------------------------****
|
|
**** Podlipec: For AVI/WAV files GSM 6.10 combines two 33 bytes frames
|
|
**** into one 65 byte frame.
|
|
****-------------------------------------------------------------------****/
|
|
void XA_MSGSM_Decoder(unsigned char *ibuf,unsigned short *obuf)
|
|
{ word sr;
|
|
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
|
|
|
|
sr = *ibuf++;
|
|
|
|
LARc[0] = sr & 0x3f; sr >>= 6;
|
|
sr |= (word)*ibuf++ << 2;
|
|
LARc[1] = sr & 0x3f; sr >>= 6;
|
|
sr |= (word)*ibuf++ << 4;
|
|
LARc[2] = sr & 0x1f; sr >>= 5;
|
|
LARc[3] = sr & 0x1f; sr >>= 5;
|
|
sr |= (word)*ibuf++ << 2;
|
|
LARc[4] = sr & 0xf; sr >>= 4;
|
|
LARc[5] = sr & 0xf; sr >>= 4;
|
|
sr |= (word)*ibuf++ << 2; /* 5 */
|
|
LARc[6] = sr & 0x7; sr >>= 3;
|
|
LARc[7] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 4;
|
|
Nc[0] = sr & 0x7f; sr >>= 7;
|
|
bc[0] = sr & 0x3; sr >>= 2;
|
|
Mc[0] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmaxc[0] = sr & 0x3f; sr >>= 6;
|
|
xmc[0] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[1] = sr & 0x7; sr >>= 3;
|
|
xmc[2] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[3] = sr & 0x7; sr >>= 3;
|
|
xmc[4] = sr & 0x7; sr >>= 3;
|
|
xmc[5] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1; /* 10 */
|
|
xmc[6] = sr & 0x7; sr >>= 3;
|
|
xmc[7] = sr & 0x7; sr >>= 3;
|
|
xmc[8] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[9] = sr & 0x7; sr >>= 3;
|
|
xmc[10] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[11] = sr & 0x7; sr >>= 3;
|
|
xmc[12] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 4;
|
|
Nc[1] = sr & 0x7f; sr >>= 7;
|
|
bc[1] = sr & 0x3; sr >>= 2;
|
|
Mc[1] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmaxc[1] = sr & 0x3f; sr >>= 6;
|
|
xmc[13] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++; /* 15 */
|
|
xmc[14] = sr & 0x7; sr >>= 3;
|
|
xmc[15] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[16] = sr & 0x7; sr >>= 3;
|
|
xmc[17] = sr & 0x7; sr >>= 3;
|
|
xmc[18] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[19] = sr & 0x7; sr >>= 3;
|
|
xmc[20] = sr & 0x7; sr >>= 3;
|
|
xmc[21] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[22] = sr & 0x7; sr >>= 3;
|
|
xmc[23] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[24] = sr & 0x7; sr >>= 3;
|
|
xmc[25] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 4; /* 20 */
|
|
Nc[2] = sr & 0x7f; sr >>= 7;
|
|
bc[2] = sr & 0x3; sr >>= 2;
|
|
Mc[2] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmaxc[2] = sr & 0x3f; sr >>= 6;
|
|
xmc[26] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[27] = sr & 0x7; sr >>= 3;
|
|
xmc[28] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[29] = sr & 0x7; sr >>= 3;
|
|
xmc[30] = sr & 0x7; sr >>= 3;
|
|
xmc[31] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[32] = sr & 0x7; sr >>= 3;
|
|
xmc[33] = sr & 0x7; sr >>= 3;
|
|
xmc[34] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++; /* 25 */
|
|
xmc[35] = sr & 0x7; sr >>= 3;
|
|
xmc[36] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[37] = sr & 0x7; sr >>= 3;
|
|
xmc[38] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 4;
|
|
Nc[3] = sr & 0x7f; sr >>= 7;
|
|
bc[3] = sr & 0x3; sr >>= 2;
|
|
Mc[3] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmaxc[3] = sr & 0x3f; sr >>= 6;
|
|
xmc[39] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[40] = sr & 0x7; sr >>= 3;
|
|
xmc[41] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2; /* 30 */
|
|
xmc[42] = sr & 0x7; sr >>= 3;
|
|
xmc[43] = sr & 0x7; sr >>= 3;
|
|
xmc[44] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[45] = sr & 0x7; sr >>= 3;
|
|
xmc[46] = sr & 0x7; sr >>= 3;
|
|
xmc[47] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[48] = sr & 0x7; sr >>= 3;
|
|
xmc[49] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[50] = sr & 0x7; sr >>= 3;
|
|
xmc[51] = sr & 0x7; sr >>= 3;
|
|
|
|
GSM_Decode(&gsm_state, LARc, Nc, bc, Mc, xmaxc, xmc, obuf);
|
|
|
|
/*
|
|
carry = sr & 0xf;
|
|
sr = carry;
|
|
*/
|
|
/* 2nd frame */
|
|
sr &= 0xf;
|
|
sr |= (word)*ibuf++ << 4; /* 1 */
|
|
LARc[0] = sr & 0x3f; sr >>= 6;
|
|
LARc[1] = sr & 0x3f; sr >>= 6;
|
|
sr = *ibuf++;
|
|
LARc[2] = sr & 0x1f; sr >>= 5;
|
|
sr |= (word)*ibuf++ << 3;
|
|
LARc[3] = sr & 0x1f; sr >>= 5;
|
|
LARc[4] = sr & 0xf; sr >>= 4;
|
|
sr |= (word)*ibuf++ << 2;
|
|
LARc[5] = sr & 0xf; sr >>= 4;
|
|
LARc[6] = sr & 0x7; sr >>= 3;
|
|
LARc[7] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++; /* 5 */
|
|
Nc[0] = sr & 0x7f; sr >>= 7;
|
|
sr |= (word)*ibuf++ << 1;
|
|
bc[0] = sr & 0x3; sr >>= 2;
|
|
Mc[0] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 5;
|
|
xmaxc[0] = sr & 0x3f; sr >>= 6;
|
|
xmc[0] = sr & 0x7; sr >>= 3;
|
|
xmc[1] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[2] = sr & 0x7; sr >>= 3;
|
|
xmc[3] = sr & 0x7; sr >>= 3;
|
|
xmc[4] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[5] = sr & 0x7; sr >>= 3;
|
|
xmc[6] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2; /* 10 */
|
|
xmc[7] = sr & 0x7; sr >>= 3;
|
|
xmc[8] = sr & 0x7; sr >>= 3;
|
|
xmc[9] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[10] = sr & 0x7; sr >>= 3;
|
|
xmc[11] = sr & 0x7; sr >>= 3;
|
|
xmc[12] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
Nc[1] = sr & 0x7f; sr >>= 7;
|
|
sr |= (word)*ibuf++ << 1;
|
|
bc[1] = sr & 0x3; sr >>= 2;
|
|
Mc[1] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 5;
|
|
xmaxc[1] = sr & 0x3f; sr >>= 6;
|
|
xmc[13] = sr & 0x7; sr >>= 3;
|
|
xmc[14] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1; /* 15 */
|
|
xmc[15] = sr & 0x7; sr >>= 3;
|
|
xmc[16] = sr & 0x7; sr >>= 3;
|
|
xmc[17] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[18] = sr & 0x7; sr >>= 3;
|
|
xmc[19] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[20] = sr & 0x7; sr >>= 3;
|
|
xmc[21] = sr & 0x7; sr >>= 3;
|
|
xmc[22] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[23] = sr & 0x7; sr >>= 3;
|
|
xmc[24] = sr & 0x7; sr >>= 3;
|
|
xmc[25] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
Nc[2] = sr & 0x7f; sr >>= 7;
|
|
sr |= (word)*ibuf++ << 1; /* 20 */
|
|
bc[2] = sr & 0x3; sr >>= 2;
|
|
Mc[2] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 5;
|
|
xmaxc[2] = sr & 0x3f; sr >>= 6;
|
|
xmc[26] = sr & 0x7; sr >>= 3;
|
|
xmc[27] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[28] = sr & 0x7; sr >>= 3;
|
|
xmc[29] = sr & 0x7; sr >>= 3;
|
|
xmc[30] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
xmc[31] = sr & 0x7; sr >>= 3;
|
|
xmc[32] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[33] = sr & 0x7; sr >>= 3;
|
|
xmc[34] = sr & 0x7; sr >>= 3;
|
|
xmc[35] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1; /* 25 */
|
|
xmc[36] = sr & 0x7; sr >>= 3;
|
|
xmc[37] = sr & 0x7; sr >>= 3;
|
|
xmc[38] = sr & 0x7; sr >>= 3;
|
|
sr = *ibuf++;
|
|
Nc[3] = sr & 0x7f; sr >>= 7;
|
|
sr |= (word)*ibuf++ << 1;
|
|
bc[3] = sr & 0x3; sr >>= 2;
|
|
Mc[3] = sr & 0x3; sr >>= 2;
|
|
sr |= (word)*ibuf++ << 5;
|
|
xmaxc[3] = sr & 0x3f; sr >>= 6;
|
|
xmc[39] = sr & 0x7; sr >>= 3;
|
|
xmc[40] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[41] = sr & 0x7; sr >>= 3;
|
|
xmc[42] = sr & 0x7; sr >>= 3;
|
|
xmc[43] = sr & 0x7; sr >>= 3;
|
|
sr = (word)*ibuf++; /* 30 */
|
|
xmc[44] = sr & 0x7; sr >>= 3;
|
|
xmc[45] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 2;
|
|
xmc[46] = sr & 0x7; sr >>= 3;
|
|
xmc[47] = sr & 0x7; sr >>= 3;
|
|
xmc[48] = sr & 0x7; sr >>= 3;
|
|
sr |= (word)*ibuf++ << 1;
|
|
xmc[49] = sr & 0x7; sr >>= 3;
|
|
xmc[50] = sr & 0x7; sr >>= 3;
|
|
xmc[51] = sr & 0x7; sr >>= 3;
|
|
|
|
GSM_Decode(&gsm_state, LARc, Nc, bc, Mc, xmaxc, xmc, &obuf[160]);
|
|
|
|
/* Return number of source bytes consumed and output samples produced */
|
|
// *icnt = 65;
|
|
// *ocnt = 320;
|
|
return;
|
|
}
|
|
|
|
#define GSM_MAGIC 0xd
|
|
|
|
void XA_GSM_Decoder(unsigned char *ibuf,unsigned short *obuf)
|
|
{ word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
|
|
|
|
/* Sanity */
|
|
if (((*ibuf >> 4) & 0x0F) != GSM_MAGIC)
|
|
{ int i;
|
|
for(i=0;i<160;i++) obuf[i] = 0;
|
|
// *icnt = 33;
|
|
// *ocnt = 160;
|
|
return;
|
|
}
|
|
|
|
LARc[0] = (*ibuf++ & 0xF) << 2; /* 1 */
|
|
LARc[0] |= (*ibuf >> 6) & 0x3;
|
|
LARc[1] = *ibuf++ & 0x3F;
|
|
LARc[2] = (*ibuf >> 3) & 0x1F;
|
|
LARc[3] = (*ibuf++ & 0x7) << 2;
|
|
LARc[3] |= (*ibuf >> 6) & 0x3;
|
|
LARc[4] = (*ibuf >> 2) & 0xF;
|
|
LARc[5] = (*ibuf++ & 0x3) << 2;
|
|
LARc[5] |= (*ibuf >> 6) & 0x3;
|
|
LARc[6] = (*ibuf >> 3) & 0x7;
|
|
LARc[7] = *ibuf++ & 0x7;
|
|
|
|
Nc[0] = (*ibuf >> 1) & 0x7F;
|
|
|
|
bc[0] = (*ibuf++ & 0x1) << 1;
|
|
bc[0] |= (*ibuf >> 7) & 0x1;
|
|
|
|
Mc[0] = (*ibuf >> 5) & 0x3;
|
|
|
|
xmaxc[0] = (*ibuf++ & 0x1F) << 1;
|
|
xmaxc[0] |= (*ibuf >> 7) & 0x1;
|
|
|
|
xmc[0] = (*ibuf >> 4) & 0x7;
|
|
xmc[1] = (*ibuf >> 1) & 0x7;
|
|
xmc[2] = (*ibuf++ & 0x1) << 2;
|
|
xmc[2] |= (*ibuf >> 6) & 0x3;
|
|
xmc[3] = (*ibuf >> 3) & 0x7;
|
|
xmc[4] = *ibuf++ & 0x7;
|
|
xmc[5] = (*ibuf >> 5) & 0x7;
|
|
xmc[6] = (*ibuf >> 2) & 0x7;
|
|
xmc[7] = (*ibuf++ & 0x3) << 1; /* 10 */
|
|
xmc[7] |= (*ibuf >> 7) & 0x1;
|
|
xmc[8] = (*ibuf >> 4) & 0x7;
|
|
xmc[9] = (*ibuf >> 1) & 0x7;
|
|
xmc[10] = (*ibuf++ & 0x1) << 2;
|
|
xmc[10] |= (*ibuf >> 6) & 0x3;
|
|
xmc[11] = (*ibuf >> 3) & 0x7;
|
|
xmc[12] = *ibuf++ & 0x7;
|
|
|
|
Nc[1] = (*ibuf >> 1) & 0x7F;
|
|
|
|
bc[1] = (*ibuf++ & 0x1) << 1;
|
|
bc[1] |= (*ibuf >> 7) & 0x1;
|
|
|
|
Mc[1] = (*ibuf >> 5) & 0x3;
|
|
|
|
xmaxc[1] = (*ibuf++ & 0x1F) << 1;
|
|
xmaxc[1] |= (*ibuf >> 7) & 0x1;
|
|
|
|
|
|
xmc[13] = (*ibuf >> 4) & 0x7;
|
|
xmc[14] = (*ibuf >> 1) & 0x7;
|
|
xmc[15] = (*ibuf++ & 0x1) << 2;
|
|
xmc[15] |= (*ibuf >> 6) & 0x3;
|
|
xmc[16] = (*ibuf >> 3) & 0x7;
|
|
xmc[17] = *ibuf++ & 0x7;
|
|
xmc[18] = (*ibuf >> 5) & 0x7;
|
|
xmc[19] = (*ibuf >> 2) & 0x7;
|
|
xmc[20] = (*ibuf++ & 0x3) << 1;
|
|
xmc[20] |= (*ibuf >> 7) & 0x1;
|
|
xmc[21] = (*ibuf >> 4) & 0x7;
|
|
xmc[22] = (*ibuf >> 1) & 0x7;
|
|
xmc[23] = (*ibuf++ & 0x1) << 2;
|
|
xmc[23] |= (*ibuf >> 6) & 0x3;
|
|
xmc[24] = (*ibuf >> 3) & 0x7;
|
|
xmc[25] = *ibuf++ & 0x7;
|
|
|
|
Nc[2] = (*ibuf >> 1) & 0x7F;
|
|
|
|
bc[2] = (*ibuf++ & 0x1) << 1; /* 20 */
|
|
bc[2] |= (*ibuf >> 7) & 0x1;
|
|
|
|
Mc[2] = (*ibuf >> 5) & 0x3;
|
|
|
|
xmaxc[2] = (*ibuf++ & 0x1F) << 1;
|
|
xmaxc[2] |= (*ibuf >> 7) & 0x1;
|
|
|
|
|
|
xmc[26] = (*ibuf >> 4) & 0x7;
|
|
xmc[27] = (*ibuf >> 1) & 0x7;
|
|
xmc[28] = (*ibuf++ & 0x1) << 2;
|
|
xmc[28] |= (*ibuf >> 6) & 0x3;
|
|
xmc[29] = (*ibuf >> 3) & 0x7;
|
|
xmc[30] = *ibuf++ & 0x7;
|
|
xmc[31] = (*ibuf >> 5) & 0x7;
|
|
xmc[32] = (*ibuf >> 2) & 0x7;
|
|
xmc[33] = (*ibuf++ & 0x3) << 1;
|
|
xmc[33] |= (*ibuf >> 7) & 0x1;
|
|
xmc[34] = (*ibuf >> 4) & 0x7;
|
|
xmc[35] = (*ibuf >> 1) & 0x7;
|
|
xmc[36] = (*ibuf++ & 0x1) << 2;
|
|
xmc[36] |= (*ibuf >> 6) & 0x3;
|
|
xmc[37] = (*ibuf >> 3) & 0x7;
|
|
xmc[38] = *ibuf++ & 0x7;
|
|
|
|
Nc[3] = (*ibuf >> 1) & 0x7F;
|
|
|
|
bc[3] = (*ibuf++ & 0x1) << 1;
|
|
bc[3] |= (*ibuf >> 7) & 0x1;
|
|
|
|
Mc[3] = (*ibuf >> 5) & 0x3;
|
|
|
|
xmaxc[3] = (*ibuf++ & 0x1F) << 1;
|
|
xmaxc[3] |= (*ibuf >> 7) & 0x1;
|
|
|
|
xmc[39] = (*ibuf >> 4) & 0x7;
|
|
xmc[40] = (*ibuf >> 1) & 0x7;
|
|
xmc[41] = (*ibuf++ & 0x1) << 2;
|
|
xmc[41] |= (*ibuf >> 6) & 0x3;
|
|
xmc[42] = (*ibuf >> 3) & 0x7;
|
|
xmc[43] = *ibuf++ & 0x7; /* 30 */
|
|
xmc[44] = (*ibuf >> 5) & 0x7;
|
|
xmc[45] = (*ibuf >> 2) & 0x7;
|
|
xmc[46] = (*ibuf++ & 0x3) << 1;
|
|
xmc[46] |= (*ibuf >> 7) & 0x1;
|
|
xmc[47] = (*ibuf >> 4) & 0x7;
|
|
xmc[48] = (*ibuf >> 1) & 0x7;
|
|
xmc[49] = (*ibuf++ & 0x1) << 2;
|
|
xmc[49] |= (*ibuf >> 6) & 0x3;
|
|
xmc[50] = (*ibuf >> 3) & 0x7;
|
|
xmc[51] = *ibuf & 0x7; /* 33 */
|
|
|
|
GSM_Decode(&gsm_state, LARc, Nc, bc, Mc, xmaxc, xmc, obuf);
|
|
|
|
/* Return number of source bytes consumed and output samples produced */
|
|
// *icnt = 33;
|
|
// *ocnt = 160;
|
|
}
|