1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-25 00:02:13 +00:00
mpv/libfaad2/ssr.c
arpi 32063c4339 libfaad2 v2.0rc1 imported
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10726 b3059339-0415-0410-9bf9-f77b7e298cf2
2003-08-30 22:30:28 +00:00

176 lines
5.7 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: ssr.c,v 1.4 2003/07/29 08:20:14 menno Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SSR_DEC
#include "syntax.h"
#include "filtbank.h"
#include "ssr.h"
#include "ssr_fb.h"
void ssr_decode(ssr_info *ssr, fb_info *fb, uint8_t window_sequence,
uint8_t window_shape, uint8_t window_shape_prev,
real_t *freq_in, real_t *time_out, real_t *overlap,
real_t ipqf_buffer[SSR_BANDS][96/4],
real_t *prev_fmd, uint16_t frame_len)
{
uint8_t band;
uint16_t ssr_frame_len = frame_len/SSR_BANDS;
real_t time_tmp[2048];
real_t output[1024];
memset(output, 0, 1024*sizeof(real_t));
memset(time_tmp, 0, 2048*sizeof(real_t));
for (band = 0; band < SSR_BANDS; band++)
{
int16_t j;
/* uneven bands have inverted frequency scale */
if (band == 1 || band == 3)
{
for (j = 0; j < ssr_frame_len/2; j++)
{
real_t tmp;
tmp = freq_in[j + ssr_frame_len*band];
freq_in[j + ssr_frame_len*band] =
freq_in[ssr_frame_len - j - 1 + ssr_frame_len*band];
freq_in[ssr_frame_len - j - 1 + ssr_frame_len*band] = tmp;
}
}
/* non-overlapping inverse filterbank for SSR */
ssr_ifilter_bank(fb, window_sequence, window_shape, window_shape_prev,
freq_in + band*ssr_frame_len, time_tmp + band*ssr_frame_len,
ssr_frame_len);
/* gain control */
ssr_gain_control(ssr, time_tmp, output, overlap, prev_fmd,
band, window_sequence, ssr_frame_len);
}
/* inverse pqf to bring subbands together again */
ssr_ipqf(ssr, output, time_out, ipqf_buffer, frame_len, SSR_BANDS);
}
static void ssr_gain_control(ssr_info *ssr, real_t *data, real_t *output,
real_t *overlap, real_t *prev_fmd, uint8_t band,
uint8_t window_sequence, uint16_t frame_len)
{
uint16_t i;
real_t gc_function[2*1024/SSR_BANDS];
if (window_sequence != EIGHT_SHORT_SEQUENCE)
{
ssr_gc_function(ssr, &prev_fmd[band * frame_len*2],
gc_function, window_sequence, frame_len);
for (i = 0; i < frame_len*2; i++)
data[band * frame_len*2 + i] *= gc_function[i];
for (i = 0; i < frame_len; i++)
{
output[band*frame_len + i] = overlap[band*frame_len + i] +
data[band*frame_len*2 + i];
}
for (i = 0; i < frame_len; i++)
{
overlap[band*frame_len + i] =
data[band*frame_len*2 + frame_len + i];
}
} else {
uint8_t w;
for (w = 0; w < 8; w++)
{
uint16_t frame_len8 = frame_len/8;
uint16_t frame_len16 = frame_len/16;
ssr_gc_function(ssr, &prev_fmd[band*frame_len*2 + w*frame_len*2/8],
gc_function, window_sequence, frame_len);
for (i = 0; i < frame_len8*2; i++)
data[band*frame_len*2 + w*frame_len8*2+i] *= gc_function[i];
for (i = 0; i < frame_len8; i++)
{
overlap[band*frame_len + i + 7*frame_len16 + w*frame_len8] +=
data[band*frame_len*2 + 2*w*frame_len8 + i];
}
for (i = 0; i < frame_len8; i++)
{
overlap[band*frame_len + i + 7*frame_len16 + (w+1)*frame_len8] =
data[band*frame_len*2 + 2*w*frame_len8 + frame_len8 + i];
}
}
for (i = 0; i < frame_len; i++)
output[band*frame_len + i] = overlap[band*frame_len + i];
for (i = 0; i < frame_len; i++)
overlap[band*frame_len + i] = overlap[band*frame_len + i + frame_len];
}
}
static void ssr_gc_function(ssr_info *ssr, real_t *prev_fmd,
real_t *gc_function, uint8_t window_sequence,
uint16_t frame_len)
{
uint16_t i;
uint16_t len_area1, len_area2;
int32_t aloc[10];
real_t alev[10];
switch (window_sequence)
{
case ONLY_LONG_SEQUENCE:
len_area1 = frame_len/SSR_BANDS;
len_area2 = 0;
break;
case LONG_START_SEQUENCE:
len_area1 = (frame_len/SSR_BANDS)*7/32;
len_area2 = (frame_len/SSR_BANDS)/16;
break;
case EIGHT_SHORT_SEQUENCE:
len_area1 = (frame_len/8)/SSR_BANDS;
len_area2 = 0;
break;
case LONG_STOP_SEQUENCE:
len_area1 = (frame_len/SSR_BANDS);
len_area2 = 0;
break;
}
/* decode bitstream information */
/* build array M */
for (i = 0; i < frame_len*2; i++)
gc_function[i] = 1;
}
#endif