1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-13 10:26:09 +00:00
mpv/video/mp_image.c
wm4 15c7f7a339 video: cleanup: move and rename vf_mpi_clear and vf_clone_attributes
These functions weren't specific to video filters and were misplaced
in vf.c. Move them to mp_image.c.

Fix the big endian test in vf_mpi_clear/mp_image_clear, which has been
messed up in 74df1d.
2013-01-13 20:04:11 +01:00

416 lines
13 KiB
C

/*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include "talloc.h"
#include "video/img_format.h"
#include "video/mp_image.h"
#include "video/sws_utils.h"
#include "video/memcpy_pic.h"
struct m_refcount {
void *arg;
// free() is called if refcount reaches 0.
void (*free)(void *arg);
// External refcounted object (such as libavcodec DR buffers). This assumes
// that the actual data is managed by the external object, not by
// m_refcount. The .ext_* calls use that external object's refcount
// primitives. It usually doesn't make sense to set both .free and .ext_*.
void (*ext_ref)(void *arg);
void (*ext_unref)(void *arg);
bool (*ext_is_unique)(void *arg);
// Native refcount (there may be additional references if .ext_* are set)
int refcount;
};
// Only for checking API usage
static int m_refcount_destructor(void *ptr)
{
struct m_refcount *ref = ptr;
assert(ref->refcount == 0);
return 0;
}
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
static struct m_refcount *m_refcount_new(void)
{
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
*ref = (struct m_refcount) { .refcount = 1 };
talloc_set_destructor(ref, m_refcount_destructor);
return ref;
}
static void m_refcount_ref(struct m_refcount *ref)
{
ref->refcount++;
if (ref->ext_ref)
ref->ext_ref(ref->arg);
}
static void m_refcount_unref(struct m_refcount *ref)
{
assert(ref->refcount > 0);
if (ref->ext_unref)
ref->ext_unref(ref->arg);
ref->refcount--;
if (ref->refcount == 0) {
if (ref->free)
ref->free(ref->arg);
talloc_free(ref);
}
}
static bool m_refcount_is_unique(struct m_refcount *ref)
{
if (ref->refcount > 1)
return false;
if (ref->ext_is_unique)
return ref->ext_is_unique(ref->arg); // referenced only by us
return true;
}
static void mp_image_alloc_planes(struct mp_image *mpi)
{
assert(!mpi->planes[0]);
size_t plane_size[MP_MAX_PLANES];
for (int n = 0; n < MP_MAX_PLANES; n++) {
int line_bytes = (mpi->plane_w[n] * mpi->fmt.bpp[n] + 7) / 8;
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
plane_size[n] = mpi->stride[n] * mpi->plane_h[n];
}
if (mpi->imgfmt == IMGFMT_PAL8)
plane_size[1] = MP_PALETTE_SIZE;
size_t sum = 0;
for (int n = 0; n < MP_MAX_PLANES; n++)
sum += plane_size[n];
uint8_t *data = av_malloc(FFMAX(sum, 1));
if (!data)
abort(); //out of memory
for (int n = 0; n < MP_MAX_PLANES; n++) {
mpi->planes[n] = plane_size[n] ? data : NULL;
data += plane_size[n];
}
}
void mp_image_setfmt(struct mp_image *mpi, unsigned int out_fmt)
{
mpi->flags &= ~MP_IMGFLAG_FMT_MASK;
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
mpi->fmt = fmt;
mpi->flags |= fmt.flags;
mpi->imgfmt = fmt.id;
mpi->bpp = fmt.avg_bpp;
mpi->chroma_x_shift = fmt.chroma_xs;
mpi->chroma_y_shift = fmt.chroma_ys;
mpi->num_planes = fmt.num_planes;
mp_image_set_size(mpi, mpi->w, mpi->h);
}
static int mp_image_destructor(void *ptr)
{
mp_image_t *mpi = ptr;
m_refcount_unref(mpi->refcount);
return 0;
}
static int mp_chroma_div_up(int size, int shift)
{
return (size + (1 << shift) - 1) >> shift;
}
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
mpi->w = w;
mpi->h = h;
for (int n = 0; n < mpi->num_planes; n++) {
mpi->plane_w[n] = mp_chroma_div_up(mpi->w, mpi->fmt.xs[n]);
mpi->plane_h[n] = mp_chroma_div_up(mpi->h, mpi->fmt.ys[n]);
}
mpi->chroma_width = mpi->plane_w[1];
mpi->chroma_height = mpi->plane_h[1];
mpi->display_w = mpi->display_h = 0;
}
void mp_image_set_display_size(struct mp_image *mpi, int dw, int dh)
{
mpi->display_w = dw;
mpi->display_h = dh;
}
struct mp_image *mp_image_alloc(unsigned int imgfmt, int w, int h)
{
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
talloc_set_destructor(mpi, mp_image_destructor);
mp_image_set_size(mpi, w, h);
mp_image_setfmt(mpi, imgfmt);
mp_image_alloc_planes(mpi);
mpi->refcount = m_refcount_new();
mpi->refcount->free = av_free;
mpi->refcount->arg = mpi->planes[0];
return mpi;
}
struct mp_image *mp_image_new_copy(struct mp_image *img)
{
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
mp_image_copy(new, img);
mp_image_copy_attributes(new, img);
// Normally these are covered by the reference to the original image data
// (like the AVFrame in vd_lavc.c), but we can't manage it on our own.
new->qscale = NULL;
new->qstride = 0;
return new;
}
// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
assert(dst->refcount && src->refcount);
for (int p = 0; p < MP_MAX_PLANES; p++) {
dst->planes[p] = src->planes[p];
dst->stride[p] = src->stride[p];
}
mp_image_copy_attributes(dst, src);
m_refcount_unref(dst->refcount);
dst->refcount = src->refcount;
talloc_set_destructor(src, NULL);
talloc_free(src);
}
// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
if (!img->refcount)
return mp_image_new_copy(img);
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
m_refcount_ref(new->refcount);
return new;
}
// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
void (*free)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->free = free;
new->refcount->arg = free_arg;
return new;
}
// Return a reference counted reference to img. ref/unref/is_unique are used to
// connect to an external refcounting API. It is assumed that the new object
// has an initial reference to that external API.
struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
void (*ref)(void *arg),
void (*unref)(void *arg),
bool (*is_unique)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->ext_ref = ref;
new->refcount->ext_unref = unref;
new->refcount->ext_is_unique = is_unique;
new->refcount->arg = arg;
return new;
}
bool mp_image_is_writeable(struct mp_image *img)
{
if (!img->refcount)
return true; // not ref-counted => always considered writeable
return m_refcount_is_unique(img->refcount);
}
// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
void mp_image_make_writeable(struct mp_image *img)
{
if (mp_image_is_writeable(img))
return;
mp_image_steal_data(img, mp_image_new_copy(img));
assert(mp_image_is_writeable(img));
}
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
if (*p_img != new_value) {
talloc_free(*p_img);
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
}
}
// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
talloc_free(*p_img);
*p_img = NULL;
}
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt);
assert(dst->w == src->w && dst->h == src->h);
assert(mp_image_is_writeable(dst));
for (int n = 0; n < dst->num_planes; n++) {
int line_bytes = (dst->plane_w[n] * dst->fmt.bpp[n] + 7) / 8;
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, dst->plane_h[n],
dst->stride[n], src->stride[n]);
}
if (dst->imgfmt == IMGFMT_PAL8)
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
dst->pict_type = src->pict_type;
dst->fields = src->fields;
dst->qscale_type = src->qscale_type;
dst->pts = src->pts;
if (dst->w == src->w && dst->h == src->h) {
dst->qstride = src->qstride;
dst->qscale = src->qscale;
dst->display_w = src->display_w;
dst->display_h = src->display_h;
}
if ((dst->flags & MP_IMGFLAG_YUV) == (src->flags & MP_IMGFLAG_YUV)) {
dst->colorspace = src->colorspace;
dst->levels = src->levels;
}
if (dst->imgfmt == IMGFMT_PAL8 && src->imgfmt == IMGFMT_PAL8) {
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
}
void mp_image_clear(struct mp_image *mpi, int x0, int y0, int w, int h)
{
int y;
if (mpi->flags & MP_IMGFLAG_PLANAR) {
y0 &= ~1;
h += h & 1;
for (y = y0; y < y0 + h; y += 2) {
memset(mpi->planes[0] + x0 + mpi->stride[0] * y, 0, w);
memset(mpi->planes[0] + x0 + mpi->stride[0] * (y + 1), 0, w);
memset(mpi->planes[1] + (x0 >> mpi->chroma_x_shift) +
mpi->stride[1] * (y >> mpi->chroma_y_shift),
128, (w >> mpi->chroma_x_shift));
memset(mpi->planes[2] + (x0 >> mpi->chroma_x_shift) +
mpi->stride[2] * (y >> mpi->chroma_y_shift),
128, (w >> mpi->chroma_x_shift));
}
return;
}
// packed:
for (y = y0; y < y0 + h; y++) {
unsigned char *dst = mpi->planes[0] + mpi->stride[0] * y +
(mpi->bpp >> 3) * x0;
if (mpi->flags & MP_IMGFLAG_YUV) {
unsigned int *p = (unsigned int *) dst;
int size = (mpi->bpp >> 3) * w / 4;
int i;
#if BYTE_ORDER == BIG_ENDIAN
#define CLEAR_PACKEDYUV_PATTERN 0x00800080
#define CLEAR_PACKEDYUV_PATTERN_SWAPPED 0x80008000
#else
#define CLEAR_PACKEDYUV_PATTERN 0x80008000
#define CLEAR_PACKEDYUV_PATTERN_SWAPPED 0x00800080
#endif
if (mpi->flags & MP_IMGFLAG_SWAPPED) {
for (i = 0; i < size - 3; i += 4)
p[i] = p[i + 1] = p[i + 2] = p[i + 3] = CLEAR_PACKEDYUV_PATTERN_SWAPPED;
for (; i < size; i++)
p[i] = CLEAR_PACKEDYUV_PATTERN_SWAPPED;
} else {
for (i = 0; i < size - 3; i += 4)
p[i] = p[i + 1] = p[i + 2] = p[i + 3] = CLEAR_PACKEDYUV_PATTERN;
for (; i < size; i++)
p[i] = CLEAR_PACKEDYUV_PATTERN;
}
} else
memset(dst, 0, (mpi->bpp >> 3) * w);
}
}
enum mp_csp mp_image_csp(struct mp_image *img)
{
if (img->colorspace != MP_CSP_AUTO)
return img->colorspace;
return (img->flags & MP_IMGFLAG_YUV) ? MP_CSP_BT_601 : MP_CSP_RGB;
}
enum mp_csp_levels mp_image_levels(struct mp_image *img)
{
if (img->levels != MP_CSP_LEVELS_AUTO)
return img->levels;
return (img->flags & MP_IMGFLAG_YUV) ? MP_CSP_LEVELS_TV : MP_CSP_LEVELS_PC;
}
void mp_image_set_colorspace_details(struct mp_image *image,
struct mp_csp_details *csp)
{
if (image->flags & MP_IMGFLAG_YUV) {
image->colorspace = csp->format;
if (image->colorspace == MP_CSP_AUTO)
image->colorspace = MP_CSP_BT_601;
image->levels = csp->levels_in;
if (image->levels == MP_CSP_LEVELS_AUTO)
image->levels = MP_CSP_LEVELS_TV;
} else {
image->colorspace = MP_CSP_RGB;
image->levels = MP_CSP_LEVELS_PC;
}
}