mirror of
https://github.com/mpv-player/mpv
synced 2025-01-25 09:03:15 +00:00
cb1c072534
This turns the old scalers (inherited from MPlayer) into a pre- processing step (after color conversion and before scaling). The code for the "sharpen5" scaler is reused for this. The main reason MPlayer implemented this as scalers was perhaps because FBOs were too expensive, and making it a scaler allowed to implement this in 1 pass. But unsharp masking is not really a scaler, and I would guess the result is more like combining bilinear scaling and unsharp masking.
423 lines
16 KiB
C
423 lines
16 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* You can alternatively redistribute this file and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "video_shaders.h"
|
|
#include "video.h"
|
|
|
|
#define GLSL(x) gl_sc_add(sc, #x "\n");
|
|
#define GLSLF(...) gl_sc_addf(sc, __VA_ARGS__)
|
|
#define GLSLH(x) gl_sc_hadd(sc, #x "\n");
|
|
#define GLSLHF(...) gl_sc_haddf(sc, __VA_ARGS__)
|
|
|
|
// Set up shared/commonly used variables
|
|
void sampler_prelude(struct gl_shader_cache *sc, int tex_num)
|
|
{
|
|
GLSLF("#undef tex\n");
|
|
GLSLF("#define tex texture%d\n", tex_num);
|
|
GLSLF("vec2 pos = texcoord%d;\n", tex_num);
|
|
GLSLF("vec2 size = texture_size%d;\n", tex_num);
|
|
GLSLF("vec2 pt = vec2(1.0) / size;\n");
|
|
}
|
|
|
|
static void pass_sample_separated_get_weights(struct gl_shader_cache *sc,
|
|
struct scaler *scaler)
|
|
{
|
|
gl_sc_uniform_sampler(sc, "lut", scaler->gl_target,
|
|
TEXUNIT_SCALERS + scaler->index);
|
|
|
|
int N = scaler->kernel->size;
|
|
if (N == 2) {
|
|
GLSL(vec2 c1 = texture(lut, vec2(0.5, fcoord)).RG;)
|
|
GLSL(float weights[2] = float[](c1.r, c1.g);)
|
|
} else if (N == 6) {
|
|
GLSL(vec4 c1 = texture(lut, vec2(0.25, fcoord));)
|
|
GLSL(vec4 c2 = texture(lut, vec2(0.75, fcoord));)
|
|
GLSL(float weights[6] = float[](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);)
|
|
} else {
|
|
GLSLF("float weights[%d];\n", N);
|
|
for (int n = 0; n < N / 4; n++) {
|
|
GLSLF("c = texture(lut, vec2(1.0 / %d + %d / float(%d), fcoord));\n",
|
|
N / 2, n, N / 4);
|
|
GLSLF("weights[%d] = c.r;\n", n * 4 + 0);
|
|
GLSLF("weights[%d] = c.g;\n", n * 4 + 1);
|
|
GLSLF("weights[%d] = c.b;\n", n * 4 + 2);
|
|
GLSLF("weights[%d] = c.a;\n", n * 4 + 3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle a single pass (either vertical or horizontal). The direction is given
|
|
// by the vector (d_x, d_y). If the vector is 0, then planar interpolation is
|
|
// used instead (samples from texture0 through textureN)
|
|
void pass_sample_separated_gen(struct gl_shader_cache *sc, struct scaler *scaler,
|
|
int d_x, int d_y)
|
|
{
|
|
int N = scaler->kernel->size;
|
|
bool use_ar = scaler->conf.antiring > 0;
|
|
bool planar = d_x == 0 && d_y == 0;
|
|
GLSL(vec4 color = vec4(0.0);)
|
|
GLSLF("{\n");
|
|
if (!planar) {
|
|
GLSLF("vec2 dir = vec2(%d, %d);\n", d_x, d_y);
|
|
GLSL(pt *= dir;)
|
|
GLSL(float fcoord = dot(fract(pos * size - vec2(0.5)), dir);)
|
|
GLSLF("vec2 base = pos - fcoord * pt - pt * vec2(%d);\n", N / 2 - 1);
|
|
}
|
|
GLSL(vec4 c;)
|
|
if (use_ar) {
|
|
GLSL(vec4 hi = vec4(0.0);)
|
|
GLSL(vec4 lo = vec4(1.0);)
|
|
}
|
|
pass_sample_separated_get_weights(sc, scaler);
|
|
GLSLF("// scaler samples\n");
|
|
for (int n = 0; n < N; n++) {
|
|
if (planar) {
|
|
GLSLF("c = texture(texture%d, texcoord%d);\n", n, n);
|
|
} else {
|
|
GLSLF("c = texture(tex, base + pt * vec2(%d));\n", n);
|
|
}
|
|
GLSLF("color += vec4(weights[%d]) * c;\n", n);
|
|
if (use_ar && (n == N/2-1 || n == N/2)) {
|
|
GLSL(lo = min(lo, c);)
|
|
GLSL(hi = max(hi, c);)
|
|
}
|
|
}
|
|
if (use_ar)
|
|
GLSLF("color = mix(color, clamp(color, lo, hi), %f);\n",
|
|
scaler->conf.antiring);
|
|
GLSLF("}\n");
|
|
}
|
|
|
|
void pass_sample_polar(struct gl_shader_cache *sc, struct scaler *scaler)
|
|
{
|
|
double radius = scaler->kernel->f.radius;
|
|
int bound = (int)ceil(radius);
|
|
bool use_ar = scaler->conf.antiring > 0;
|
|
GLSL(vec4 color = vec4(0.0);)
|
|
GLSLF("{\n");
|
|
GLSL(vec2 fcoord = fract(pos * size - vec2(0.5));)
|
|
GLSL(vec2 base = pos - fcoord * pt;)
|
|
GLSL(vec4 c;)
|
|
GLSLF("float w, d, wsum = 0.0;\n");
|
|
if (use_ar) {
|
|
GLSL(vec4 lo = vec4(1.0);)
|
|
GLSL(vec4 hi = vec4(0.0);)
|
|
}
|
|
gl_sc_uniform_sampler(sc, "lut", scaler->gl_target,
|
|
TEXUNIT_SCALERS + scaler->index);
|
|
GLSLF("// scaler samples\n");
|
|
for (int y = 1-bound; y <= bound; y++) {
|
|
for (int x = 1-bound; x <= bound; x++) {
|
|
// Since we can't know the subpixel position in advance, assume a
|
|
// worst case scenario
|
|
int yy = y > 0 ? y-1 : y;
|
|
int xx = x > 0 ? x-1 : x;
|
|
double dmax = sqrt(xx*xx + yy*yy);
|
|
// Skip samples definitely outside the radius
|
|
if (dmax >= radius)
|
|
continue;
|
|
GLSLF("d = length(vec2(%d, %d) - fcoord)/%f;\n", x, y, radius);
|
|
// Check for samples that might be skippable
|
|
if (dmax >= radius - 1)
|
|
GLSLF("if (d < 1.0) {\n");
|
|
GLSL(w = texture1D(lut, d).r;)
|
|
GLSL(wsum += w;)
|
|
GLSLF("c = texture(tex, base + pt * vec2(%d, %d));\n", x, y);
|
|
GLSL(color += vec4(w) * c;)
|
|
if (use_ar && x >= 0 && y >= 0 && x <= 1 && y <= 1) {
|
|
GLSL(lo = min(lo, c);)
|
|
GLSL(hi = max(hi, c);)
|
|
}
|
|
if (dmax >= radius -1)
|
|
GLSLF("}\n");
|
|
}
|
|
}
|
|
GLSL(color = color / vec4(wsum);)
|
|
if (use_ar)
|
|
GLSLF("color = mix(color, clamp(color, lo, hi), %f);\n",
|
|
scaler->conf.antiring);
|
|
GLSLF("}\n");
|
|
}
|
|
|
|
static void bicubic_calcweights(struct gl_shader_cache *sc, const char *t, const char *s)
|
|
{
|
|
// Explanation of how bicubic scaling with only 4 texel fetches is done:
|
|
// http://www.mate.tue.nl/mate/pdfs/10318.pdf
|
|
// 'Efficient GPU-Based Texture Interpolation using Uniform B-Splines'
|
|
// Explanation why this algorithm normally always blurs, even with unit
|
|
// scaling:
|
|
// http://bigwww.epfl.ch/preprints/ruijters1001p.pdf
|
|
// 'GPU Prefilter for Accurate Cubic B-spline Interpolation'
|
|
GLSLF("vec4 %s = vec4(-0.5, 0.1666, 0.3333, -0.3333) * %s"
|
|
" + vec4(1, 0, -0.5, 0.5);\n", t, s);
|
|
GLSLF("%s = %s * %s + vec4(0, 0, -0.5, 0.5);\n", t, t, s);
|
|
GLSLF("%s = %s * %s + vec4(-0.6666, 0, 0.8333, 0.1666);\n", t, t, s);
|
|
GLSLF("%s.xy *= vec2(1, 1) / vec2(%s.z, %s.w);\n", t, t, t);
|
|
GLSLF("%s.xy += vec2(1 + %s, 1 - %s);\n", t, s, s);
|
|
}
|
|
|
|
void pass_sample_bicubic_fast(struct gl_shader_cache *sc)
|
|
{
|
|
GLSL(vec4 color;)
|
|
GLSLF("{\n");
|
|
GLSL(vec2 fcoord = fract(pos * size + vec2(0.5, 0.5));)
|
|
bicubic_calcweights(sc, "parmx", "fcoord.x");
|
|
bicubic_calcweights(sc, "parmy", "fcoord.y");
|
|
GLSL(vec4 cdelta;)
|
|
GLSL(cdelta.xz = parmx.RG * vec2(-pt.x, pt.x);)
|
|
GLSL(cdelta.yw = parmy.RG * vec2(-pt.y, pt.y);)
|
|
// first y-interpolation
|
|
GLSL(vec4 ar = texture(tex, pos + cdelta.xy);)
|
|
GLSL(vec4 ag = texture(tex, pos + cdelta.xw);)
|
|
GLSL(vec4 ab = mix(ag, ar, parmy.b);)
|
|
// second y-interpolation
|
|
GLSL(vec4 br = texture(tex, pos + cdelta.zy);)
|
|
GLSL(vec4 bg = texture(tex, pos + cdelta.zw);)
|
|
GLSL(vec4 aa = mix(bg, br, parmy.b);)
|
|
// x-interpolation
|
|
GLSL(color = mix(aa, ab, parmx.b);)
|
|
GLSLF("}\n");
|
|
}
|
|
|
|
void pass_sample_oversample(struct gl_shader_cache *sc, struct scaler *scaler,
|
|
int w, int h)
|
|
{
|
|
GLSL(vec4 color;)
|
|
GLSLF("{\n");
|
|
GLSL(vec2 pos = pos + vec2(0.5) * pt;) // round to nearest
|
|
GLSL(vec2 fcoord = fract(pos * size - vec2(0.5));)
|
|
// We only need to sample from the four corner pixels since we're using
|
|
// nearest neighbour and can compute the exact transition point
|
|
GLSL(vec2 baseNW = pos - fcoord * pt;)
|
|
GLSL(vec2 baseNE = baseNW + vec2(pt.x, 0.0);)
|
|
GLSL(vec2 baseSW = baseNW + vec2(0.0, pt.y);)
|
|
GLSL(vec2 baseSE = baseNW + pt;)
|
|
// Determine the mixing coefficient vector
|
|
gl_sc_uniform_vec2(sc, "output_size", (float[2]){w, h});
|
|
GLSL(vec2 coeff = vec2((baseSE - pos) * output_size);)
|
|
GLSL(coeff = clamp(coeff, 0.0, 1.0);)
|
|
float threshold = scaler->conf.kernel.params[0];
|
|
if (threshold > 0) { // also rules out NAN
|
|
GLSLF("coeff = mix(coeff, vec2(0.0), "
|
|
"lessThanEqual(coeff, vec2(%f)));\n", threshold);
|
|
GLSLF("coeff = mix(coeff, vec2(1.0), "
|
|
"greaterThanEqual(coeff, vec2(%f)));\n", 1.0 - threshold);
|
|
}
|
|
// Compute the right blend of colors
|
|
GLSL(vec4 left = mix(texture(tex, baseSW),
|
|
texture(tex, baseNW),
|
|
coeff.y);)
|
|
GLSL(vec4 right = mix(texture(tex, baseSE),
|
|
texture(tex, baseNE),
|
|
coeff.y);)
|
|
GLSL(color = mix(right, left, coeff.x);)
|
|
GLSLF("}\n");
|
|
}
|
|
|
|
// Linearize (expand), given a TRC as input
|
|
void pass_linearize(struct gl_shader_cache *sc, enum mp_csp_trc trc)
|
|
{
|
|
if (trc == MP_CSP_TRC_LINEAR)
|
|
return;
|
|
|
|
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
|
|
switch (trc) {
|
|
case MP_CSP_TRC_SRGB:
|
|
GLSL(color.rgb = mix(color.rgb / vec3(12.92),
|
|
pow((color.rgb + vec3(0.055))/vec3(1.055),
|
|
vec3(2.4)),
|
|
lessThan(vec3(0.04045), color.rgb));)
|
|
break;
|
|
case MP_CSP_TRC_BT_1886:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.961));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA18:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.8));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA22:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(2.2));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA28:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(2.8));)
|
|
break;
|
|
case MP_CSP_TRC_PRO_PHOTO:
|
|
GLSL(color.rgb = mix(color.rgb / vec3(16.0),
|
|
pow(color.rgb, vec3(1.8)),
|
|
lessThan(vec3(0.03125), color.rgb));)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Delinearize (compress), given a TRC as output
|
|
void pass_delinearize(struct gl_shader_cache *sc, enum mp_csp_trc trc)
|
|
{
|
|
if (trc == MP_CSP_TRC_LINEAR)
|
|
return;
|
|
|
|
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
|
|
switch (trc) {
|
|
case MP_CSP_TRC_SRGB:
|
|
GLSL(color.rgb = mix(color.rgb * vec3(12.92),
|
|
vec3(1.055) * pow(color.rgb, vec3(1.0/2.4))
|
|
- vec3(0.055),
|
|
lessThanEqual(vec3(0.0031308), color.rgb));)
|
|
break;
|
|
case MP_CSP_TRC_BT_1886:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.0/1.961));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA18:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.0/1.8));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA22:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.0/2.2));)
|
|
break;
|
|
case MP_CSP_TRC_GAMMA28:
|
|
GLSL(color.rgb = pow(color.rgb, vec3(1.0/2.8));)
|
|
break;
|
|
case MP_CSP_TRC_PRO_PHOTO:
|
|
GLSL(color.rgb = mix(color.rgb * vec3(16.0),
|
|
pow(color.rgb, vec3(1.0/1.8)),
|
|
lessThanEqual(vec3(0.001953), color.rgb));)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Wide usage friendly PRNG, shamelessly stolen from a GLSL tricks forum post.
|
|
// Obtain random numbers by calling rand(h), followed by h = permute(h) to
|
|
// update the state.
|
|
static void prng_init(struct gl_shader_cache *sc, AVLFG *lfg)
|
|
{
|
|
GLSLH(float mod289(float x) { return x - floor(x / 289.0) * 289.0; })
|
|
GLSLH(float permute(float x) { return mod289((34.0*x + 1.0) * x); })
|
|
GLSLH(float rand(float x) { return fract(x / 41.0); })
|
|
|
|
// Initialize the PRNG by hashing the position + a random uniform
|
|
GLSL(vec3 _m = vec3(pos, random) + vec3(1.0);)
|
|
GLSL(float h = permute(permute(permute(_m.x)+_m.y)+_m.z);)
|
|
gl_sc_uniform_f(sc, "random", (double)av_lfg_get(lfg) / UINT32_MAX);
|
|
}
|
|
|
|
struct deband_opts {
|
|
int enabled;
|
|
int iterations;
|
|
float threshold;
|
|
float range;
|
|
float grain;
|
|
};
|
|
|
|
const struct deband_opts deband_opts_def = {
|
|
.iterations = 4,
|
|
.threshold = 64.0,
|
|
.range = 8.0,
|
|
.grain = 48.0,
|
|
};
|
|
|
|
#define OPT_BASE_STRUCT struct deband_opts
|
|
const struct m_sub_options deband_conf = {
|
|
.opts = (const m_option_t[]) {
|
|
OPT_INTRANGE("iterations", iterations, 0, 1, 16),
|
|
OPT_FLOATRANGE("threshold", threshold, 0, 0.0, 4096.0),
|
|
OPT_FLOATRANGE("range", range, 0, 1.0, 64.0),
|
|
OPT_FLOATRANGE("grain", grain, 0, 0.0, 4096.0),
|
|
{0}
|
|
},
|
|
.size = sizeof(struct deband_opts),
|
|
.defaults = &deband_opts_def,
|
|
};
|
|
|
|
// Stochastically sample a debanded result from a given texture
|
|
void pass_sample_deband(struct gl_shader_cache *sc, struct deband_opts *opts,
|
|
int tex_num, GLenum tex_target, float tex_mul,
|
|
float img_w, float img_h, AVLFG *lfg)
|
|
{
|
|
// Set up common variables and initialize the PRNG
|
|
GLSLF("// debanding (tex %d)\n", tex_num);
|
|
sampler_prelude(sc, tex_num);
|
|
prng_init(sc, lfg);
|
|
|
|
// Helper: Compute a stochastic approximation of the avg color around a
|
|
// pixel
|
|
GLSLHF("vec4 average(%s tex, vec2 pos, float range, inout float h) {",
|
|
mp_sampler_type(tex_target));
|
|
// Compute a random rangle and distance
|
|
GLSLH(float dist = rand(h) * range; h = permute(h);)
|
|
GLSLH(float dir = rand(h) * 6.2831853; h = permute(h);)
|
|
|
|
GLSLHF("vec2 pt = dist / vec2(%f, %f);\n", img_w, img_h);
|
|
GLSLH(vec2 o = vec2(cos(dir), sin(dir));)
|
|
|
|
// Sample at quarter-turn intervals around the source pixel
|
|
GLSLH(vec4 ref[4];)
|
|
GLSLH(ref[0] = texture(tex, pos + pt * vec2( o.x, o.y));)
|
|
GLSLH(ref[1] = texture(tex, pos + pt * vec2(-o.y, o.x));)
|
|
GLSLH(ref[2] = texture(tex, pos + pt * vec2(-o.x, -o.y));)
|
|
GLSLH(ref[3] = texture(tex, pos + pt * vec2( o.y, -o.x));)
|
|
|
|
// Return the (normalized) average
|
|
GLSLHF("return %f * (ref[0] + ref[1] + ref[2] + ref[3])/4.0;\n", tex_mul);
|
|
GLSLH(})
|
|
|
|
// Sample the source pixel
|
|
GLSLF("vec4 color = %f * texture(tex, pos);\n", tex_mul);
|
|
GLSLF("vec4 avg, diff;\n");
|
|
for (int i = 1; i <= opts->iterations; i++) {
|
|
// Sample the average pixel and use it instead of the original if
|
|
// the difference is below the given threshold
|
|
GLSLF("avg = average(tex, pos, %f, h);\n", i * opts->range);
|
|
GLSL(diff = abs(color - avg);)
|
|
GLSLF("color = mix(avg, color, greaterThan(diff, vec4(%f)));\n",
|
|
opts->threshold / (i * 16384.0));
|
|
}
|
|
|
|
// Add some random noise to smooth out residual differences
|
|
GLSL(vec3 noise;)
|
|
GLSL(noise.x = rand(h); h = permute(h);)
|
|
GLSL(noise.y = rand(h); h = permute(h);)
|
|
GLSL(noise.z = rand(h); h = permute(h);)
|
|
GLSLF("color.xyz += %f * (noise - vec3(0.5));\n", opts->grain/8192.0);
|
|
}
|
|
|
|
void pass_sample_unsharp(struct gl_shader_cache *sc, float param)
|
|
{
|
|
GLSLF("// unsharp\n");
|
|
sampler_prelude(sc, 0);
|
|
|
|
GLSL(vec4 color;)
|
|
GLSLF("{\n");
|
|
GLSL(vec2 st1 = pt * 1.2;)
|
|
GLSL(vec4 p = texture(tex, pos);)
|
|
GLSL(vec4 sum1 = texture(tex, pos + st1 * vec2(+1, +1))
|
|
+ texture(tex, pos + st1 * vec2(+1, -1))
|
|
+ texture(tex, pos + st1 * vec2(-1, +1))
|
|
+ texture(tex, pos + st1 * vec2(-1, -1));)
|
|
GLSL(vec2 st2 = pt * 1.5;)
|
|
GLSL(vec4 sum2 = texture(tex, pos + st2 * vec2(+1, 0))
|
|
+ texture(tex, pos + st2 * vec2( 0, +1))
|
|
+ texture(tex, pos + st2 * vec2(-1, 0))
|
|
+ texture(tex, pos + st2 * vec2( 0, -1));)
|
|
GLSL(vec4 t = p * 0.859375 + sum2 * -0.1171875 + sum1 * -0.09765625;)
|
|
GLSLF("color = p + t * %f;\n", param);
|
|
GLSLF("}\n");
|
|
}
|