mirror of https://github.com/mpv-player/mpv
1345 lines
47 KiB
C
1345 lines
47 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include <libavutil/mem.h>
|
|
#include <libavutil/common.h>
|
|
#include <libavutil/display.h>
|
|
#include <libavutil/dovi_meta.h>
|
|
#include <libavutil/bswap.h>
|
|
#include <libavutil/hwcontext.h>
|
|
#include <libavutil/intreadwrite.h>
|
|
#include <libavutil/rational.h>
|
|
#include <libavcodec/avcodec.h>
|
|
#include <libavutil/mastering_display_metadata.h>
|
|
#include <libplacebo/utils/libav.h>
|
|
|
|
#include "mpv_talloc.h"
|
|
|
|
#include "common/av_common.h"
|
|
#include "common/common.h"
|
|
#include "fmt-conversion.h"
|
|
#include "hwdec.h"
|
|
#include "mp_image.h"
|
|
#include "osdep/threads.h"
|
|
#include "sws_utils.h"
|
|
#include "out/placebo/utils.h"
|
|
|
|
// Determine strides, plane sizes, and total required size for an image
|
|
// allocation. Returns total size on success, <0 on error. Unused planes
|
|
// have out_stride/out_plane_size to 0, and out_plane_offset set to -1 up
|
|
// until MP_MAX_PLANES-1.
|
|
static int mp_image_layout(int imgfmt, int w, int h, int stride_align,
|
|
int out_stride[MP_MAX_PLANES],
|
|
int out_plane_offset[MP_MAX_PLANES],
|
|
int out_plane_size[MP_MAX_PLANES])
|
|
{
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
|
|
|
|
w = MP_ALIGN_UP(w, desc.align_x);
|
|
h = MP_ALIGN_UP(h, desc.align_y);
|
|
|
|
struct mp_image_params params = {.imgfmt = imgfmt, .w = w, .h = h};
|
|
|
|
if (!mp_image_params_valid(¶ms) || desc.flags & MP_IMGFLAG_HWACCEL)
|
|
return -1;
|
|
|
|
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
|
|
// top/right border. This is needed for correct handling of such
|
|
// images in filter and VO code (e.g. vo_vdpau or vo_gpu).
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
int alloc_w = mp_chroma_div_up(w, desc.xs[n]);
|
|
int alloc_h = MP_ALIGN_UP(h, 32) >> desc.ys[n];
|
|
int line_bytes = (alloc_w * desc.bpp[n] + 7) / 8;
|
|
out_stride[n] = MP_ALIGN_NPOT(line_bytes, stride_align);
|
|
out_plane_size[n] = out_stride[n] * alloc_h;
|
|
}
|
|
if (desc.flags & MP_IMGFLAG_PAL)
|
|
out_plane_size[1] = AVPALETTE_SIZE;
|
|
|
|
int sum = 0;
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
out_plane_offset[n] = out_plane_size[n] ? sum : -1;
|
|
sum += out_plane_size[n];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
// Return the total size needed for an image allocation of the given
|
|
// configuration (imgfmt, w, h must be set). Returns -1 on error.
|
|
// Assumes the allocation is already aligned on stride_align (otherwise you
|
|
// need to add padding yourself).
|
|
int mp_image_get_alloc_size(int imgfmt, int w, int h, int stride_align)
|
|
{
|
|
int stride[MP_MAX_PLANES];
|
|
int plane_offset[MP_MAX_PLANES];
|
|
int plane_size[MP_MAX_PLANES];
|
|
return mp_image_layout(imgfmt, w, h, stride_align, stride, plane_offset,
|
|
plane_size);
|
|
}
|
|
|
|
// Fill the mpi->planes and mpi->stride fields of the given mpi with data
|
|
// from buffer according to the mpi's w/h/imgfmt fields. See mp_image_from_buffer
|
|
// aboud remarks how to allocate/use buffer/buffer_size.
|
|
// This does not free the data. You are expected to setup refcounting by
|
|
// setting mp_image.bufs before or after this function is called.
|
|
// Returns true on success, false on failure.
|
|
static bool mp_image_fill_alloc(struct mp_image *mpi, int stride_align,
|
|
void *buffer, int buffer_size)
|
|
{
|
|
int stride[MP_MAX_PLANES];
|
|
int plane_offset[MP_MAX_PLANES];
|
|
int plane_size[MP_MAX_PLANES];
|
|
int size = mp_image_layout(mpi->imgfmt, mpi->w, mpi->h, stride_align,
|
|
stride, plane_offset, plane_size);
|
|
if (size < 0 || size > buffer_size)
|
|
return false;
|
|
|
|
int align = MP_ALIGN_UP((uintptr_t)buffer, stride_align) - (uintptr_t)buffer;
|
|
if (buffer_size - size < align)
|
|
return false;
|
|
uint8_t *s = buffer;
|
|
s += align;
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
mpi->planes[n] = plane_offset[n] >= 0 ? s + plane_offset[n] : NULL;
|
|
mpi->stride[n] = stride[n];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Create a mp_image from the provided buffer. The mp_image is filled according
|
|
// to the imgfmt/w/h parameters, and respecting the stride_align parameter to
|
|
// align the plane start pointers and strides. Once the last reference to the
|
|
// returned image is destroyed, free(free_opaque, buffer) is called. (Be aware
|
|
// that this can happen from any thread.)
|
|
// The allocated size of buffer must be given by buffer_size. buffer_size should
|
|
// be at least the value returned by mp_image_get_alloc_size(). If buffer is not
|
|
// already aligned to stride_align, the function will attempt to align the
|
|
// pointer itself by incrementing the buffer pointer until their alignment is
|
|
// achieved (if buffer_size is not large enough to allow aligning the buffer
|
|
// safely, the function fails). To be safe, you may want to overallocate the
|
|
// buffer by stride_align bytes, and include the overallocation in buffer_size.
|
|
// Returns NULL on failure. On failure, the free() callback is not called.
|
|
struct mp_image *mp_image_from_buffer(int imgfmt, int w, int h, int stride_align,
|
|
uint8_t *buffer, int buffer_size,
|
|
void *free_opaque,
|
|
void (*free)(void *opaque, uint8_t *data))
|
|
{
|
|
struct mp_image *mpi = mp_image_new_dummy_ref(NULL);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
mp_image_set_size(mpi, w, h);
|
|
|
|
if (!mp_image_fill_alloc(mpi, stride_align, buffer, buffer_size))
|
|
goto fail;
|
|
|
|
mpi->bufs[0] = av_buffer_create(buffer, buffer_size, free, free_opaque, 0);
|
|
if (!mpi->bufs[0])
|
|
goto fail;
|
|
|
|
return mpi;
|
|
|
|
fail:
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
|
|
static bool mp_image_alloc_planes(struct mp_image *mpi)
|
|
{
|
|
assert(!mpi->planes[0]);
|
|
assert(!mpi->bufs[0]);
|
|
|
|
int align = MP_IMAGE_BYTE_ALIGN;
|
|
|
|
int size = mp_image_get_alloc_size(mpi->imgfmt, mpi->w, mpi->h, align);
|
|
if (size < 0)
|
|
return false;
|
|
|
|
// Note: mp_image_pool assumes this creates only 1 AVBufferRef.
|
|
mpi->bufs[0] = av_buffer_alloc(size + align);
|
|
if (!mpi->bufs[0])
|
|
return false;
|
|
|
|
if (!mp_image_fill_alloc(mpi, align, mpi->bufs[0]->data, mpi->bufs[0]->size)) {
|
|
av_buffer_unref(&mpi->bufs[0]);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
|
|
{
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
|
|
mpi->params.imgfmt = fmt.id;
|
|
mpi->fmt = fmt;
|
|
mpi->imgfmt = fmt.id;
|
|
mpi->num_planes = fmt.num_planes;
|
|
}
|
|
|
|
static void mp_image_destructor(void *ptr)
|
|
{
|
|
mp_image_t *mpi = ptr;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
av_buffer_unref(&mpi->bufs[p]);
|
|
av_buffer_unref(&mpi->hwctx);
|
|
av_buffer_unref(&mpi->icc_profile);
|
|
av_buffer_unref(&mpi->a53_cc);
|
|
av_buffer_unref(&mpi->dovi);
|
|
av_buffer_unref(&mpi->film_grain);
|
|
for (int n = 0; n < mpi->num_ff_side_data; n++)
|
|
av_buffer_unref(&mpi->ff_side_data[n].buf);
|
|
talloc_free(mpi->ff_side_data);
|
|
}
|
|
|
|
int mp_chroma_div_up(int size, int shift)
|
|
{
|
|
return (size + (1 << shift) - 1) >> shift;
|
|
}
|
|
|
|
// Return the storage width in pixels of the given plane.
|
|
int mp_image_plane_w(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->w, mpi->fmt.xs[plane]);
|
|
}
|
|
|
|
// Return the storage height in pixels of the given plane.
|
|
int mp_image_plane_h(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->h, mpi->fmt.ys[plane]);
|
|
}
|
|
|
|
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
|
|
void mp_image_set_size(struct mp_image *mpi, int w, int h)
|
|
{
|
|
assert(w >= 0 && h >= 0);
|
|
mpi->w = mpi->params.w = w;
|
|
mpi->h = mpi->params.h = h;
|
|
}
|
|
|
|
void mp_image_set_params(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
// possibly initialize other stuff
|
|
mp_image_setfmt(image, params->imgfmt);
|
|
mp_image_set_size(image, params->w, params->h);
|
|
image->params = *params;
|
|
}
|
|
|
|
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
|
|
{
|
|
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
|
|
talloc_set_destructor(mpi, mp_image_destructor);
|
|
|
|
mp_image_set_size(mpi, w, h);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
if (!mp_image_alloc_planes(mpi)) {
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
return mpi;
|
|
}
|
|
|
|
int mp_image_approx_byte_size(struct mp_image *img)
|
|
{
|
|
int total = sizeof(*img);
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
struct AVBufferRef *buf = img->bufs[n];
|
|
if (buf)
|
|
total += buf->size;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
struct mp_image *mp_image_new_copy(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
|
|
if (!new)
|
|
return NULL;
|
|
mp_image_copy(new, img);
|
|
mp_image_copy_attributes(new, img);
|
|
return new;
|
|
}
|
|
|
|
// Make dst take over the image data of src, and free src.
|
|
// This is basically a safe version of *dst = *src; free(src);
|
|
// Only works with ref-counted images, and can't change image size/format.
|
|
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
|
|
assert(dst->bufs[0] && src->bufs[0]);
|
|
|
|
mp_image_destructor(dst); // unref old
|
|
talloc_free_children(dst);
|
|
|
|
*dst = *src;
|
|
|
|
*src = (struct mp_image){0};
|
|
talloc_free(src);
|
|
}
|
|
|
|
// Unref most data buffer (and clear the data array), but leave other fields
|
|
// allocated. In particular, mp_image.hwctx is preserved.
|
|
void mp_image_unref_data(struct mp_image *img)
|
|
{
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
img->planes[n] = NULL;
|
|
img->stride[n] = 0;
|
|
av_buffer_unref(&img->bufs[n]);
|
|
}
|
|
}
|
|
|
|
static void ref_buffer(AVBufferRef **dst)
|
|
{
|
|
if (*dst) {
|
|
*dst = av_buffer_ref(*dst);
|
|
MP_HANDLE_OOM(*dst);
|
|
}
|
|
}
|
|
|
|
// Return a new reference to img. The returned reference is owned by the caller,
|
|
// while img is left untouched.
|
|
struct mp_image *mp_image_new_ref(struct mp_image *img)
|
|
{
|
|
if (!img)
|
|
return NULL;
|
|
|
|
if (!img->bufs[0])
|
|
return mp_image_new_copy(img);
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
ref_buffer(&new->bufs[p]);
|
|
|
|
ref_buffer(&new->hwctx);
|
|
ref_buffer(&new->icc_profile);
|
|
ref_buffer(&new->a53_cc);
|
|
ref_buffer(&new->dovi);
|
|
ref_buffer(&new->film_grain);
|
|
|
|
new->ff_side_data = talloc_memdup(NULL, new->ff_side_data,
|
|
new->num_ff_side_data * sizeof(new->ff_side_data[0]));
|
|
for (int n = 0; n < new->num_ff_side_data; n++)
|
|
ref_buffer(&new->ff_side_data[n].buf);
|
|
|
|
return new;
|
|
}
|
|
|
|
struct free_args {
|
|
void *arg;
|
|
void (*free)(void *arg);
|
|
};
|
|
|
|
static void call_free(void *opaque, uint8_t *data)
|
|
{
|
|
struct free_args *args = opaque;
|
|
args->free(args->arg);
|
|
talloc_free(args);
|
|
}
|
|
|
|
// Create a new mp_image based on img, but don't set any buffers.
|
|
// Using this is only valid until the original img is unreferenced (including
|
|
// implicit unreferencing of the data by mp_image_make_writeable()), unless
|
|
// a new reference is set.
|
|
struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = img ? *img : (struct mp_image){0};
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
new->bufs[p] = NULL;
|
|
new->hwctx = NULL;
|
|
new->icc_profile = NULL;
|
|
new->a53_cc = NULL;
|
|
new->dovi = NULL;
|
|
new->film_grain = NULL;
|
|
new->num_ff_side_data = 0;
|
|
new->ff_side_data = NULL;
|
|
return new;
|
|
}
|
|
|
|
// Return a reference counted reference to img. If the reference count reaches
|
|
// 0, call free(free_arg). The data passed by img must not be free'd before
|
|
// that. The new reference will be writeable.
|
|
// On allocation failure, unref the frame and return NULL.
|
|
// This is only used for hw decoding; this is important, because libav* expects
|
|
// all plane data to be accounted for by AVBufferRefs.
|
|
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
|
|
void (*free)(void *arg))
|
|
{
|
|
struct mp_image *new = mp_image_new_dummy_ref(img);
|
|
|
|
struct free_args *args = talloc_ptrtype(NULL, args);
|
|
*args = (struct free_args){free_arg, free};
|
|
new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
|
|
AV_BUFFER_FLAG_READONLY);
|
|
if (new->bufs[0])
|
|
return new;
|
|
talloc_free(new);
|
|
return NULL;
|
|
}
|
|
|
|
bool mp_image_is_writeable(struct mp_image *img)
|
|
{
|
|
if (!img->bufs[0])
|
|
return true; // not ref-counted => always considered writeable
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
if (!img->bufs[p])
|
|
break;
|
|
if (!av_buffer_is_writable(img->bufs[p]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Make the image data referenced by img writeable. This allocates new data
|
|
// if the data wasn't already writeable, and img->planes[] and img->stride[]
|
|
// will be set to the copy.
|
|
// Returns success; if false is returned, the image could not be made writeable.
|
|
bool mp_image_make_writeable(struct mp_image *img)
|
|
{
|
|
if (mp_image_is_writeable(img))
|
|
return true;
|
|
|
|
struct mp_image *new = mp_image_new_copy(img);
|
|
if (!new)
|
|
return false;
|
|
mp_image_steal_data(img, new);
|
|
assert(mp_image_is_writeable(img));
|
|
return true;
|
|
}
|
|
|
|
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
|
|
// Only unrefs *p_img and sets it to NULL if out of memory.
|
|
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
|
|
{
|
|
if (*p_img != new_value) {
|
|
talloc_free(*p_img);
|
|
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
|
|
}
|
|
}
|
|
|
|
// Mere helper function (mp_image can be directly free'd with talloc_free)
|
|
void mp_image_unrefp(struct mp_image **p_img)
|
|
{
|
|
talloc_free(*p_img);
|
|
*p_img = NULL;
|
|
}
|
|
|
|
void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
|
|
int dstStride, int srcStride)
|
|
{
|
|
if (bytesPerLine == dstStride && dstStride == srcStride && height) {
|
|
if (srcStride < 0) {
|
|
src = (uint8_t*)src + (height - 1) * srcStride;
|
|
dst = (uint8_t*)dst + (height - 1) * dstStride;
|
|
srcStride = -srcStride;
|
|
}
|
|
|
|
memcpy(dst, src, srcStride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
memcpy(dst, src, bytesPerLine);
|
|
src = (uint8_t*)src + srcStride;
|
|
dst = (uint8_t*)dst + dstStride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt);
|
|
assert(dst->w == src->w && dst->h == src->h);
|
|
assert(mp_image_is_writeable(dst));
|
|
for (int n = 0; n < dst->num_planes; n++) {
|
|
int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
|
|
int plane_h = mp_image_plane_h(dst, n);
|
|
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, plane_h,
|
|
dst->stride[n], src->stride[n]);
|
|
}
|
|
if (dst->fmt.flags & MP_IMGFLAG_PAL)
|
|
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
|
|
}
|
|
|
|
static enum pl_color_system mp_image_params_get_forced_csp(struct mp_image_params *params)
|
|
{
|
|
int imgfmt = params->hw_subfmt ? params->hw_subfmt : params->imgfmt;
|
|
enum pl_color_system csp = mp_imgfmt_get_forced_csp(imgfmt);
|
|
|
|
if (csp == PL_COLOR_SYSTEM_RGB && params->repr.sys == PL_COLOR_SYSTEM_XYZ)
|
|
csp = PL_COLOR_SYSTEM_XYZ;
|
|
|
|
return csp;
|
|
}
|
|
|
|
static void assign_bufref(AVBufferRef **dst, AVBufferRef *new)
|
|
{
|
|
av_buffer_unref(dst);
|
|
if (new) {
|
|
*dst = av_buffer_ref(new);
|
|
MP_HANDLE_OOM(*dst);
|
|
}
|
|
}
|
|
|
|
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst != src);
|
|
|
|
dst->pict_type = src->pict_type;
|
|
dst->fields = src->fields;
|
|
dst->pts = src->pts;
|
|
dst->dts = src->dts;
|
|
dst->pkt_duration = src->pkt_duration;
|
|
dst->params.rotate = src->params.rotate;
|
|
dst->params.stereo3d = src->params.stereo3d;
|
|
dst->params.p_w = src->params.p_w;
|
|
dst->params.p_h = src->params.p_h;
|
|
dst->params.color = src->params.color;
|
|
dst->params.repr = src->params.repr;
|
|
dst->params.light = src->params.light;
|
|
dst->params.chroma_location = src->params.chroma_location;
|
|
dst->params.crop = src->params.crop;
|
|
dst->nominal_fps = src->nominal_fps;
|
|
dst->params.primaries_orig = src->params.primaries_orig;
|
|
dst->params.transfer_orig = src->params.transfer_orig;
|
|
dst->params.sys_orig = src->params.sys_orig;
|
|
|
|
// ensure colorspace consistency
|
|
enum pl_color_system dst_forced_csp = mp_image_params_get_forced_csp(&dst->params);
|
|
if (mp_image_params_get_forced_csp(&src->params) != dst_forced_csp) {
|
|
dst->params.repr.sys = dst_forced_csp != PL_COLOR_SYSTEM_UNKNOWN ?
|
|
dst_forced_csp :
|
|
mp_csp_guess_colorspace(src->w, src->h);
|
|
}
|
|
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
|
|
if (dst->planes[1] && src->planes[1]) {
|
|
if (mp_image_make_writeable(dst))
|
|
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
|
|
}
|
|
}
|
|
assign_bufref(&dst->icc_profile, src->icc_profile);
|
|
assign_bufref(&dst->dovi, src->dovi);
|
|
assign_bufref(&dst->film_grain, src->film_grain);
|
|
assign_bufref(&dst->a53_cc, src->a53_cc);
|
|
|
|
for (int n = 0; n < dst->num_ff_side_data; n++)
|
|
av_buffer_unref(&dst->ff_side_data[n].buf);
|
|
|
|
MP_RESIZE_ARRAY(NULL, dst->ff_side_data, src->num_ff_side_data);
|
|
dst->num_ff_side_data = src->num_ff_side_data;
|
|
|
|
for (int n = 0; n < dst->num_ff_side_data; n++) {
|
|
dst->ff_side_data[n].type = src->ff_side_data[n].type;
|
|
dst->ff_side_data[n].buf = av_buffer_ref(src->ff_side_data[n].buf);
|
|
MP_HANDLE_OOM(dst->ff_side_data[n].buf);
|
|
}
|
|
}
|
|
|
|
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
|
|
// x0/y0 must be naturally aligned.
|
|
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
for (int p = 0; p < img->num_planes; ++p) {
|
|
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
|
|
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
|
|
}
|
|
mp_image_set_size(img, x1 - x0, y1 - y0);
|
|
}
|
|
|
|
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
|
|
{
|
|
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
}
|
|
|
|
// Repeatedly write count patterns of src[0..src_size] to p.
|
|
static void memset_pattern(void *p, size_t count, uint8_t *src, size_t src_size)
|
|
{
|
|
assert(src_size >= 1);
|
|
|
|
if (src_size == 1) {
|
|
memset(p, src[0], count);
|
|
} else if (src_size == 2) { // >8 bit YUV => common, be slightly less naive
|
|
uint16_t val;
|
|
memcpy(&val, src, 2);
|
|
uint16_t *p16 = p;
|
|
while (count--)
|
|
*p16++ = val;
|
|
} else {
|
|
while (count--) {
|
|
memcpy(p, src, src_size);
|
|
p = (char *)p + src_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool endian_swap_bytes(void *d, size_t bytes, size_t word_size)
|
|
{
|
|
if (word_size != 2 && word_size != 4)
|
|
return false;
|
|
|
|
size_t num_words = bytes / word_size;
|
|
uint8_t *ud = d;
|
|
|
|
switch (word_size) {
|
|
case 2:
|
|
for (size_t x = 0; x < num_words; x++)
|
|
AV_WL16(ud + x * 2, AV_RB16(ud + x * 2));
|
|
break;
|
|
case 4:
|
|
for (size_t x = 0; x < num_words; x++)
|
|
AV_WL32(ud + x * 2, AV_RB32(ud + x * 2));
|
|
break;
|
|
default:
|
|
MP_ASSERT_UNREACHABLE();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Bottom/right border is allowed not to be aligned, but it might implicitly
|
|
// overwrite pixel data until the alignment (align_x/align_y) is reached.
|
|
// Alpha is cleared to 0 (fully transparent).
|
|
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
struct mp_image area = *img;
|
|
struct mp_imgfmt_desc *fmt = &area.fmt;
|
|
mp_image_crop(&area, x0, y0, x1, y1);
|
|
|
|
// "Black" color for each plane.
|
|
uint8_t plane_clear[MP_MAX_PLANES][8] = {0};
|
|
int plane_size[MP_MAX_PLANES] = {0};
|
|
int misery = 1; // pixel group width
|
|
|
|
// YUV integer chroma needs special consideration, and technically luma is
|
|
// usually not 0 either.
|
|
if ((fmt->flags & (MP_IMGFLAG_HAS_COMPS | MP_IMGFLAG_PACKED_SS_YUV)) &&
|
|
(fmt->flags & MP_IMGFLAG_TYPE_MASK) == MP_IMGFLAG_TYPE_UINT &&
|
|
(fmt->flags & MP_IMGFLAG_COLOR_MASK) == MP_IMGFLAG_COLOR_YUV)
|
|
{
|
|
uint64_t plane_clear_i[MP_MAX_PLANES] = {0};
|
|
|
|
// Need to handle "multiple" pixels with packed YUV.
|
|
uint8_t luma_offsets[4] = {0};
|
|
if (fmt->flags & MP_IMGFLAG_PACKED_SS_YUV) {
|
|
misery = fmt->align_x;
|
|
if (misery <= MP_ARRAY_SIZE(luma_offsets)) // ignore if out of bounds
|
|
mp_imgfmt_get_packed_yuv_locations(fmt->id, luma_offsets);
|
|
}
|
|
|
|
for (int c = 0; c < 4; c++) {
|
|
struct mp_imgfmt_comp_desc *cd = &fmt->comps[c];
|
|
int plane_bits = fmt->bpp[cd->plane] * misery;
|
|
if (plane_bits <= 64 && plane_bits % 8u == 0 && cd->size) {
|
|
plane_size[cd->plane] = plane_bits / 8u;
|
|
int depth = cd->size + MPMIN(cd->pad, 0);
|
|
double m, o;
|
|
mp_get_csp_uint_mul(area.params.repr.sys,
|
|
area.params.repr.levels,
|
|
depth, c + 1, &m, &o);
|
|
uint64_t val = MPCLAMP(lrint((0 - o) / m), 0, 1ull << depth);
|
|
plane_clear_i[cd->plane] |= val << cd->offset;
|
|
for (int x = 1; x < (c ? 0 : misery); x++)
|
|
plane_clear_i[cd->plane] |= val << luma_offsets[x];
|
|
}
|
|
}
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
if (!plane_clear_i[p])
|
|
plane_size[p] = 0;
|
|
memcpy(&plane_clear[p][0], &plane_clear_i[p], 8); // endian dependent
|
|
|
|
if (fmt->endian_shift) {
|
|
endian_swap_bytes(&plane_clear[p][0], plane_size[p],
|
|
1 << fmt->endian_shift);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int p = 0; p < area.num_planes; p++) {
|
|
int p_h = mp_image_plane_h(&area, p);
|
|
int p_w = mp_image_plane_w(&area, p);
|
|
for (int y = 0; y < p_h; y++) {
|
|
void *ptr = area.planes[p] + (ptrdiff_t)area.stride[p] * y;
|
|
if (plane_size[p]) {
|
|
memset_pattern(ptr, p_w / misery, plane_clear[p], plane_size[p]);
|
|
} else {
|
|
memset(ptr, 0, mp_image_plane_bytes(&area, p, 0, area.w));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_clear_rc(struct mp_image *mpi, struct mp_rect rc)
|
|
{
|
|
mp_image_clear(mpi, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
}
|
|
|
|
// Clear the are of the image _not_ covered by rc.
|
|
void mp_image_clear_rc_inv(struct mp_image *mpi, struct mp_rect rc)
|
|
{
|
|
struct mp_rect clr[4];
|
|
int cnt = mp_rect_subtract(&(struct mp_rect){0, 0, mpi->w, mpi->h}, &rc, clr);
|
|
for (int n = 0; n < cnt; n++)
|
|
mp_image_clear_rc(mpi, clr[n]);
|
|
}
|
|
|
|
void mp_image_vflip(struct mp_image *img)
|
|
{
|
|
for (int p = 0; p < img->num_planes; p++) {
|
|
int plane_h = mp_image_plane_h(img, p);
|
|
img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
|
|
img->stride[p] = -img->stride[p];
|
|
}
|
|
}
|
|
|
|
bool mp_image_crop_valid(const struct mp_image_params *p)
|
|
{
|
|
return p->crop.x1 > p->crop.x0 && p->crop.y1 > p->crop.y0 &&
|
|
p->crop.x0 >= 0 && p->crop.y0 >= 0 &&
|
|
p->crop.x1 <= p->w && p->crop.y1 <= p->h;
|
|
}
|
|
|
|
// Display size derived from image size and pixel aspect ratio.
|
|
void mp_image_params_get_dsize(const struct mp_image_params *p,
|
|
int *d_w, int *d_h)
|
|
{
|
|
if (mp_image_crop_valid(p))
|
|
{
|
|
*d_w = mp_rect_w(p->crop);
|
|
*d_h = mp_rect_h(p->crop);
|
|
} else {
|
|
*d_w = p->w;
|
|
*d_h = p->h;
|
|
}
|
|
|
|
if (p->p_w > p->p_h && p->p_h >= 1)
|
|
*d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
|
|
if (p->p_h > p->p_w && p->p_w >= 1)
|
|
*d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
|
|
}
|
|
|
|
void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
|
|
{
|
|
AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
|
|
p->p_w = ds.num;
|
|
p->p_h = ds.den;
|
|
}
|
|
|
|
char *mp_image_params_to_str_buf(char *b, size_t bs,
|
|
const struct mp_image_params *p)
|
|
{
|
|
if (p && p->imgfmt) {
|
|
snprintf(b, bs, "%dx%d", p->w, p->h);
|
|
if (p->p_w != p->p_h || !p->p_w)
|
|
mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
|
|
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
|
|
if (p->hw_subfmt)
|
|
mp_snprintf_cat(b, bs, "[%s]", mp_imgfmt_to_name(p->hw_subfmt));
|
|
mp_snprintf_cat(b, bs, " %s/%s/%s/%s/%s",
|
|
m_opt_choice_str(pl_csp_names, p->repr.sys),
|
|
m_opt_choice_str(pl_csp_prim_names, p->color.primaries),
|
|
m_opt_choice_str(pl_csp_trc_names, p->color.transfer),
|
|
m_opt_choice_str(pl_csp_levels_names, p->repr.levels),
|
|
m_opt_choice_str(mp_csp_light_names, p->light));
|
|
mp_snprintf_cat(b, bs, " CL=%s",
|
|
m_opt_choice_str(pl_chroma_names, p->chroma_location));
|
|
if (mp_image_crop_valid(p)) {
|
|
mp_snprintf_cat(b, bs, " crop=%dx%d+%d+%d", mp_rect_w(p->crop),
|
|
mp_rect_h(p->crop), p->crop.x0, p->crop.y0);
|
|
}
|
|
if (p->rotate)
|
|
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
|
|
if (p->stereo3d > 0) {
|
|
mp_snprintf_cat(b, bs, " stereo=%s",
|
|
MP_STEREO3D_NAME_DEF(p->stereo3d, "?"));
|
|
}
|
|
if (p->repr.alpha) {
|
|
mp_snprintf_cat(b, bs, " A=%s",
|
|
m_opt_choice_str(pl_alpha_names, p->repr.alpha));
|
|
}
|
|
} else {
|
|
snprintf(b, bs, "???");
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Return whether the image parameters are valid.
|
|
// Some non-essential fields are allowed to be unset (like colorspace flags).
|
|
bool mp_image_params_valid(const struct mp_image_params *p)
|
|
{
|
|
// av_image_check_size has similar checks and triggers around 16000*16000
|
|
// It's mostly needed to deal with the fact that offsets are sometimes
|
|
// ints. We also should (for now) do the same as FFmpeg, to be sure large
|
|
// images don't crash with libswscale or when wrapping with AVFrame and
|
|
// passing the result to filters.
|
|
if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
|
|
return false;
|
|
|
|
if (p->p_w < 0 || p->p_h < 0)
|
|
return false;
|
|
|
|
if (p->rotate < 0 || p->rotate >= 360)
|
|
return false;
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
|
|
if (!desc.id)
|
|
return false;
|
|
|
|
if (p->hw_subfmt && !(desc.flags & MP_IMGFLAG_HWACCEL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool mp_image_params_equal(const struct mp_image_params *p1,
|
|
const struct mp_image_params *p2)
|
|
{
|
|
return p1->imgfmt == p2->imgfmt &&
|
|
p1->hw_subfmt == p2->hw_subfmt &&
|
|
p1->w == p2->w && p1->h == p2->h &&
|
|
p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
|
|
p1->force_window == p2->force_window &&
|
|
pl_color_space_equal(&p1->color, &p2->color) &&
|
|
pl_color_repr_equal(&p1->repr, &p2->repr) &&
|
|
p1->light == p2->light &&
|
|
p1->chroma_location == p2->chroma_location &&
|
|
p1->rotate == p2->rotate &&
|
|
p1->stereo3d == p2->stereo3d &&
|
|
mp_rect_equals(&p1->crop, &p2->crop);
|
|
}
|
|
|
|
bool mp_image_params_static_equal(const struct mp_image_params *p1,
|
|
const struct mp_image_params *p2)
|
|
{
|
|
// Compare only static video parameters, excluding dynamic metadata.
|
|
struct mp_image_params a = *p1;
|
|
struct mp_image_params b = *p2;
|
|
a.repr.dovi = b.repr.dovi = NULL;
|
|
a.color.hdr = b.color.hdr = (struct pl_hdr_metadata){0};
|
|
return mp_image_params_equal(&a, &b);
|
|
}
|
|
|
|
void mp_image_params_update_dynamic(struct mp_image_params *dst,
|
|
const struct mp_image_params *src,
|
|
bool has_peak_detect_values)
|
|
{
|
|
dst->repr.dovi = src->repr.dovi;
|
|
// Don't overwrite peak-detected HDR metadata if available.
|
|
float max_pq_y = dst->color.hdr.max_pq_y;
|
|
float avg_pq_y = dst->color.hdr.avg_pq_y;
|
|
dst->color.hdr = src->color.hdr;
|
|
if (has_peak_detect_values) {
|
|
dst->color.hdr.max_pq_y = max_pq_y;
|
|
dst->color.hdr.avg_pq_y = avg_pq_y;
|
|
}
|
|
}
|
|
|
|
// Restore color system, transfer, and primaries to their original values
|
|
// before dovi mapping.
|
|
void mp_image_params_restore_dovi_mapping(struct mp_image_params *params)
|
|
{
|
|
if (params->repr.sys != PL_COLOR_SYSTEM_DOLBYVISION)
|
|
return;
|
|
params->color.primaries = params->primaries_orig;
|
|
params->color.transfer = params->transfer_orig;
|
|
params->repr.sys = params->sys_orig;
|
|
if (!pl_color_transfer_is_hdr(params->transfer_orig))
|
|
params->color.hdr = (struct pl_hdr_metadata){0};
|
|
if (params->transfer_orig != PL_COLOR_TRC_PQ)
|
|
params->color.hdr.max_pq_y = params->color.hdr.avg_pq_y = 0;
|
|
}
|
|
|
|
// Set most image parameters, but not image format or size.
|
|
// Display size is used to set the PAR.
|
|
void mp_image_set_attributes(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
struct mp_image_params nparams = *params;
|
|
nparams.imgfmt = image->imgfmt;
|
|
nparams.w = image->w;
|
|
nparams.h = image->h;
|
|
if (nparams.imgfmt != params->imgfmt) {
|
|
nparams.repr = (struct pl_color_repr){0};
|
|
nparams.color = (struct pl_color_space){0};
|
|
}
|
|
mp_image_set_params(image, &nparams);
|
|
}
|
|
|
|
static enum pl_color_levels infer_levels(enum mp_imgfmt imgfmt)
|
|
{
|
|
switch (imgfmt2pixfmt(imgfmt)) {
|
|
case AV_PIX_FMT_YUVJ420P:
|
|
case AV_PIX_FMT_YUVJ411P:
|
|
case AV_PIX_FMT_YUVJ422P:
|
|
case AV_PIX_FMT_YUVJ444P:
|
|
case AV_PIX_FMT_YUVJ440P:
|
|
case AV_PIX_FMT_GRAY8:
|
|
case AV_PIX_FMT_YA8:
|
|
case AV_PIX_FMT_GRAY9LE:
|
|
case AV_PIX_FMT_GRAY9BE:
|
|
case AV_PIX_FMT_GRAY10LE:
|
|
case AV_PIX_FMT_GRAY10BE:
|
|
case AV_PIX_FMT_GRAY12LE:
|
|
case AV_PIX_FMT_GRAY12BE:
|
|
case AV_PIX_FMT_GRAY14LE:
|
|
case AV_PIX_FMT_GRAY14BE:
|
|
case AV_PIX_FMT_GRAY16LE:
|
|
case AV_PIX_FMT_GRAY16BE:
|
|
case AV_PIX_FMT_YA16BE:
|
|
case AV_PIX_FMT_YA16LE:
|
|
return PL_COLOR_LEVELS_FULL;
|
|
default:
|
|
return PL_COLOR_LEVELS_LIMITED;
|
|
}
|
|
}
|
|
|
|
// If details like params->colorspace/colorlevels are missing, guess them from
|
|
// the other settings. Also, even if they are set, make them consistent with
|
|
// the colorspace as implied by the pixel format.
|
|
void mp_image_params_guess_csp(struct mp_image_params *params)
|
|
{
|
|
enum pl_color_system forced_csp = mp_image_params_get_forced_csp(params);
|
|
if (forced_csp == PL_COLOR_SYSTEM_UNKNOWN) { // YUV/other
|
|
if (params->repr.sys != PL_COLOR_SYSTEM_BT_601 &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_BT_709 &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_BT_2020_NC &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_BT_2020_C &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_BT_2100_PQ &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_BT_2100_HLG &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_DOLBYVISION &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_SMPTE_240M &&
|
|
params->repr.sys != PL_COLOR_SYSTEM_YCGCO)
|
|
{
|
|
// Makes no sense, so guess instead
|
|
// YCGCO should be separate, but libavcodec disagrees
|
|
params->repr.sys = PL_COLOR_SYSTEM_UNKNOWN;
|
|
}
|
|
if (params->repr.sys == PL_COLOR_SYSTEM_UNKNOWN)
|
|
params->repr.sys = mp_csp_guess_colorspace(params->w, params->h);
|
|
if (params->repr.levels == PL_COLOR_LEVELS_UNKNOWN) {
|
|
if (params->color.transfer == PL_COLOR_TRC_V_LOG) {
|
|
params->repr.levels = PL_COLOR_LEVELS_FULL;
|
|
} else {
|
|
params->repr.levels = infer_levels(params->imgfmt);
|
|
}
|
|
}
|
|
if (params->color.primaries == PL_COLOR_PRIM_UNKNOWN) {
|
|
// Guess based on the colormatrix as a first priority
|
|
if (params->repr.sys == PL_COLOR_SYSTEM_BT_2020_NC ||
|
|
params->repr.sys == PL_COLOR_SYSTEM_BT_2020_C) {
|
|
params->color.primaries = PL_COLOR_PRIM_BT_2020;
|
|
} else if (params->repr.sys == PL_COLOR_SYSTEM_BT_709) {
|
|
params->color.primaries = PL_COLOR_PRIM_BT_709;
|
|
} else {
|
|
// Ambiguous colormatrix for BT.601, guess based on res
|
|
params->color.primaries = mp_csp_guess_primaries(params->w, params->h);
|
|
}
|
|
}
|
|
if (params->color.transfer == PL_COLOR_TRC_UNKNOWN)
|
|
params->color.transfer = PL_COLOR_TRC_BT_1886;
|
|
} else if (forced_csp == PL_COLOR_SYSTEM_RGB) {
|
|
params->repr.sys = PL_COLOR_SYSTEM_RGB;
|
|
params->repr.levels = PL_COLOR_LEVELS_FULL;
|
|
|
|
// The majority of RGB content is either sRGB or (rarely) some other
|
|
// color space which we don't even handle, like AdobeRGB or
|
|
// ProPhotoRGB. The only reasonable thing we can do is assume it's
|
|
// sRGB and hope for the best, which should usually just work out fine.
|
|
// Note: sRGB primaries = BT.709 primaries
|
|
if (params->color.primaries == PL_COLOR_PRIM_UNKNOWN)
|
|
params->color.primaries = PL_COLOR_PRIM_BT_709;
|
|
if (params->color.transfer == PL_COLOR_TRC_UNKNOWN)
|
|
params->color.transfer = PL_COLOR_TRC_SRGB;
|
|
} else if (forced_csp == PL_COLOR_SYSTEM_XYZ) {
|
|
params->repr.sys = PL_COLOR_SYSTEM_XYZ;
|
|
params->repr.levels = PL_COLOR_LEVELS_FULL;
|
|
// Force gamma to ST428 as this is the only correct for DCDM X'Y'Z'
|
|
params->color.transfer = PL_COLOR_TRC_ST428;
|
|
// Don't care about primaries, they shouldn't be used, or if anything
|
|
// MP_CSP_PRIM_ST428 should be defined.
|
|
} else {
|
|
// We have no clue.
|
|
params->repr.sys = PL_COLOR_SYSTEM_UNKNOWN;
|
|
params->repr.levels = PL_COLOR_LEVELS_UNKNOWN;
|
|
params->color.primaries = PL_COLOR_PRIM_UNKNOWN;
|
|
params->color.transfer = PL_COLOR_TRC_UNKNOWN;
|
|
}
|
|
|
|
if (!params->color.hdr.max_luma) {
|
|
if (params->color.transfer == PL_COLOR_TRC_HLG) {
|
|
params->color.hdr.max_luma = 1000; // reference display
|
|
} else {
|
|
// If the signal peak is unknown, we're forced to pick the TRC's
|
|
// nominal range as the signal peak to prevent clipping
|
|
params->color.hdr.max_luma = pl_color_transfer_nominal_peak(params->color.transfer) * MP_REF_WHITE;
|
|
}
|
|
}
|
|
|
|
if (!pl_color_space_is_hdr(¶ms->color)) {
|
|
// Some clips have leftover HDR metadata after conversion to SDR, so to
|
|
// avoid blowing up the tone mapping code, strip/sanitize it
|
|
params->color.hdr = pl_hdr_metadata_empty;
|
|
}
|
|
|
|
if (params->chroma_location == PL_CHROMA_UNKNOWN) {
|
|
if (params->repr.levels == PL_COLOR_LEVELS_LIMITED)
|
|
params->chroma_location = PL_CHROMA_LEFT;
|
|
if (params->repr.levels == PL_COLOR_LEVELS_FULL)
|
|
params->chroma_location = PL_CHROMA_CENTER;
|
|
}
|
|
|
|
if (params->light == MP_CSP_LIGHT_AUTO) {
|
|
// HLG is always scene-referred (using its own OOTF), everything else
|
|
// we assume is display-referred by default.
|
|
if (params->color.transfer == PL_COLOR_TRC_HLG) {
|
|
params->light = MP_CSP_LIGHT_SCENE_HLG;
|
|
} else {
|
|
params->light = MP_CSP_LIGHT_DISPLAY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a new mp_image reference to av_frame.
|
|
struct mp_image *mp_image_from_av_frame(struct AVFrame *src)
|
|
{
|
|
struct mp_image *dst = &(struct mp_image){0};
|
|
AVFrameSideData *sd;
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
dst->bufs[p] = src->buf[p];
|
|
|
|
dst->hwctx = src->hw_frames_ctx;
|
|
|
|
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
|
|
mp_image_set_size(dst, src->width, src->height);
|
|
|
|
dst->params.p_w = src->sample_aspect_ratio.num;
|
|
dst->params.p_h = src->sample_aspect_ratio.den;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->planes[i] = src->data[i];
|
|
dst->stride[i] = src->linesize[i];
|
|
}
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
dst->params.crop.x0 = src->crop_left;
|
|
dst->params.crop.y0 = src->crop_top;
|
|
dst->params.crop.x1 = src->width - src->crop_right;
|
|
dst->params.crop.y1 = src->height - src->crop_bottom;
|
|
|
|
dst->fields = 0;
|
|
if (src->flags & AV_FRAME_FLAG_INTERLACED)
|
|
dst->fields |= MP_IMGFIELD_INTERLACED;
|
|
if (src->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST)
|
|
dst->fields |= MP_IMGFIELD_TOP_FIRST;
|
|
if (src->repeat_pict == 1)
|
|
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
|
|
|
|
dst->params.repr = (struct pl_color_repr){
|
|
.sys = pl_system_from_av(src->colorspace),
|
|
.levels = pl_levels_from_av(src->color_range),
|
|
};
|
|
|
|
dst->params.color = (struct pl_color_space){
|
|
.primaries = pl_primaries_from_av(src->color_primaries),
|
|
.transfer = pl_transfer_from_av(src->color_trc),
|
|
};
|
|
|
|
dst->params.chroma_location = pl_chroma_from_av(src->chroma_location);
|
|
|
|
if (src->opaque_ref) {
|
|
struct mp_image_params *p = (void *)src->opaque_ref->data;
|
|
dst->params.stereo3d = p->stereo3d;
|
|
// Might be incorrect if colorspace changes.
|
|
dst->params.light = p->light;
|
|
dst->params.repr.alpha = p->repr.alpha;
|
|
}
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_DISPLAYMATRIX);
|
|
if (sd) {
|
|
double r = av_display_rotation_get((int32_t *)(sd->data));
|
|
if (!isnan(r))
|
|
dst->params.rotate = (((int)(-r) % 360) + 360) % 360;
|
|
}
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_ICC_PROFILE);
|
|
if (sd)
|
|
dst->icc_profile = sd->buf;
|
|
|
|
AVFrameSideData *mdm = av_frame_get_side_data(src, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
|
|
AVFrameSideData *clm = av_frame_get_side_data(src, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
|
|
AVFrameSideData *dhp = av_frame_get_side_data(src, AV_FRAME_DATA_DYNAMIC_HDR_PLUS);
|
|
pl_map_hdr_metadata(&dst->params.color.hdr, &(struct pl_av_hdr_metadata) {
|
|
.mdm = (void *)(mdm ? mdm->data : NULL),
|
|
.clm = (void *)(clm ? clm->data : NULL),
|
|
.dhp = (void *)(dhp ? dhp->data : NULL),
|
|
});
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_A53_CC);
|
|
if (sd)
|
|
dst->a53_cc = sd->buf;
|
|
|
|
dst->params.primaries_orig = dst->params.color.primaries;
|
|
dst->params.transfer_orig = dst->params.color.transfer;
|
|
dst->params.sys_orig = dst->params.repr.sys;
|
|
AVBufferRef *dovi = NULL;
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_DOVI_METADATA);
|
|
if (sd) {
|
|
#ifdef PL_HAVE_LAV_DOLBY_VISION
|
|
const AVDOVIMetadata *metadata = (const AVDOVIMetadata *)sd->buf->data;
|
|
const AVDOVIRpuDataHeader *header = av_dovi_get_header(metadata);
|
|
if (header->disable_residual_flag) {
|
|
dst->dovi = dovi = av_buffer_alloc(sizeof(struct pl_dovi_metadata));
|
|
MP_HANDLE_OOM(dovi);
|
|
#if PL_API_VER >= 343
|
|
pl_map_avdovi_metadata(&dst->params.color, &dst->params.repr,
|
|
(void *)dst->dovi->data, metadata);
|
|
#else
|
|
struct pl_frame frame;
|
|
frame.repr = dst->params.repr;
|
|
frame.color = dst->params.color;
|
|
pl_frame_map_avdovi_metadata(&frame, (void *)dst->dovi->data, metadata);
|
|
dst->params.repr = frame.repr;
|
|
dst->params.color = frame.color;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_DOVI_RPU_BUFFER);
|
|
if (sd) {
|
|
pl_hdr_metadata_from_dovi_rpu(&dst->params.color.hdr, sd->buf->data,
|
|
sd->buf->size);
|
|
}
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_FILM_GRAIN_PARAMS);
|
|
if (sd)
|
|
dst->film_grain = sd->buf;
|
|
|
|
for (int n = 0; n < src->nb_side_data; n++) {
|
|
sd = src->side_data[n];
|
|
struct mp_ff_side_data mpsd = {
|
|
.type = sd->type,
|
|
.buf = sd->buf,
|
|
};
|
|
MP_TARRAY_APPEND(NULL, dst->ff_side_data, dst->num_ff_side_data, mpsd);
|
|
}
|
|
|
|
if (dst->hwctx) {
|
|
AVHWFramesContext *fctx = (void *)dst->hwctx->data;
|
|
dst->params.hw_subfmt = pixfmt2imgfmt(fctx->sw_format);
|
|
}
|
|
|
|
struct mp_image *res = mp_image_new_ref(dst);
|
|
|
|
// Allocated, but non-refcounted data.
|
|
talloc_free(dst->ff_side_data);
|
|
av_buffer_unref(&dovi);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
// Convert the mp_image reference to a AVFrame reference.
|
|
struct AVFrame *mp_image_to_av_frame(struct mp_image *src)
|
|
{
|
|
struct mp_image *new_ref = mp_image_new_ref(src);
|
|
AVFrame *dst = av_frame_alloc();
|
|
if (!dst || !new_ref) {
|
|
talloc_free(new_ref);
|
|
av_frame_free(&dst);
|
|
return NULL;
|
|
}
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
dst->buf[p] = new_ref->bufs[p];
|
|
new_ref->bufs[p] = NULL;
|
|
}
|
|
|
|
dst->hw_frames_ctx = new_ref->hwctx;
|
|
new_ref->hwctx = NULL;
|
|
|
|
dst->format = imgfmt2pixfmt(src->imgfmt);
|
|
dst->width = src->w;
|
|
dst->height = src->h;
|
|
|
|
dst->crop_left = src->params.crop.x0;
|
|
dst->crop_top = src->params.crop.y0;
|
|
dst->crop_right = dst->width - src->params.crop.x1;
|
|
dst->crop_bottom = dst->height - src->params.crop.y1;
|
|
|
|
dst->sample_aspect_ratio.num = src->params.p_w;
|
|
dst->sample_aspect_ratio.den = src->params.p_h;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->data[i] = src->planes[i];
|
|
dst->linesize[i] = src->stride[i];
|
|
}
|
|
dst->extended_data = dst->data;
|
|
|
|
dst->pict_type = src->pict_type;
|
|
if (src->fields & MP_IMGFIELD_INTERLACED)
|
|
dst->flags |= AV_FRAME_FLAG_INTERLACED;
|
|
if (src->fields & MP_IMGFIELD_TOP_FIRST)
|
|
dst->flags |= AV_FRAME_FLAG_TOP_FIELD_FIRST;
|
|
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
|
|
dst->repeat_pict = 1;
|
|
|
|
// Image params without dovi mapped; should be passed as side data instead
|
|
struct mp_image_params params = src->params;
|
|
mp_image_params_restore_dovi_mapping(¶ms);
|
|
pl_avframe_set_repr(dst, params.repr);
|
|
|
|
dst->chroma_location = pl_chroma_to_av(params.chroma_location);
|
|
|
|
dst->opaque_ref = av_buffer_alloc(sizeof(struct mp_image_params));
|
|
MP_HANDLE_OOM(dst->opaque_ref);
|
|
*(struct mp_image_params *)dst->opaque_ref->data = params;
|
|
|
|
if (src->icc_profile) {
|
|
AVFrameSideData *sd =
|
|
av_frame_new_side_data_from_buf(dst, AV_FRAME_DATA_ICC_PROFILE,
|
|
new_ref->icc_profile);
|
|
MP_HANDLE_OOM(sd);
|
|
new_ref->icc_profile = NULL;
|
|
}
|
|
|
|
pl_avframe_set_color(dst, params.color);
|
|
|
|
{
|
|
AVFrameSideData *sd = av_frame_new_side_data(dst,
|
|
AV_FRAME_DATA_DISPLAYMATRIX,
|
|
sizeof(int32_t) * 9);
|
|
MP_HANDLE_OOM(sd);
|
|
av_display_rotation_set((int32_t *)sd->data, params.rotate);
|
|
}
|
|
|
|
// Add back side data, but only for types which are not specially handled
|
|
// above. Keep in mind that the types above will be out of sync anyway.
|
|
for (int n = 0; n < new_ref->num_ff_side_data; n++) {
|
|
struct mp_ff_side_data *mpsd = &new_ref->ff_side_data[n];
|
|
if (!av_frame_get_side_data(dst, mpsd->type)) {
|
|
AVFrameSideData *sd = av_frame_new_side_data_from_buf(dst, mpsd->type,
|
|
mpsd->buf);
|
|
MP_HANDLE_OOM(sd);
|
|
mpsd->buf = NULL;
|
|
}
|
|
}
|
|
|
|
talloc_free(new_ref);
|
|
|
|
if (dst->format == AV_PIX_FMT_NONE)
|
|
av_frame_free(&dst);
|
|
return dst;
|
|
}
|
|
|
|
// Same as mp_image_to_av_frame(), but unref img. (It does so even on failure.)
|
|
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
|
|
{
|
|
AVFrame *frame = mp_image_to_av_frame(img);
|
|
talloc_free(img);
|
|
return frame;
|
|
}
|
|
|
|
void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
|
|
{
|
|
if (bytesPerLine == stride && height) {
|
|
memset(dst, fill, stride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
memset(dst, fill, bytesPerLine);
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
|
|
{
|
|
if (fill == 0) {
|
|
memset_pic(dst, 0, unitsPerLine * 2, height, stride);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
uint16_t *line = dst;
|
|
uint16_t *end = line + unitsPerLine;
|
|
while (line < end)
|
|
*line++ = fill;
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pixel at the given luma position on the given plane. x/y always refer to
|
|
// non-subsampled coordinates (even if plane is chroma).
|
|
// The coordinates must be aligned to mp_imgfmt_desc.align_x/y (these are byte
|
|
// and chroma boundaries).
|
|
// You cannot access e.g. individual luma pixels on the luma plane with yuv420p.
|
|
void *mp_image_pixel_ptr(struct mp_image *img, int plane, int x, int y)
|
|
{
|
|
assert(MP_IS_ALIGNED(x, img->fmt.align_x));
|
|
assert(MP_IS_ALIGNED(y, img->fmt.align_y));
|
|
return mp_image_pixel_ptr_ny(img, plane, x, y);
|
|
}
|
|
|
|
// Like mp_image_pixel_ptr(), but do not require alignment on Y coordinates if
|
|
// the plane does not require it. Use with care.
|
|
// Useful for addressing luma rows.
|
|
void *mp_image_pixel_ptr_ny(struct mp_image *img, int plane, int x, int y)
|
|
{
|
|
assert(MP_IS_ALIGNED(x, img->fmt.align_x));
|
|
assert(MP_IS_ALIGNED(y, 1 << img->fmt.ys[plane]));
|
|
return img->planes[plane] +
|
|
img->stride[plane] * (ptrdiff_t)(y >> img->fmt.ys[plane]) +
|
|
(x >> img->fmt.xs[plane]) * (size_t)img->fmt.bpp[plane] / 8;
|
|
}
|
|
|
|
// Return size of pixels [x0, x0+w-1] in bytes. The coordinates refer to non-
|
|
// subsampled pixels (basically plane 0), and the size is rounded to chroma
|
|
// and byte alignment boundaries for the entire image, even if plane!=0.
|
|
// x0!=0 is useful for rounding (e.g. 8 bpp, x0=7, w=7 => 0..15 => 2 bytes).
|
|
size_t mp_image_plane_bytes(struct mp_image *img, int plane, int x0, int w)
|
|
{
|
|
int x1 = MP_ALIGN_UP(x0 + w, img->fmt.align_x);
|
|
x0 = MP_ALIGN_DOWN(x0, img->fmt.align_x);
|
|
size_t bpp = img->fmt.bpp[plane];
|
|
int xs = img->fmt.xs[plane];
|
|
return (x1 >> xs) * bpp / 8 - (x0 >> xs) * bpp / 8;
|
|
}
|