mirror of
https://github.com/mpv-player/mpv
synced 2024-12-25 16:33:02 +00:00
82361d50d0
Patch by me and Emanuele Giaquinta git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@18142 b3059339-0415-0410-9bf9-f77b7e298cf2
410 lines
16 KiB
C
410 lines
16 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2004 G.C. Pascutto, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** $Id: hcr.c,v 1.18 2004/09/04 14:56:28 menno Exp $
|
|
**/
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "specrec.h"
|
|
#include "huffman.h"
|
|
|
|
/* ISO/IEC 14496-3/Amd.1
|
|
* 8.5.3.3: Huffman Codeword Reordering for AAC spectral data (HCR)
|
|
*
|
|
* HCR devides the spectral data in known fixed size segments, and
|
|
* sorts it by the importance of the data. The importance is firstly
|
|
* the (lower) position in the spectrum, and secondly the largest
|
|
* value in the used codebook.
|
|
* The most important data is written at the start of each segment
|
|
* (at known positions), the remaining data is interleaved inbetween,
|
|
* with the writing direction alternating.
|
|
* Data length is not increased.
|
|
*/
|
|
|
|
#ifdef ERROR_RESILIENCE
|
|
|
|
/* 8.5.3.3.1 Pre-sorting */
|
|
|
|
#define NUM_CB 6
|
|
#define NUM_CB_ER 22
|
|
#define MAX_CB 32
|
|
#define VCB11_FIRST 16
|
|
#define VCB11_LAST 31
|
|
|
|
static const uint8_t PreSortCB_STD[NUM_CB] =
|
|
{ 11, 9, 7, 5, 3, 1};
|
|
|
|
static const uint8_t PreSortCB_ER[NUM_CB_ER] =
|
|
{ 11, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 9, 7, 5, 3, 1};
|
|
|
|
/* 8.5.3.3.2 Derivation of segment width */
|
|
|
|
static const uint8_t maxCwLen[MAX_CB] = {0, 11, 9, 20, 16, 13, 11, 14, 12, 17, 14, 49,
|
|
0, 0, 0, 0, 14, 17, 21, 21, 25, 25, 29, 29, 29, 29, 33, 33, 33, 37, 37, 41};
|
|
|
|
#define segmentWidth(cb) min(maxCwLen[cb], ics->length_of_longest_codeword)
|
|
|
|
/* bit-twiddling helpers */
|
|
static const uint8_t S[] = {1, 2, 4, 8, 16};
|
|
static const uint32_t B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};
|
|
|
|
typedef struct
|
|
{
|
|
uint8_t cb;
|
|
uint8_t decoded;
|
|
uint16_t sp_offset;
|
|
bits_t bits;
|
|
} codeword_t;
|
|
|
|
/* rewind and reverse */
|
|
/* 32 bit version */
|
|
static uint32_t rewrev_word(uint32_t v, const uint8_t len)
|
|
{
|
|
/* 32 bit reverse */
|
|
v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
|
|
v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
|
|
v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
|
|
v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
|
|
v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);
|
|
|
|
/* shift off low bits */
|
|
v >>= (32 - len);
|
|
|
|
return v;
|
|
}
|
|
|
|
/* 64 bit version */
|
|
static void rewrev_lword(uint32_t *hi, uint32_t *lo, const uint8_t len)
|
|
{
|
|
if (len <= 32) {
|
|
*hi = 0;
|
|
*lo = rewrev_word(*lo, len);
|
|
} else
|
|
{
|
|
uint32_t t = *hi, v = *lo;
|
|
|
|
/* double 32 bit reverse */
|
|
v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
|
|
t = ((t >> S[0]) & B[0]) | ((t << S[0]) & ~B[0]);
|
|
v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
|
|
t = ((t >> S[1]) & B[1]) | ((t << S[1]) & ~B[1]);
|
|
v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
|
|
t = ((t >> S[2]) & B[2]) | ((t << S[2]) & ~B[2]);
|
|
v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
|
|
t = ((t >> S[3]) & B[3]) | ((t << S[3]) & ~B[3]);
|
|
v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);
|
|
t = ((t >> S[4]) & B[4]) | ((t << S[4]) & ~B[4]);
|
|
|
|
/* last 32<>32 bit swap is implicit below */
|
|
|
|
/* shift off low bits (this is really only one 64 bit shift) */
|
|
*lo = (t >> (64 - len)) | (v << (len - 32));
|
|
*hi = v >> (64 - len);
|
|
}
|
|
}
|
|
|
|
|
|
/* bits_t version */
|
|
static void rewrev_bits(bits_t *bits)
|
|
{
|
|
if (bits->len == 0) return;
|
|
rewrev_lword(&bits->bufb, &bits->bufa, bits->len);
|
|
}
|
|
|
|
|
|
/* merge bits of a to b */
|
|
static void concat_bits(bits_t *b, bits_t *a)
|
|
{
|
|
uint32_t bl, bh, al, ah;
|
|
|
|
if (a->len == 0) return;
|
|
|
|
al = a->bufa;
|
|
ah = a->bufb;
|
|
|
|
if (b->len > 32)
|
|
{
|
|
/* maskoff superfluous high b bits */
|
|
bl = b->bufa;
|
|
bh = b->bufb & ((1 << (b->len-32)) - 1);
|
|
/* left shift a b->len bits */
|
|
ah = al << (b->len - 32);
|
|
al = 0;
|
|
} else {
|
|
bl = b->bufa & ((1 << (b->len)) - 1);
|
|
bh = 0;
|
|
ah = (ah << (b->len)) | (al >> (32 - b->len));
|
|
al = al << b->len;
|
|
}
|
|
|
|
/* merge */
|
|
b->bufa = bl | al;
|
|
b->bufb = bh | ah;
|
|
|
|
b->len += a->len;
|
|
}
|
|
|
|
uint8_t is_good_cb(uint8_t this_CB, uint8_t this_sec_CB)
|
|
{
|
|
/* only want spectral data CB's */
|
|
if ((this_sec_CB > ZERO_HCB && this_sec_CB <= ESC_HCB) || (this_sec_CB >= VCB11_FIRST && this_sec_CB <= VCB11_LAST))
|
|
{
|
|
if (this_CB < ESC_HCB)
|
|
{
|
|
/* normal codebook pairs */
|
|
return ((this_sec_CB == this_CB) || (this_sec_CB == this_CB + 1));
|
|
} else
|
|
{
|
|
/* escape codebook */
|
|
return (this_sec_CB == this_CB);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void read_segment(bits_t *segment, uint8_t segwidth, bitfile *ld)
|
|
{
|
|
segment->len = segwidth;
|
|
|
|
if (segwidth > 32)
|
|
{
|
|
segment->bufb = faad_getbits(ld, segwidth - 32);
|
|
segment->bufa = faad_getbits(ld, 32);
|
|
|
|
} else {
|
|
segment->bufa = faad_getbits(ld, segwidth);
|
|
segment->bufb = 0;
|
|
}
|
|
}
|
|
|
|
void fill_in_codeword(codeword_t *codeword, uint16_t index, uint16_t sp, uint8_t cb)
|
|
{
|
|
codeword[index].sp_offset = sp;
|
|
codeword[index].cb = cb;
|
|
codeword[index].decoded = 0;
|
|
codeword[index].bits.len = 0;
|
|
}
|
|
|
|
uint8_t reordered_spectral_data(NeAACDecHandle hDecoder, ic_stream *ics,
|
|
bitfile *ld, int16_t *spectral_data)
|
|
{
|
|
uint16_t PCWs_done;
|
|
uint16_t numberOfSegments, numberOfSets, numberOfCodewords;
|
|
|
|
codeword_t codeword[512];
|
|
bits_t segment[512];
|
|
|
|
uint16_t sp_offset[8];
|
|
uint16_t g, i, sortloop, set, bitsread;
|
|
uint8_t w_idx, sfb, this_CB, last_CB, this_sec_CB;
|
|
|
|
const uint16_t nshort = hDecoder->frameLength/8;
|
|
const uint16_t sp_data_len = ics->length_of_reordered_spectral_data;
|
|
|
|
const uint8_t *PreSortCb;
|
|
|
|
/* no data (e.g. silence) */
|
|
if (sp_data_len == 0)
|
|
return 0;
|
|
|
|
/* since there is spectral data, at least one codeword has nonzero length */
|
|
if (ics->length_of_longest_codeword == 0)
|
|
return 10;
|
|
|
|
if (sp_data_len < ics->length_of_longest_codeword)
|
|
return 10;
|
|
|
|
sp_offset[0] = 0;
|
|
for (g = 1; g < ics->num_window_groups; g++)
|
|
{
|
|
sp_offset[g] = sp_offset[g-1] + nshort*ics->window_group_length[g-1];
|
|
}
|
|
|
|
PCWs_done = 0;
|
|
numberOfSegments = 0;
|
|
numberOfCodewords = 0;
|
|
bitsread = 0;
|
|
|
|
/* VCB11 code books in use */
|
|
if (hDecoder->aacSectionDataResilienceFlag)
|
|
{
|
|
PreSortCb = PreSortCB_ER;
|
|
last_CB = NUM_CB_ER;
|
|
} else
|
|
{
|
|
PreSortCb = PreSortCB_STD;
|
|
last_CB = NUM_CB;
|
|
}
|
|
|
|
/* step 1: decode PCW's (set 0), and stuff data in easier-to-use format */
|
|
for (sortloop = 0; sortloop < last_CB; sortloop++)
|
|
{
|
|
/* select codebook to process this pass */
|
|
this_CB = PreSortCb[sortloop];
|
|
|
|
/* loop over sfbs */
|
|
for (sfb = 0; sfb < ics->max_sfb; sfb++)
|
|
{
|
|
/* loop over all in this sfb, 4 lines per loop */
|
|
for (w_idx = 0; 4*w_idx < (ics->swb_offset[sfb+1] - ics->swb_offset[sfb]); w_idx++)
|
|
{
|
|
for(g = 0; g < ics->num_window_groups; g++)
|
|
{
|
|
for (i = 0; i < ics->num_sec[g]; i++)
|
|
{
|
|
/* check whether sfb used here is the one we want to process */
|
|
if ((ics->sect_start[g][i] <= sfb) && (ics->sect_end[g][i] > sfb))
|
|
{
|
|
/* check whether codebook used here is the one we want to process */
|
|
this_sec_CB = ics->sect_cb[g][i];
|
|
|
|
if (is_good_cb(this_CB, this_sec_CB))
|
|
{
|
|
/* precalculate some stuff */
|
|
uint16_t sect_sfb_size = ics->sect_sfb_offset[g][sfb+1] - ics->sect_sfb_offset[g][sfb];
|
|
uint8_t inc = (this_sec_CB < FIRST_PAIR_HCB) ? QUAD_LEN : PAIR_LEN;
|
|
uint16_t group_cws_count = (4*ics->window_group_length[g])/inc;
|
|
uint8_t segwidth = segmentWidth(this_sec_CB);
|
|
uint16_t cws;
|
|
|
|
/* read codewords until end of sfb or end of window group (shouldn't only 1 trigger?) */
|
|
for (cws = 0; (cws < group_cws_count) && ((cws + w_idx*group_cws_count) < sect_sfb_size); cws++)
|
|
{
|
|
uint16_t sp = sp_offset[g] + ics->sect_sfb_offset[g][sfb] + inc * (cws + w_idx*group_cws_count);
|
|
|
|
/* read and decode PCW */
|
|
if (!PCWs_done)
|
|
{
|
|
/* read in normal segments */
|
|
if (bitsread + segwidth <= sp_data_len)
|
|
{
|
|
read_segment(&segment[numberOfSegments], segwidth, ld);
|
|
bitsread += segwidth;
|
|
|
|
huffman_spectral_data_2(this_sec_CB, &segment[numberOfSegments], &spectral_data[sp]);
|
|
|
|
/* keep leftover bits */
|
|
rewrev_bits(&segment[numberOfSegments]);
|
|
|
|
numberOfSegments++;
|
|
} else {
|
|
/* remaining stuff after last segment, we unfortunately couldn't read
|
|
this in earlier because it might not fit in 64 bits. since we already
|
|
decoded (and removed) the PCW it is now guaranteed to fit */
|
|
if (bitsread < sp_data_len)
|
|
{
|
|
const uint8_t additional_bits = sp_data_len - bitsread;
|
|
|
|
read_segment(&segment[numberOfSegments], additional_bits, ld);
|
|
segment[numberOfSegments].len += segment[numberOfSegments-1].len;
|
|
rewrev_bits(&segment[numberOfSegments]);
|
|
|
|
if (segment[numberOfSegments-1].len > 32)
|
|
{
|
|
segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb +
|
|
showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len - 32);
|
|
segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
|
|
showbits_hcr(&segment[numberOfSegments-1], 32);
|
|
} else {
|
|
segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
|
|
showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len);
|
|
segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb;
|
|
}
|
|
segment[numberOfSegments-1].len += additional_bits;
|
|
}
|
|
bitsread = sp_data_len;
|
|
PCWs_done = 1;
|
|
|
|
fill_in_codeword(codeword, 0, sp, this_sec_CB);
|
|
}
|
|
} else {
|
|
fill_in_codeword(codeword, numberOfCodewords - numberOfSegments, sp, this_sec_CB);
|
|
}
|
|
numberOfCodewords++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (numberOfSegments == 0)
|
|
return 10;
|
|
|
|
numberOfSets = numberOfCodewords / numberOfSegments;
|
|
|
|
/* step 2: decode nonPCWs */
|
|
for (set = 1; set <= numberOfSets; set++)
|
|
{
|
|
uint16_t trial;
|
|
|
|
for (trial = 0; trial < numberOfSegments; trial++)
|
|
{
|
|
uint16_t codewordBase;
|
|
|
|
for (codewordBase = 0; codewordBase < numberOfSegments; codewordBase++)
|
|
{
|
|
const uint16_t segment_idx = (trial + codewordBase) % numberOfSegments;
|
|
const uint16_t codeword_idx = codewordBase + set*numberOfSegments - numberOfSegments;
|
|
|
|
/* data up */
|
|
if (codeword_idx >= numberOfCodewords - numberOfSegments) break;
|
|
|
|
if (!codeword[codeword_idx].decoded && segment[segment_idx].len > 0)
|
|
{
|
|
uint8_t tmplen;
|
|
|
|
if (codeword[codeword_idx].bits.len != 0)
|
|
concat_bits(&segment[segment_idx], &codeword[codeword_idx].bits);
|
|
|
|
tmplen = segment[segment_idx].len;
|
|
|
|
if (huffman_spectral_data_2(codeword[codeword_idx].cb, &segment[segment_idx],
|
|
&spectral_data[codeword[codeword_idx].sp_offset]) >= 0)
|
|
{
|
|
codeword[codeword_idx].decoded = 1;
|
|
} else
|
|
{
|
|
codeword[codeword_idx].bits = segment[segment_idx];
|
|
codeword[codeword_idx].bits.len = tmplen;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < numberOfSegments; i++)
|
|
rewrev_bits(&segment[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|