mirror of
https://github.com/mpv-player/mpv
synced 2024-12-25 08:12:17 +00:00
856b57e418
Close #837 Signed-off-by: wm4 <wm4@nowhere>
2397 lines
77 KiB
C
2397 lines
77 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* You can alternatively redistribute this file and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include <libavutil/common.h>
|
|
|
|
#include "gl_video.h"
|
|
|
|
#include "bstr/bstr.h"
|
|
#include "gl_common.h"
|
|
#include "gl_osd.h"
|
|
#include "filter_kernels.h"
|
|
#include "aspect.h"
|
|
#include "video/memcpy_pic.h"
|
|
#include "bitmap_packer.h"
|
|
#include "dither.h"
|
|
|
|
static const char vo_opengl_shaders[] =
|
|
// Generated from gl_video_shaders.glsl
|
|
#include "video/out/gl_video_shaders.h"
|
|
;
|
|
|
|
// Pixel width of 1D lookup textures.
|
|
#define LOOKUP_TEXTURE_SIZE 256
|
|
|
|
// Texture units 0-3 are used by the video, with unit 0 for free use.
|
|
// Units 4-5 are used for scaler LUTs.
|
|
#define TEXUNIT_SCALERS 4
|
|
#define TEXUNIT_3DLUT 6
|
|
#define TEXUNIT_DITHER 7
|
|
|
|
// lscale/cscale arguments that map directly to shader filter routines.
|
|
// Note that the convolution filters are not included in this list.
|
|
static const char *const fixed_scale_filters[] = {
|
|
"bilinear",
|
|
"bicubic_fast",
|
|
"sharpen3",
|
|
"sharpen5",
|
|
NULL
|
|
};
|
|
|
|
struct lut_tex_format {
|
|
int pixels;
|
|
GLint internal_format;
|
|
GLenum format;
|
|
};
|
|
|
|
// Indexed with filter_kernel->size.
|
|
// This must match the weightsN functions in the shader.
|
|
// Each entry uses (size+3)/4 pixels per LUT entry, and size/pixels components
|
|
// per pixel.
|
|
const struct lut_tex_format lut_tex_formats[] = {
|
|
[2] = {1, GL_RG16F, GL_RG},
|
|
[4] = {1, GL_RGBA16F, GL_RGBA},
|
|
[6] = {2, GL_RGB16F, GL_RGB},
|
|
[8] = {2, GL_RGBA16F, GL_RGBA},
|
|
[12] = {3, GL_RGBA16F, GL_RGBA},
|
|
[16] = {4, GL_RGBA16F, GL_RGBA},
|
|
};
|
|
|
|
// must be sorted, and terminated with 0
|
|
static const int filter_sizes[] = {2, 4, 6, 8, 12, 16, 0};
|
|
|
|
struct vertex {
|
|
float position[2];
|
|
uint8_t color[4];
|
|
float texcoord[2];
|
|
};
|
|
|
|
#define VERTEX_ATTRIB_POSITION 0
|
|
#define VERTEX_ATTRIB_COLOR 1
|
|
#define VERTEX_ATTRIB_TEXCOORD 2
|
|
|
|
// 2 triangles primitives per quad = 6 vertices per quad
|
|
// (GL_QUAD is deprecated, strips can't be used with OSD image lists)
|
|
#define VERTICES_PER_QUAD 6
|
|
|
|
struct texplane {
|
|
int w, h;
|
|
int tex_w, tex_h;
|
|
GLint gl_internal_format;
|
|
GLenum gl_format;
|
|
GLenum gl_type;
|
|
GLuint gl_texture;
|
|
int gl_buffer;
|
|
int buffer_size;
|
|
void *buffer_ptr;
|
|
};
|
|
|
|
struct video_image {
|
|
struct texplane planes[4];
|
|
bool image_flipped;
|
|
struct mp_image *hwimage; // if hw decoding is active
|
|
};
|
|
|
|
struct scaler {
|
|
int index;
|
|
const char *name;
|
|
float params[2];
|
|
struct filter_kernel *kernel;
|
|
GLuint gl_lut;
|
|
const char *lut_name;
|
|
|
|
// kernel points here
|
|
struct filter_kernel kernel_storage;
|
|
};
|
|
|
|
struct fbotex {
|
|
GLuint fbo;
|
|
GLuint texture;
|
|
int tex_w, tex_h; // size of .texture
|
|
int vp_x, vp_y, vp_w, vp_h; // viewport of fbo / used part of the texture
|
|
};
|
|
|
|
struct gl_video {
|
|
GL *gl;
|
|
|
|
struct mp_log *log;
|
|
struct gl_video_opts opts;
|
|
bool gl_debug;
|
|
|
|
int depth_g;
|
|
|
|
GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs
|
|
|
|
GLuint vertex_buffer;
|
|
GLuint vao;
|
|
|
|
GLuint osd_programs[SUBBITMAP_COUNT];
|
|
GLuint indirect_program, scale_sep_program, final_program;
|
|
|
|
struct osd_state *osd_state;
|
|
struct mpgl_osd *osd;
|
|
double osd_pts;
|
|
|
|
GLuint lut_3d_texture;
|
|
bool use_lut_3d;
|
|
|
|
GLuint dither_texture;
|
|
float dither_quantization;
|
|
float dither_center;
|
|
int dither_size;
|
|
|
|
uint32_t image_w, image_h;
|
|
uint32_t image_dw, image_dh;
|
|
uint32_t image_format;
|
|
int texture_w, texture_h;
|
|
|
|
struct mp_imgfmt_desc image_desc;
|
|
|
|
bool is_yuv, is_rgb, is_packed_yuv;
|
|
bool is_linear_rgb;
|
|
bool has_alpha;
|
|
char color_swizzle[5];
|
|
|
|
float input_gamma, conv_gamma;
|
|
|
|
// per pixel (full pixel when packed, each component when planar)
|
|
int plane_bits;
|
|
int plane_count;
|
|
|
|
struct video_image image;
|
|
bool have_image;
|
|
|
|
struct fbotex indirect_fbo; // RGB target
|
|
struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling
|
|
|
|
// state for luma (0) and chroma (1) scalers
|
|
struct scaler scalers[2];
|
|
|
|
struct mp_csp_equalizer video_eq;
|
|
struct mp_image_params image_params;
|
|
|
|
// Source and destination color spaces for the CMS matrix
|
|
struct mp_csp_primaries csp_src, csp_dest;
|
|
|
|
struct mp_rect src_rect; // displayed part of the source video
|
|
struct mp_rect src_rect_rot;// compensated for optional rotation
|
|
struct mp_rect dst_rect; // video rectangle on output window
|
|
struct mp_osd_res osd_rect; // OSD size/margins
|
|
int vp_x, vp_y, vp_w, vp_h; // GL viewport
|
|
|
|
int frames_rendered;
|
|
|
|
// Cached because computing it can take relatively long
|
|
int last_dither_matrix_size;
|
|
float *last_dither_matrix;
|
|
|
|
struct gl_hwdec *hwdec;
|
|
bool hwdec_active;
|
|
|
|
void *scratch;
|
|
};
|
|
|
|
struct fmt_entry {
|
|
int mp_format;
|
|
GLint internal_format;
|
|
GLenum format;
|
|
GLenum type;
|
|
};
|
|
|
|
// Very special formats, for which OpenGL happens to have direct support
|
|
static const struct fmt_entry mp_to_gl_formats[] = {
|
|
{IMGFMT_BGR555, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
|
|
{IMGFMT_BGR565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV},
|
|
{IMGFMT_RGB555, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
|
|
{IMGFMT_RGB565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5},
|
|
{0},
|
|
};
|
|
|
|
static const struct fmt_entry gl_byte_formats[] = {
|
|
{0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8
|
|
{0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8
|
|
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
|
|
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
|
|
{0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16
|
|
{0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16
|
|
{0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16
|
|
{0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16
|
|
};
|
|
|
|
static const struct fmt_entry gl_apple_formats[] = {
|
|
{IMGFMT_UYVY, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_APPLE},
|
|
{IMGFMT_YUYV, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE},
|
|
{0}
|
|
};
|
|
|
|
struct packed_fmt_entry {
|
|
int fmt;
|
|
int8_t component_size;
|
|
int8_t components[4]; // source component - 0 means unmapped
|
|
};
|
|
|
|
static const struct packed_fmt_entry mp_packed_formats[] = {
|
|
// R G B A
|
|
{IMGFMT_Y8, 1, {1, 0, 0, 0}},
|
|
{IMGFMT_Y16, 2, {1, 0, 0, 0}},
|
|
{IMGFMT_YA8, 1, {1, 0, 0, 2}},
|
|
{IMGFMT_ARGB, 1, {2, 3, 4, 1}},
|
|
{IMGFMT_0RGB, 1, {2, 3, 4, 0}},
|
|
{IMGFMT_BGRA, 1, {3, 2, 1, 4}},
|
|
{IMGFMT_BGR0, 1, {3, 2, 1, 0}},
|
|
{IMGFMT_ABGR, 1, {4, 3, 2, 1}},
|
|
{IMGFMT_0BGR, 1, {4, 3, 2, 0}},
|
|
{IMGFMT_RGBA, 1, {1, 2, 3, 4}},
|
|
{IMGFMT_RGB0, 1, {1, 2, 3, 0}},
|
|
{IMGFMT_BGR24, 1, {3, 2, 1, 0}},
|
|
{IMGFMT_RGB24, 1, {1, 2, 3, 0}},
|
|
{IMGFMT_RGB48, 2, {1, 2, 3, 0}},
|
|
{IMGFMT_RGBA64, 2, {1, 2, 3, 4}},
|
|
{IMGFMT_BGRA64, 2, {3, 2, 1, 4}},
|
|
{0},
|
|
};
|
|
|
|
static const char *const osd_shaders[SUBBITMAP_COUNT] = {
|
|
[SUBBITMAP_LIBASS] = "frag_osd_libass",
|
|
[SUBBITMAP_RGBA] = "frag_osd_rgba",
|
|
};
|
|
|
|
static const struct gl_video_opts gl_video_opts_def = {
|
|
.npot = 1,
|
|
.dither_depth = -1,
|
|
.dither_size = 6,
|
|
.fbo_format = GL_RGB,
|
|
.scale_sep = 1,
|
|
.scalers = { "bilinear", "bilinear" },
|
|
.scaler_params = {NAN, NAN},
|
|
.alpha_mode = 2,
|
|
};
|
|
|
|
const struct gl_video_opts gl_video_opts_hq_def = {
|
|
.npot = 1,
|
|
.dither_depth = 0,
|
|
.dither_size = 6,
|
|
.fbo_format = GL_RGBA16,
|
|
.scale_sep = 1,
|
|
.scalers = { "spline36", "bilinear" },
|
|
.scaler_params = {NAN, NAN},
|
|
.alpha_mode = 2,
|
|
};
|
|
|
|
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
|
|
struct bstr name, struct bstr param);
|
|
static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs);
|
|
|
|
#define OPT_BASE_STRUCT struct gl_video_opts
|
|
const struct m_sub_options gl_video_conf = {
|
|
.opts = (const m_option_t[]) {
|
|
OPT_FLOATRANGE("gamma", gamma, 0, 0.0, 10.0),
|
|
OPT_FLAG("srgb", srgb, 0),
|
|
OPT_FLAG("approx-gamma", approx_gamma, 0),
|
|
OPT_FLAG("npot", npot, 0),
|
|
OPT_FLAG("pbo", pbo, 0),
|
|
OPT_CHOICE("stereo", stereo_mode, 0,
|
|
({"no", 0},
|
|
{"red-cyan", GL_3D_RED_CYAN},
|
|
{"green-magenta", GL_3D_GREEN_MAGENTA},
|
|
{"quadbuffer", GL_3D_QUADBUFFER})),
|
|
OPT_STRING_VALIDATE("lscale", scalers[0], 0, validate_scaler_opt),
|
|
OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt),
|
|
OPT_FLOAT("lparam1", scaler_params[0], 0),
|
|
OPT_FLOAT("lparam2", scaler_params[1], 0),
|
|
OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0),
|
|
OPT_FLAG("fancy-downscaling", fancy_downscaling, 0),
|
|
OPT_FLAG("indirect", indirect, 0),
|
|
OPT_FLAG("scale-sep", scale_sep, 0),
|
|
OPT_CHOICE("fbo-format", fbo_format, 0,
|
|
({"rgb", GL_RGB},
|
|
{"rgba", GL_RGBA},
|
|
{"rgb8", GL_RGB8},
|
|
{"rgb10", GL_RGB10},
|
|
{"rgb10_a2", GL_RGB10_A2},
|
|
{"rgb16", GL_RGB16},
|
|
{"rgb16f", GL_RGB16F},
|
|
{"rgb32f", GL_RGB32F},
|
|
{"rgba12", GL_RGBA12},
|
|
{"rgba16", GL_RGBA16},
|
|
{"rgba16f", GL_RGBA16F},
|
|
{"rgba32f", GL_RGBA32F})),
|
|
OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16,
|
|
({"no", -1}, {"auto", 0})),
|
|
OPT_CHOICE("dither", dither_algo, 0,
|
|
({"fruit", 0}, {"ordered", 1}, {"no", -1})),
|
|
OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8),
|
|
OPT_FLAG("temporal-dither", temporal_dither, 0),
|
|
OPT_CHOICE("chroma-location", chroma_location, 0,
|
|
({"auto", MP_CHROMA_AUTO},
|
|
{"center", MP_CHROMA_CENTER},
|
|
{"left", MP_CHROMA_LEFT})),
|
|
OPT_CHOICE("alpha", alpha_mode, M_OPT_OPTIONAL_PARAM,
|
|
({"no", 0},
|
|
{"yes", 1}, {"", 1},
|
|
{"blend", 2})),
|
|
OPT_FLAG("rectangle-textures", use_rectangle, 0),
|
|
{0}
|
|
},
|
|
.size = sizeof(struct gl_video_opts),
|
|
.defaults = &gl_video_opts_def,
|
|
};
|
|
|
|
static void uninit_rendering(struct gl_video *p);
|
|
static void delete_shaders(struct gl_video *p);
|
|
static void check_gl_features(struct gl_video *p);
|
|
static bool init_format(int fmt, struct gl_video *init);
|
|
|
|
|
|
static void default_tex_params(struct GL *gl, GLenum target, GLint filter)
|
|
{
|
|
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
|
|
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
}
|
|
|
|
static void debug_check_gl(struct gl_video *p, const char *msg)
|
|
{
|
|
if (p->gl_debug)
|
|
glCheckError(p->gl, p->log, msg);
|
|
}
|
|
|
|
void gl_video_set_debug(struct gl_video *p, bool enable)
|
|
{
|
|
p->gl_debug = enable;
|
|
}
|
|
|
|
static void texture_size(struct gl_video *p, int w, int h, int *texw, int *texh)
|
|
{
|
|
if (p->opts.npot) {
|
|
*texw = w;
|
|
*texh = h;
|
|
} else {
|
|
*texw = 32;
|
|
while (*texw < w)
|
|
*texw *= 2;
|
|
*texh = 32;
|
|
while (*texh < h)
|
|
*texh *= 2;
|
|
}
|
|
}
|
|
|
|
static void draw_triangles(struct gl_video *p, struct vertex *vb, int vert_count)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
assert(vert_count % 3 == 0);
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
|
|
gl->BufferData(GL_ARRAY_BUFFER, vert_count * sizeof(struct vertex), vb,
|
|
GL_DYNAMIC_DRAW);
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
if (gl->BindVertexArray)
|
|
gl->BindVertexArray(p->vao);
|
|
|
|
gl->DrawArrays(GL_TRIANGLES, 0, vert_count);
|
|
|
|
if (gl->BindVertexArray)
|
|
gl->BindVertexArray(0);
|
|
|
|
debug_check_gl(p, "after rendering");
|
|
}
|
|
|
|
// Write a textured quad to a vertex array.
|
|
// va = destination vertex array, VERTICES_PER_QUAD entries will be overwritten
|
|
// x0, y0, x1, y1 = destination coordinates of the quad
|
|
// tx0, ty0, tx1, ty1 = source texture coordinates (usually in pixels)
|
|
// texture_w, texture_h = size of the texture, or an inverse factor
|
|
// color = optional color for all vertices, NULL for opaque white
|
|
// flags = bits 0-1: rotate, bits 2: flip vertically
|
|
static void write_quad(struct vertex *va,
|
|
float x0, float y0, float x1, float y1,
|
|
float tx0, float ty0, float tx1, float ty1,
|
|
float texture_w, float texture_h,
|
|
const uint8_t color[4], GLenum target, int flags)
|
|
{
|
|
static const uint8_t white[4] = { 255, 255, 255, 255 };
|
|
|
|
if (!color)
|
|
color = white;
|
|
|
|
if (target == GL_TEXTURE_2D) {
|
|
tx0 /= texture_w;
|
|
ty0 /= texture_h;
|
|
tx1 /= texture_w;
|
|
ty1 /= texture_h;
|
|
}
|
|
|
|
if (flags & 4) {
|
|
float tmp = ty0;
|
|
ty0 = ty1;
|
|
ty1 = tmp;
|
|
}
|
|
|
|
#define COLOR_INIT {color[0], color[1], color[2], color[3]}
|
|
va[0] = (struct vertex) { {x0, y0}, COLOR_INIT, {tx0, ty0} };
|
|
va[1] = (struct vertex) { {x0, y1}, COLOR_INIT, {tx0, ty1} };
|
|
va[2] = (struct vertex) { {x1, y0}, COLOR_INIT, {tx1, ty0} };
|
|
va[3] = (struct vertex) { {x1, y1}, COLOR_INIT, {tx1, ty1} };
|
|
va[4] = va[2];
|
|
va[5] = va[1];
|
|
#undef COLOR_INIT
|
|
int rot = flags & 3;
|
|
while (rot--) {
|
|
static const int perm[6] = {1, 3, 0, 2, 0, 3};
|
|
struct vertex vb[6];
|
|
memcpy(vb, va, sizeof(vb));
|
|
for (int n = 0; n < 6; n++)
|
|
memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2]));
|
|
}
|
|
}
|
|
|
|
static bool fbotex_init(struct gl_video *p, struct fbotex *fbo, int w, int h,
|
|
GLenum iformat)
|
|
{
|
|
GL *gl = p->gl;
|
|
bool res = true;
|
|
|
|
assert(!fbo->fbo);
|
|
assert(!fbo->texture);
|
|
|
|
*fbo = (struct fbotex) {
|
|
.vp_w = w,
|
|
.vp_h = h,
|
|
};
|
|
|
|
texture_size(p, w, h, &fbo->tex_w, &fbo->tex_h);
|
|
|
|
MP_VERBOSE(p, "Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h);
|
|
|
|
if (!(gl->mpgl_caps & MPGL_CAP_FB))
|
|
return false;
|
|
|
|
gl->GenFramebuffers(1, &fbo->fbo);
|
|
gl->GenTextures(1, &fbo->texture);
|
|
gl->BindTexture(p->gl_target, fbo->texture);
|
|
gl->TexImage2D(p->gl_target, 0, iformat,
|
|
fbo->tex_w, fbo->tex_h, 0,
|
|
GL_RGB, GL_UNSIGNED_BYTE, NULL);
|
|
default_tex_params(gl, p->gl_target, GL_LINEAR);
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
|
|
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
|
p->gl_target, fbo->texture, 0);
|
|
|
|
if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
|
|
MP_ERR(p, "Error: framebuffer completeness check failed!\n");
|
|
res = false;
|
|
}
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
|
|
debug_check_gl(p, "after creating framebuffer & associated texture");
|
|
|
|
return res;
|
|
}
|
|
|
|
static void fbotex_uninit(struct gl_video *p, struct fbotex *fbo)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
if (gl->mpgl_caps & MPGL_CAP_FB) {
|
|
gl->DeleteFramebuffers(1, &fbo->fbo);
|
|
gl->DeleteTextures(1, &fbo->texture);
|
|
*fbo = (struct fbotex) {0};
|
|
}
|
|
}
|
|
|
|
static void matrix_ortho2d(float m[3][3], float x0, float x1,
|
|
float y0, float y1)
|
|
{
|
|
memset(m, 0, 9 * sizeof(float));
|
|
m[0][0] = 2.0f / (x1 - x0);
|
|
m[1][1] = 2.0f / (y1 - y0);
|
|
m[2][0] = -(x1 + x0) / (x1 - x0);
|
|
m[2][1] = -(y1 + y0) / (y1 - y0);
|
|
m[2][2] = 1.0f;
|
|
}
|
|
|
|
static void update_uniforms(struct gl_video *p, GLuint program)
|
|
{
|
|
GL *gl = p->gl;
|
|
GLint loc;
|
|
|
|
if (program == 0)
|
|
return;
|
|
|
|
gl->UseProgram(program);
|
|
|
|
struct mp_csp_details csp = MP_CSP_DETAILS_DEFAULTS;
|
|
csp.levels_in = p->image_params.colorlevels;
|
|
csp.levels_out = p->image_params.outputlevels;
|
|
csp.format = p->image_params.colorspace;
|
|
|
|
struct mp_csp_params cparams = {
|
|
.colorspace = csp,
|
|
.input_bits = p->plane_bits,
|
|
.texture_bits = (p->plane_bits + 7) & ~7,
|
|
};
|
|
mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
|
|
cparams.colorspace.format = MP_CSP_XYZ;
|
|
cparams.input_bits = 8;
|
|
cparams.texture_bits = 8;
|
|
}
|
|
|
|
loc = gl->GetUniformLocation(program, "transform");
|
|
if (loc >= 0) {
|
|
float matrix[3][3];
|
|
matrix_ortho2d(matrix, 0, p->vp_w, p->vp_h, 0);
|
|
gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]);
|
|
}
|
|
|
|
loc = gl->GetUniformLocation(program, "colormatrix");
|
|
if (loc >= 0) {
|
|
float m[3][4] = {{0}};
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
|
|
// Hard-coded as relative colorimetric for now, since this transforms
|
|
// from the source file's D55 material to whatever color space our
|
|
// projector/display lives in, which should be D55 for a proper
|
|
// home cinema setup either way.
|
|
mp_get_xyz2rgb_coeffs(&cparams, p->csp_src, MP_INTENT_RELATIVE_COLORIMETRIC, m);
|
|
} else {
|
|
mp_get_yuv2rgb_coeffs(&cparams, m);
|
|
}
|
|
gl->UniformMatrix4x3fv(loc, 1, GL_TRUE, &m[0][0]);
|
|
}
|
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"),
|
|
p->input_gamma);
|
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"),
|
|
p->conv_gamma);
|
|
|
|
float gamma = p->opts.gamma ? p->opts.gamma : 1.0;
|
|
gl->Uniform3f(gl->GetUniformLocation(program, "inv_gamma"),
|
|
1.0 / (cparams.rgamma * gamma),
|
|
1.0 / (cparams.ggamma * gamma),
|
|
1.0 / (cparams.bgamma * gamma));
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
char textures_n[32];
|
|
char textures_size_n[32];
|
|
snprintf(textures_n, sizeof(textures_n), "texture%d", n);
|
|
snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n);
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n);
|
|
if (p->gl_target == GL_TEXTURE_2D) {
|
|
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n),
|
|
p->image.planes[n].tex_w, p->image.planes[n].tex_h);
|
|
} else {
|
|
// Makes the pixel size calculation code think they are 1x1
|
|
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1);
|
|
}
|
|
}
|
|
|
|
loc = gl->GetUniformLocation(program, "chroma_div");
|
|
if (loc >= 0) {
|
|
int xs = p->image_desc.chroma_xs;
|
|
int ys = p->image_desc.chroma_ys;
|
|
gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys));
|
|
}
|
|
|
|
loc = gl->GetUniformLocation(program, "chroma_center_offset");
|
|
if (loc >= 0) {
|
|
int chr = p->opts.chroma_location;
|
|
if (!chr)
|
|
chr = p->image_params.chroma_location;
|
|
int cx, cy;
|
|
mp_get_chroma_location(chr, &cx, &cy);
|
|
// By default texture coordinates are such that chroma is centered with
|
|
// any chroma subsampling. If a specific direction is given, make it
|
|
// so that the luma and chroma sample line up exactly.
|
|
// For 4:4:4, setting chroma location should have no effect at all.
|
|
// luma sample size (in chroma coord. space)
|
|
float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
|
|
float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
|
|
// move chroma center to luma center (in chroma coord. space)
|
|
float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0;
|
|
float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0;
|
|
int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0;
|
|
gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1),
|
|
o_y / FFMAX(p->image.planes[1].h * c, 1));
|
|
}
|
|
|
|
gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"),
|
|
p->dither_size, p->dither_size);
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT);
|
|
|
|
loc = gl->GetUniformLocation(program, "cms_matrix");
|
|
if (loc >= 0) {
|
|
float cms_matrix[3][3] = {{0}};
|
|
// Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect
|
|
// the input to be actual BT.2020 and not something red- or blueshifted,
|
|
// and for sRGB monitors we most likely want relative scaling either way.
|
|
mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix);
|
|
gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]);
|
|
}
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
const char *lut = p->scalers[n].lut_name;
|
|
if (lut)
|
|
gl->Uniform1i(gl->GetUniformLocation(program, lut),
|
|
TEXUNIT_SCALERS + n);
|
|
}
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER);
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"),
|
|
p->dither_quantization);
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"),
|
|
p->dither_center);
|
|
|
|
float sparam1 = p->opts.scaler_params[0];
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1"),
|
|
isnan(sparam1) ? 0.5f : sparam1);
|
|
|
|
gl->UseProgram(0);
|
|
|
|
debug_check_gl(p, "update_uniforms()");
|
|
}
|
|
|
|
static void update_all_uniforms(struct gl_video *p)
|
|
{
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++)
|
|
update_uniforms(p, p->osd_programs[n]);
|
|
update_uniforms(p, p->indirect_program);
|
|
update_uniforms(p, p->scale_sep_program);
|
|
update_uniforms(p, p->final_program);
|
|
}
|
|
|
|
#define SECTION_HEADER "#!section "
|
|
|
|
static char *get_section(void *talloc_ctx, struct bstr source,
|
|
const char *section)
|
|
{
|
|
char *res = talloc_strdup(talloc_ctx, "");
|
|
bool copy = false;
|
|
while (source.len) {
|
|
struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source));
|
|
if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) {
|
|
copy = bstrcmp0(line, section) == 0;
|
|
} else if (copy) {
|
|
res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line));
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static char *t_concat(void *talloc_ctx, const char *s1, const char *s2)
|
|
{
|
|
return talloc_asprintf(talloc_ctx, "%s%s", s1, s2);
|
|
}
|
|
|
|
static GLuint create_shader(struct gl_video *p, GLenum type, const char *header,
|
|
const char *source)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
void *tmp = talloc_new(NULL);
|
|
const char *full_source = t_concat(tmp, header, source);
|
|
|
|
GLuint shader = gl->CreateShader(type);
|
|
gl->ShaderSource(shader, 1, &full_source, NULL);
|
|
gl->CompileShader(shader);
|
|
GLint status;
|
|
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
|
|
GLint log_length;
|
|
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
|
|
const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
|
|
if (mp_msg_test(p->log, pri)) {
|
|
MP_MSG(p, pri, "%s shader source:\n", typestr);
|
|
mp_log_source(p->log, pri, full_source);
|
|
}
|
|
if (log_length > 1) {
|
|
GLchar *logstr = talloc_zero_size(tmp, log_length + 1);
|
|
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
|
|
MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n",
|
|
typestr, status, logstr);
|
|
}
|
|
|
|
talloc_free(tmp);
|
|
|
|
return shader;
|
|
}
|
|
|
|
static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type,
|
|
const char *header, const char *source)
|
|
{
|
|
GL *gl = p->gl;
|
|
GLuint shader = create_shader(p, type, header, source);
|
|
gl->AttachShader(program, shader);
|
|
gl->DeleteShader(shader);
|
|
}
|
|
|
|
static void link_shader(struct gl_video *p, GLuint program)
|
|
{
|
|
GL *gl = p->gl;
|
|
gl->LinkProgram(program);
|
|
GLint status;
|
|
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
|
|
GLint log_length;
|
|
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
|
|
if (mp_msg_test(p->log, pri)) {
|
|
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
|
|
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
|
|
MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr);
|
|
talloc_free(logstr);
|
|
}
|
|
}
|
|
|
|
static void bind_attrib_locs(GL *gl, GLuint program)
|
|
{
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_POSITION, "vertex_position");
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_COLOR, "vertex_color");
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_TEXCOORD, "vertex_texcoord");
|
|
}
|
|
|
|
#define PRELUDE_END "// -- prelude end\n"
|
|
|
|
static GLuint create_program(struct gl_video *p, const char *name,
|
|
const char *header, const char *vertex,
|
|
const char *frag)
|
|
{
|
|
GL *gl = p->gl;
|
|
MP_VERBOSE(p, "compiling shader program '%s', header:\n", name);
|
|
const char *real_header = strstr(header, PRELUDE_END);
|
|
real_header = real_header ? real_header + strlen(PRELUDE_END) : header;
|
|
mp_log_source(p->log, MSGL_V, real_header);
|
|
GLuint prog = gl->CreateProgram();
|
|
prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex);
|
|
prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag);
|
|
bind_attrib_locs(gl, prog);
|
|
link_shader(p, prog);
|
|
return prog;
|
|
}
|
|
|
|
static void shader_def(char **shader, const char *name,
|
|
const char *value)
|
|
{
|
|
*shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value);
|
|
}
|
|
|
|
static void shader_def_opt(char **shader, const char *name, bool b)
|
|
{
|
|
if (b)
|
|
shader_def(shader, name, "1");
|
|
}
|
|
|
|
static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass)
|
|
{
|
|
const char *target = scaler->index == 0 ? "SAMPLE_L" : "SAMPLE_C";
|
|
if (!scaler->kernel) {
|
|
*shader = talloc_asprintf_append(*shader, "#define %s sample_%s\n",
|
|
target, scaler->name);
|
|
} else {
|
|
int size = scaler->kernel->size;
|
|
if (pass != -1) {
|
|
// The direction/pass assignment is rather arbitrary, but fixed in
|
|
// other parts of the code (like FBO setup).
|
|
const char *direction = pass == 0 ? "0, 1" : "1, 0";
|
|
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
|
|
"sample_convolution_sep%d(vec2(%s), %s, p0, p1, p2)\n",
|
|
target, size, direction, scaler->lut_name);
|
|
} else {
|
|
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
|
|
"sample_convolution%d(%s, p0, p1, p2)\n",
|
|
target, size, scaler->lut_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// return false if RGB or 4:4:4 YUV
|
|
static bool input_is_subsampled(struct gl_video *p)
|
|
{
|
|
for (int i = 0; i < p->plane_count; i++)
|
|
if (p->image_desc.xs[i] || p->image_desc.ys[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void compile_shaders(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
delete_shaders(p);
|
|
|
|
void *tmp = talloc_new(NULL);
|
|
|
|
struct bstr src = bstr0(vo_opengl_shaders);
|
|
char *vertex_shader = get_section(tmp, src, "vertex_all");
|
|
char *shader_prelude = get_section(tmp, src, "prelude");
|
|
char *s_video = get_section(tmp, src, "frag_video");
|
|
|
|
char *header = talloc_asprintf(tmp, "#version %d\n%s%s", gl->glsl_version,
|
|
shader_prelude, PRELUDE_END);
|
|
|
|
bool use_cms = p->opts.srgb || p->use_lut_3d;
|
|
|
|
float input_gamma = 1.0;
|
|
float conv_gamma = 1.0;
|
|
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
|
|
input_gamma *= 2.6;
|
|
|
|
// If we're using cms, we can treat it as proper linear input,
|
|
// otherwise we just scale back to 1.95 as a reasonable approximation.
|
|
if (use_cms) {
|
|
p->is_linear_rgb = true;
|
|
} else {
|
|
conv_gamma *= 1.0 / 1.95;
|
|
}
|
|
}
|
|
|
|
p->input_gamma = input_gamma;
|
|
p->conv_gamma = conv_gamma;
|
|
|
|
bool use_input_gamma = p->input_gamma != 1.0;
|
|
bool use_conv_gamma = p->conv_gamma != 1.0;
|
|
bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C;
|
|
|
|
// Linear light scaling is only enabled when either color correction
|
|
// option (3dlut or srgb) is enabled, otherwise scaling is done in the
|
|
// source space. We also need to linearize for constant luminance systems.
|
|
bool convert_to_linear_gamma = !p->is_linear_rgb && use_cms || use_const_luma;
|
|
|
|
// Figure out the right color spaces we need to convert, if any
|
|
enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest;
|
|
if (use_cms) {
|
|
// sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is
|
|
// always built against BT.2020.
|
|
prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020;
|
|
} else {
|
|
// If no CMS is being done we just want to output stuff as-is,
|
|
// in the native colorspace of the source.
|
|
prim_dest = prim_src;
|
|
}
|
|
|
|
// XYZ input has no defined input color space, so we can directly convert
|
|
// it to whatever output space we actually need.
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
|
|
prim_src = prim_dest;
|
|
|
|
// Set the colorspace primaries and figure out whether we need to perform
|
|
// an extra conversion.
|
|
p->csp_src = mp_get_csp_primaries(prim_src);
|
|
p->csp_dest = mp_get_csp_primaries(prim_dest);
|
|
|
|
bool use_cms_matrix = prim_src != prim_dest;
|
|
|
|
if (p->gl_target == GL_TEXTURE_RECTANGLE) {
|
|
shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect");
|
|
shader_def_opt(&header, "USE_RECTANGLE", true);
|
|
} else {
|
|
shader_def(&header, "VIDEO_SAMPLER", "sampler2D");
|
|
}
|
|
|
|
// Need to pass alpha through the whole chain. (Not needed for OSD shaders.)
|
|
if (p->opts.alpha_mode == 1)
|
|
shader_def_opt(&header, "USE_ALPHA", p->has_alpha);
|
|
|
|
char *header_osd = talloc_strdup(tmp, header);
|
|
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_APPROX",
|
|
use_cms && p->opts.approx_gamma);
|
|
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT2020",
|
|
use_cms && !p->opts.approx_gamma);
|
|
shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix);
|
|
shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d);
|
|
// 3DLUT overrides SRGB
|
|
shader_def_opt(&header_osd, "USE_OSD_SRGB", !p->use_lut_3d && p->opts.srgb);
|
|
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++) {
|
|
const char *name = osd_shaders[n];
|
|
if (name) {
|
|
char *s_osd = get_section(tmp, src, name);
|
|
p->osd_programs[n] =
|
|
create_program(p, name, header_osd, vertex_shader, s_osd);
|
|
}
|
|
}
|
|
|
|
char *header_conv = talloc_strdup(tmp, "");
|
|
char *header_final = talloc_strdup(tmp, "");
|
|
char *header_sep = NULL;
|
|
|
|
if (p->image_format == IMGFMT_NV12 || p->image_format == IMGFMT_NV21) {
|
|
shader_def(&header_conv, "USE_CONV", "CONV_NV12");
|
|
} else if (p->plane_count > 1) {
|
|
shader_def(&header_conv, "USE_CONV", "CONV_PLANAR");
|
|
}
|
|
|
|
if (p->color_swizzle[0])
|
|
shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle);
|
|
shader_def_opt(&header_conv, "USE_SWAP_UV", p->image_format == IMGFMT_NV21);
|
|
shader_def_opt(&header_conv, "USE_YGRAY", p->is_yuv && !p->is_packed_yuv
|
|
&& p->plane_count == 1);
|
|
shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma);
|
|
shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb);
|
|
shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma);
|
|
shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma);
|
|
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_APPROX",
|
|
convert_to_linear_gamma && p->opts.approx_gamma);
|
|
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT2020",
|
|
convert_to_linear_gamma && !p->opts.approx_gamma);
|
|
if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3)
|
|
shader_def(&header_conv, "USE_ALPHA_PLANE", "3");
|
|
if (p->opts.alpha_mode == 2 && p->has_alpha)
|
|
shader_def(&header_conv, "USE_ALPHA_BLEND", "1");
|
|
|
|
shader_def_opt(&header_final, "USE_GAMMA_POW", p->opts.gamma > 0);
|
|
shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix);
|
|
shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d);
|
|
// 3DLUT overrides SRGB
|
|
shader_def_opt(&header_final, "USE_SRGB", p->opts.srgb && !p->use_lut_3d);
|
|
shader_def_opt(&header_final, "USE_CONST_LUMA_INV_APPROX",
|
|
use_const_luma && !use_cms && p->opts.approx_gamma);
|
|
shader_def_opt(&header_final, "USE_CONST_LUMA_INV_BT2020",
|
|
use_const_luma && !use_cms && !p->opts.approx_gamma);
|
|
shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0);
|
|
shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither);
|
|
|
|
if (p->opts.scale_sep && p->scalers[0].kernel) {
|
|
header_sep = talloc_strdup(tmp, "");
|
|
shader_def_opt(&header_sep, "FIXED_SCALE", true);
|
|
shader_setup_scaler(&header_sep, &p->scalers[0], 0);
|
|
shader_setup_scaler(&header_final, &p->scalers[0], 1);
|
|
} else {
|
|
shader_setup_scaler(&header_final, &p->scalers[0], -1);
|
|
}
|
|
|
|
// We want to do scaling in linear light. Scaling is closely connected to
|
|
// texture sampling due to how the shader is structured (or if GL bilinear
|
|
// scaling is used). The purpose of the "indirect" pass is to convert the
|
|
// input video to linear RGB.
|
|
// Another purpose is reducing input to a single texture for scaling.
|
|
bool use_indirect = p->opts.indirect;
|
|
|
|
// Don't sample from input video textures before converting the input to
|
|
// linear light.
|
|
if (use_input_gamma || use_conv_gamma)
|
|
use_indirect = true;
|
|
|
|
// It doesn't make sense to scale the chroma with cscale in the 1. scale
|
|
// step and with lscale in the 2. step. If the chroma is subsampled, a
|
|
// convolution filter wouldn't even work entirely correctly, because the
|
|
// luma scaler would sample two texels instead of one per tap for chroma.
|
|
// Also, even with 4:4:4 YUV or planar RGB, the indirection might be faster,
|
|
// because the shader can't use one scaler for sampling from 3 textures. It
|
|
// has to fetch the coefficients for each texture separately, even though
|
|
// they're the same (this is not an inherent restriction, but would require
|
|
// to restructure the shader).
|
|
if (header_sep && p->plane_count > 1)
|
|
use_indirect = true;
|
|
|
|
if (input_is_subsampled(p)) {
|
|
shader_setup_scaler(&header_conv, &p->scalers[1], -1);
|
|
} else {
|
|
// Force using the luma scaler on chroma. If the "indirect" stage is
|
|
// used, the actual scaling will happen in the next stage.
|
|
shader_def(&header_conv, "SAMPLE_C",
|
|
use_indirect ? "sample_bilinear" : "SAMPLE_L");
|
|
}
|
|
|
|
if (use_indirect) {
|
|
// We don't use filtering for the Y-plane (luma), because it's never
|
|
// scaled in this scenario.
|
|
shader_def(&header_conv, "SAMPLE_L", "sample_bilinear");
|
|
shader_def_opt(&header_conv, "FIXED_SCALE", true);
|
|
header_conv = t_concat(tmp, header, header_conv);
|
|
p->indirect_program =
|
|
create_program(p, "indirect", header_conv, vertex_shader, s_video);
|
|
} else if (header_sep) {
|
|
header_sep = t_concat(tmp, header_sep, header_conv);
|
|
} else {
|
|
header_final = t_concat(tmp, header_final, header_conv);
|
|
}
|
|
|
|
if (header_sep) {
|
|
header_sep = t_concat(tmp, header, header_sep);
|
|
p->scale_sep_program =
|
|
create_program(p, "scale_sep", header_sep, vertex_shader, s_video);
|
|
}
|
|
|
|
header_final = t_concat(tmp, header, header_final);
|
|
p->final_program =
|
|
create_program(p, "final", header_final, vertex_shader, s_video);
|
|
|
|
debug_check_gl(p, "shader compilation");
|
|
|
|
talloc_free(tmp);
|
|
}
|
|
|
|
static void delete_program(GL *gl, GLuint *prog)
|
|
{
|
|
gl->DeleteProgram(*prog);
|
|
*prog = 0;
|
|
}
|
|
|
|
static void delete_shaders(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++)
|
|
delete_program(gl, &p->osd_programs[n]);
|
|
delete_program(gl, &p->indirect_program);
|
|
delete_program(gl, &p->scale_sep_program);
|
|
delete_program(gl, &p->final_program);
|
|
}
|
|
|
|
static double get_scale_factor(struct gl_video *p)
|
|
{
|
|
double sx = (p->dst_rect.x1 - p->dst_rect.x0) /
|
|
(double)(p->src_rect.x1 - p->src_rect.x0);
|
|
double sy = (p->dst_rect.y1 - p->dst_rect.y0) /
|
|
(double)(p->src_rect.y1 - p->src_rect.y0);
|
|
// xxx: actually we should use different scalers in X/Y directions if the
|
|
// scale factors are different due to anamorphic content
|
|
return FFMIN(sx, sy);
|
|
}
|
|
|
|
static bool update_scale_factor(struct gl_video *p, struct filter_kernel *kernel)
|
|
{
|
|
double scale = get_scale_factor(p);
|
|
if (!p->opts.fancy_downscaling && scale < 1.0)
|
|
scale = 1.0;
|
|
return mp_init_filter(kernel, filter_sizes, FFMAX(1.0, 1.0 / scale));
|
|
}
|
|
|
|
static void init_scaler(struct gl_video *p, struct scaler *scaler)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
assert(scaler->name);
|
|
|
|
scaler->kernel = NULL;
|
|
|
|
const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
|
|
if (!t_kernel)
|
|
return;
|
|
|
|
scaler->kernel_storage = *t_kernel;
|
|
scaler->kernel = &scaler->kernel_storage;
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
if (!isnan(p->opts.scaler_params[n]))
|
|
scaler->kernel->params[n] = p->opts.scaler_params[n];
|
|
}
|
|
|
|
update_scale_factor(p, scaler->kernel);
|
|
|
|
int size = scaler->kernel->size;
|
|
assert(size < FF_ARRAY_ELEMS(lut_tex_formats));
|
|
const struct lut_tex_format *fmt = &lut_tex_formats[size];
|
|
bool use_2d = fmt->pixels > 1;
|
|
bool is_luma = scaler->index == 0;
|
|
scaler->lut_name = use_2d
|
|
? (is_luma ? "lut_l_2d" : "lut_c_2d")
|
|
: (is_luma ? "lut_l_1d" : "lut_c_1d");
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
|
|
GLenum target = use_2d ? GL_TEXTURE_2D : GL_TEXTURE_1D;
|
|
|
|
if (!scaler->gl_lut)
|
|
gl->GenTextures(1, &scaler->gl_lut);
|
|
|
|
gl->BindTexture(target, scaler->gl_lut);
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
|
|
float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
|
|
mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
|
|
if (use_2d) {
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, fmt->pixels,
|
|
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
|
|
weights);
|
|
} else {
|
|
gl->TexImage1D(GL_TEXTURE_1D, 0, fmt->internal_format,
|
|
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
|
|
weights);
|
|
}
|
|
talloc_free(weights);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
debug_check_gl(p, "after initializing scaler");
|
|
}
|
|
|
|
static void init_dither(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
// Assume 8 bits per component if unknown.
|
|
int dst_depth = p->depth_g ? p->depth_g : 8;
|
|
if (p->opts.dither_depth > 0)
|
|
dst_depth = p->opts.dither_depth;
|
|
|
|
if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
|
|
return;
|
|
|
|
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
|
|
|
|
int tex_size;
|
|
void *tex_data;
|
|
GLint tex_iformat;
|
|
GLenum tex_type;
|
|
unsigned char temp[256];
|
|
|
|
if (p->opts.dither_algo == 0) {
|
|
int sizeb = p->opts.dither_size;
|
|
int size = 1 << sizeb;
|
|
|
|
if (p->last_dither_matrix_size != size) {
|
|
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
|
|
float, size * size);
|
|
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
|
|
p->last_dither_matrix_size = size;
|
|
}
|
|
|
|
tex_size = size;
|
|
tex_iformat = GL_R16;
|
|
tex_type = GL_FLOAT;
|
|
tex_data = p->last_dither_matrix;
|
|
} else {
|
|
assert(sizeof(temp) >= 8 * 8);
|
|
mp_make_ordered_dither_matrix(temp, 8);
|
|
|
|
tex_size = 8;
|
|
tex_iformat = GL_RED;
|
|
tex_type = GL_UNSIGNED_BYTE;
|
|
tex_data = temp;
|
|
}
|
|
|
|
// This defines how many bits are considered significant for output on
|
|
// screen. The superfluous bits will be used for rounding according to the
|
|
// dither matrix. The precision of the source implicitly decides how many
|
|
// dither patterns can be visible.
|
|
p->dither_quantization = (1 << dst_depth) - 1;
|
|
p->dither_center = 0.5 / (tex_size * tex_size);
|
|
p->dither_size = tex_size;
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
|
|
gl->GenTextures(1, &p->dither_texture);
|
|
gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, GL_RED,
|
|
tex_type, tex_data);
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
}
|
|
|
|
static void recreate_osd(struct gl_video *p)
|
|
{
|
|
if (p->osd)
|
|
mpgl_osd_destroy(p->osd);
|
|
p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state);
|
|
p->osd->use_pbo = p->opts.pbo;
|
|
}
|
|
|
|
static bool does_resize(struct mp_rect src, struct mp_rect dst)
|
|
{
|
|
return src.x1 - src.x0 != dst.x1 - dst.x0 ||
|
|
src.y1 - src.y0 != dst.y1 - dst.y0;
|
|
}
|
|
|
|
static const char *expected_scaler(struct gl_video *p, int unit)
|
|
{
|
|
if (p->opts.scaler_resizes_only && unit == 0 &&
|
|
!does_resize(p->src_rect, p->dst_rect))
|
|
{
|
|
return "bilinear";
|
|
}
|
|
return p->opts.scalers[unit];
|
|
}
|
|
|
|
static void reinit_rendering(struct gl_video *p)
|
|
{
|
|
MP_VERBOSE(p, "Reinit rendering.\n");
|
|
|
|
debug_check_gl(p, "before scaler initialization");
|
|
|
|
uninit_rendering(p);
|
|
|
|
if (!p->image_format)
|
|
return;
|
|
|
|
for (int n = 0; n < 2; n++)
|
|
p->scalers[n].name = expected_scaler(p, n);
|
|
|
|
init_dither(p);
|
|
|
|
init_scaler(p, &p->scalers[0]);
|
|
init_scaler(p, &p->scalers[1]);
|
|
|
|
compile_shaders(p);
|
|
update_all_uniforms(p);
|
|
|
|
int w = p->image_w;
|
|
int h = p->image_h;
|
|
|
|
if (p->indirect_program && !p->indirect_fbo.fbo)
|
|
fbotex_init(p, &p->indirect_fbo, w, h, p->opts.fbo_format);
|
|
|
|
recreate_osd(p);
|
|
}
|
|
|
|
static void uninit_rendering(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
delete_shaders(p);
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
gl->DeleteTextures(1, &p->scalers[n].gl_lut);
|
|
p->scalers[n].gl_lut = 0;
|
|
p->scalers[n].lut_name = NULL;
|
|
p->scalers[n].kernel = NULL;
|
|
}
|
|
|
|
gl->DeleteTextures(1, &p->dither_texture);
|
|
p->dither_texture = 0;
|
|
}
|
|
|
|
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
if (!lut3d) {
|
|
if (p->use_lut_3d) {
|
|
p->use_lut_3d = false;
|
|
reinit_rendering(p);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!p->lut_3d_texture)
|
|
gl->GenTextures(1, &p->lut_3d_texture);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT);
|
|
gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture);
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1],
|
|
lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data);
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
p->use_lut_3d = true;
|
|
check_gl_features(p);
|
|
|
|
debug_check_gl(p, "after 3d lut creation");
|
|
|
|
reinit_rendering(p);
|
|
}
|
|
|
|
static void set_image_textures(struct gl_video *p, struct video_image *vimg,
|
|
GLuint imgtex[4])
|
|
{
|
|
GL *gl = p->gl;
|
|
GLuint dummy[4] = {0};
|
|
if (!imgtex)
|
|
imgtex = dummy;
|
|
|
|
if (p->hwdec_active) {
|
|
assert(vimg->hwimage);
|
|
p->hwdec->driver->map_image(p->hwdec, vimg->hwimage, imgtex);
|
|
} else {
|
|
for (int n = 0; n < p->plane_count; n++)
|
|
imgtex[n] = vimg->planes[n].gl_texture;
|
|
}
|
|
|
|
for (int n = 0; n < 4; n++) {
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
gl->BindTexture(p->gl_target, imgtex[n]);
|
|
}
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
}
|
|
|
|
static void unset_image_textures(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
for (int n = 0; n < 4; n++) {
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
gl->BindTexture(p->gl_target, 0);
|
|
}
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
if (p->hwdec_active)
|
|
p->hwdec->driver->unmap_image(p->hwdec);
|
|
}
|
|
|
|
static void init_video(struct gl_video *p, const struct mp_image_params *params)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
init_format(params->imgfmt, p);
|
|
|
|
p->gl_target = p->opts.use_rectangle ? GL_TEXTURE_RECTANGLE : GL_TEXTURE_2D;
|
|
if (p->hwdec_active)
|
|
p->gl_target = p->hwdec->gl_texture_target;
|
|
|
|
check_gl_features(p);
|
|
|
|
p->image_w = params->w;
|
|
p->image_h = params->h;
|
|
p->image_dw = params->d_w;
|
|
p->image_dh = params->d_h;
|
|
p->image_params = *params;
|
|
|
|
if (p->is_rgb && (p->opts.srgb || p->use_lut_3d)) {
|
|
// If we're opening an RGB source like a png file or similar,
|
|
// we just sample it using GL_SRGB which treats it as an sRGB source
|
|
// and pretend it's linear as far as CMS is concerned
|
|
p->is_linear_rgb = true;
|
|
p->image.planes[0].gl_internal_format = GL_SRGB;
|
|
}
|
|
|
|
int eq_caps = MP_CSP_EQ_CAPS_GAMMA;
|
|
if (p->is_yuv && p->image_params.colorspace != MP_CSP_BT_2020_C)
|
|
eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX;
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
|
|
eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS;
|
|
p->video_eq.capabilities = eq_caps;
|
|
|
|
debug_check_gl(p, "before video texture creation");
|
|
|
|
// For video with odd sizes: enlarge the luma texture so that it covers all
|
|
// chroma pixels - then we can render these correctly by cropping the final
|
|
// image (conceptually).
|
|
// Image allocations are always such that the "additional" luma border
|
|
// exists and can be accessed.
|
|
int full_w = MP_ALIGN_UP(p->image_w, 1 << p->image_desc.chroma_xs);
|
|
int full_h = MP_ALIGN_UP(p->image_h, 1 << p->image_desc.chroma_ys);
|
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
struct texplane *plane = &vimg->planes[n];
|
|
|
|
plane->w = full_w >> p->image_desc.xs[n];
|
|
plane->h = full_h >> p->image_desc.ys[n];
|
|
|
|
if (p->hwdec_active) {
|
|
// We expect hwdec backends to allocate exact size
|
|
plane->tex_w = plane->w;
|
|
plane->tex_h = plane->h;
|
|
} else {
|
|
texture_size(p, plane->w, plane->h,
|
|
&plane->tex_w, &plane->tex_h);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
gl->GenTextures(1, &plane->gl_texture);
|
|
gl->BindTexture(p->gl_target, plane->gl_texture);
|
|
|
|
gl->TexImage2D(p->gl_target, 0, plane->gl_internal_format,
|
|
plane->tex_w, plane->tex_h, 0,
|
|
plane->gl_format, plane->gl_type, NULL);
|
|
|
|
default_tex_params(gl, p->gl_target, GL_LINEAR);
|
|
}
|
|
|
|
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n",
|
|
n, plane->tex_w, plane->tex_h);
|
|
}
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
p->texture_w = p->image.planes[0].tex_w;
|
|
p->texture_h = p->image.planes[0].tex_h;
|
|
|
|
debug_check_gl(p, "after video texture creation");
|
|
|
|
if (p->hwdec_active) {
|
|
if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0)
|
|
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
|
|
}
|
|
|
|
reinit_rendering(p);
|
|
}
|
|
|
|
static void uninit_video(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
uninit_rendering(p);
|
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
for (int n = 0; n < 3; n++) {
|
|
struct texplane *plane = &vimg->planes[n];
|
|
|
|
gl->DeleteTextures(1, &plane->gl_texture);
|
|
plane->gl_texture = 0;
|
|
gl->DeleteBuffers(1, &plane->gl_buffer);
|
|
plane->gl_buffer = 0;
|
|
plane->buffer_ptr = NULL;
|
|
plane->buffer_size = 0;
|
|
}
|
|
mp_image_unrefp(&vimg->hwimage);
|
|
|
|
fbotex_uninit(p, &p->indirect_fbo);
|
|
fbotex_uninit(p, &p->scale_sep_fbo);
|
|
}
|
|
|
|
static void change_dither_trafo(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
int program = p->final_program;
|
|
|
|
int phase = p->frames_rendered % 8u;
|
|
float r = phase * (M_PI / 2); // rotate
|
|
float m = phase < 4 ? 1 : -1; // mirror
|
|
|
|
gl->UseProgram(program);
|
|
|
|
float matrix[2][2] = {{cos(r), -sin(r) },
|
|
{sin(r) * m, cos(r) * m}};
|
|
gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"),
|
|
1, GL_TRUE, &matrix[0][0]);
|
|
|
|
gl->UseProgram(0);
|
|
}
|
|
|
|
struct pass {
|
|
int num;
|
|
// Not necessarily a FBO; we just abuse this struct because it's convenient.
|
|
// It specifies the source texture/sub-rectangle for the next pass.
|
|
struct fbotex f;
|
|
// If true, render source (f) to dst, instead of the full dest. fbo viewport
|
|
bool use_dst;
|
|
struct mp_rect dst;
|
|
int flags; // for write_quad
|
|
bool render_stereo;
|
|
};
|
|
|
|
// *chain contains the source, and is overwritten with a copy of the result
|
|
// fbo is used as destination texture/render target.
|
|
static void handle_pass(struct gl_video *p, struct pass *chain,
|
|
struct fbotex *fbo, GLuint program)
|
|
{
|
|
struct vertex vb[VERTICES_PER_QUAD];
|
|
GL *gl = p->gl;
|
|
|
|
if (!program)
|
|
return;
|
|
|
|
gl->BindTexture(p->gl_target, chain->f.texture);
|
|
gl->UseProgram(program);
|
|
|
|
gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h);
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
|
|
|
|
int tex_w = chain->f.tex_w;
|
|
int tex_h = chain->f.tex_h;
|
|
struct mp_rect src = {
|
|
.x0 = chain->f.vp_x,
|
|
.y0 = chain->f.vp_y,
|
|
.x1 = chain->f.vp_x + chain->f.vp_w,
|
|
.y1 = chain->f.vp_y + chain->f.vp_h,
|
|
};
|
|
|
|
struct mp_rect dst = {-1, -1, 1, 1};
|
|
if (chain->use_dst)
|
|
dst = chain->dst;
|
|
|
|
MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n",
|
|
chain->num, src.x0, src.y0, src.x1, src.y1,
|
|
dst.x0, dst.y0, dst.x1, dst.y1,
|
|
fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h,
|
|
fbo->tex_w, fbo->tex_h, chain->flags);
|
|
|
|
if (chain->render_stereo && p->opts.stereo_mode) {
|
|
int w = src.x1 - src.x0;
|
|
int imgw = p->image_w;
|
|
|
|
glEnable3DLeft(gl, p->opts.stereo_mode);
|
|
|
|
write_quad(vb,
|
|
dst.x0, dst.y0, dst.x1, dst.y1,
|
|
src.x0 / 2, src.y0,
|
|
src.x0 / 2 + w / 2, src.y1,
|
|
tex_w, tex_h, NULL, p->gl_target, chain->flags);
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
glEnable3DRight(gl, p->opts.stereo_mode);
|
|
|
|
write_quad(vb,
|
|
dst.x0, dst.y0, dst.x1, dst.y1,
|
|
src.x0 / 2 + imgw / 2, src.y0,
|
|
src.x0 / 2 + imgw / 2 + w / 2, src.y1,
|
|
tex_w, tex_h, NULL, p->gl_target, chain->flags);
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
glDisable3D(gl, p->opts.stereo_mode);
|
|
} else {
|
|
write_quad(vb,
|
|
dst.x0, dst.y0, dst.x1, dst.y1,
|
|
src.x0, src.y0, src.x1, src.y1,
|
|
tex_w, tex_h, NULL, p->gl_target, chain->flags);
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
}
|
|
|
|
*chain = (struct pass){
|
|
.num = chain->num + 1,
|
|
.f = *fbo,
|
|
};
|
|
}
|
|
|
|
void gl_video_render_frame(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
struct video_image *vimg = &p->image;
|
|
|
|
if (p->opts.temporal_dither)
|
|
change_dither_trafo(p);
|
|
|
|
if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y
|
|
|| p->dst_rect.x1 < p->vp_x + p->vp_w
|
|
|| p->dst_rect.y1 < p->vp_y + p->vp_h)
|
|
{
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
}
|
|
|
|
if (!p->have_image) {
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
goto draw_osd;
|
|
}
|
|
|
|
// Order of processing:
|
|
// [indirect -> [scale_sep ->]] final
|
|
|
|
GLuint imgtex[4] = {0};
|
|
set_image_textures(p, vimg, imgtex);
|
|
|
|
struct pass chain = {
|
|
.f = {
|
|
.vp_w = p->image_w,
|
|
.vp_h = p->image_h,
|
|
.tex_w = p->texture_w,
|
|
.tex_h = p->texture_h,
|
|
.texture = imgtex[0],
|
|
},
|
|
};
|
|
|
|
handle_pass(p, &chain, &p->indirect_fbo, p->indirect_program);
|
|
|
|
// Clip to visible height so that separate scaling scales the visible part
|
|
// only (and the target FBO texture can have a bounded size).
|
|
// Don't clamp width; too hard to get correct final scaling on l/r borders.
|
|
chain.f.vp_y = p->src_rect_rot.y0;
|
|
chain.f.vp_h = p->src_rect_rot.y1 - p->src_rect_rot.y0;
|
|
|
|
handle_pass(p, &chain, &p->scale_sep_fbo, p->scale_sep_program);
|
|
|
|
struct fbotex screen = {
|
|
.vp_x = p->vp_x,
|
|
.vp_y = p->vp_y,
|
|
.vp_w = p->vp_w,
|
|
.vp_h = p->vp_h,
|
|
.texture = 0, //makes BindFramebuffer select the screen backbuffer
|
|
};
|
|
|
|
// For Y direction, use the whole source viewport; it has been fit to the
|
|
// correct origin/height before.
|
|
// For X direction, assume the texture wasn't scaled yet, so we can
|
|
// select the correct portion, which will be scaled to screen.
|
|
chain.f.vp_x = p->src_rect_rot.x0;
|
|
chain.f.vp_w = p->src_rect_rot.x1 - p->src_rect_rot.x0;
|
|
|
|
chain.use_dst = true;
|
|
chain.dst = p->dst_rect;
|
|
chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90)
|
|
| (vimg->image_flipped ? 4 : 0);
|
|
chain.render_stereo = true;
|
|
|
|
handle_pass(p, &chain, &screen, p->final_program);
|
|
|
|
gl->UseProgram(0);
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
|
|
|
|
unset_image_textures(p);
|
|
|
|
p->frames_rendered++;
|
|
|
|
debug_check_gl(p, "after video rendering");
|
|
|
|
draw_osd:
|
|
assert(p->osd);
|
|
|
|
osd_draw(p->osd_state, p->osd_rect, p->osd_pts, 0, p->osd->formats,
|
|
draw_osd_cb, p);
|
|
|
|
// The playloop calls this last before waiting some time until it decides
|
|
// to call flip_page(). Tell OpenGL to start execution of the GPU commands
|
|
// while we sleep (this happens asynchronously).
|
|
gl->Flush();
|
|
}
|
|
|
|
static void update_window_sized_objects(struct gl_video *p)
|
|
{
|
|
if (p->scale_sep_program) {
|
|
int w = p->dst_rect.x1 - p->dst_rect.x0;
|
|
int h = p->dst_rect.y1 - p->dst_rect.y0;
|
|
if ((p->image_params.rotate % 180) == 90)
|
|
MPSWAP(int, w, h);
|
|
if (h > p->scale_sep_fbo.tex_h) {
|
|
fbotex_uninit(p, &p->scale_sep_fbo);
|
|
// Round up to an arbitrary alignment to make window resizing or
|
|
// panscan controls smoother (less texture reallocations).
|
|
int height = FFALIGN(h, 256);
|
|
fbotex_init(p, &p->scale_sep_fbo, p->image_w, height,
|
|
p->opts.fbo_format);
|
|
}
|
|
p->scale_sep_fbo.vp_w = p->image_w;
|
|
p->scale_sep_fbo.vp_h = h;
|
|
}
|
|
}
|
|
|
|
static void check_resize(struct gl_video *p)
|
|
{
|
|
bool need_scaler_reinit = false; // filter size change needed
|
|
bool need_scaler_update = false; // filter LUT change needed
|
|
bool too_small = false;
|
|
for (int n = 0; n < 2; n++) {
|
|
if (p->scalers[n].kernel) {
|
|
struct filter_kernel tkernel = *p->scalers[n].kernel;
|
|
struct filter_kernel old = tkernel;
|
|
bool ok = update_scale_factor(p, &tkernel);
|
|
too_small |= !ok;
|
|
need_scaler_reinit |= (tkernel.size != old.size);
|
|
need_scaler_update |= (tkernel.inv_scale != old.inv_scale);
|
|
}
|
|
}
|
|
for (int n = 0; n < 2; n++) {
|
|
if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0)
|
|
need_scaler_reinit = true;
|
|
}
|
|
if (need_scaler_reinit) {
|
|
reinit_rendering(p);
|
|
} else if (need_scaler_update) {
|
|
init_scaler(p, &p->scalers[0]);
|
|
init_scaler(p, &p->scalers[1]);
|
|
}
|
|
if (too_small) {
|
|
MP_WARN(p, "Can't downscale that much, window "
|
|
"output may look suboptimal.\n");
|
|
}
|
|
|
|
update_window_sized_objects(p);
|
|
update_all_uniforms(p);
|
|
}
|
|
|
|
void gl_video_resize(struct gl_video *p, struct mp_rect *window,
|
|
struct mp_rect *src, struct mp_rect *dst,
|
|
struct mp_osd_res *osd)
|
|
{
|
|
p->src_rect = *src;
|
|
p->src_rect_rot = *src;
|
|
p->dst_rect = *dst;
|
|
p->osd_rect = *osd;
|
|
|
|
if ((p->image_params.rotate % 180) == 90) {
|
|
MPSWAP(int, p->src_rect_rot.x0, p->src_rect_rot.y0);
|
|
MPSWAP(int, p->src_rect_rot.x1, p->src_rect_rot.y1);
|
|
}
|
|
|
|
p->vp_x = window->x0;
|
|
p->vp_y = window->y0;
|
|
p->vp_w = window->x1 - window->x0;
|
|
p->vp_h = window->y1 - window->y0;
|
|
|
|
p->gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
|
|
|
|
check_resize(p);
|
|
}
|
|
|
|
static bool get_image(struct gl_video *p, struct mp_image *mpi)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
if (!p->opts.pbo)
|
|
return false;
|
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
// See comments in init_video() about odd video sizes.
|
|
// The normal upload path does this too, but less explicit.
|
|
mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h);
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
struct texplane *plane = &vimg->planes[n];
|
|
mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n];
|
|
int needed_size = mpi->plane_h[n] * mpi->stride[n];
|
|
if (!plane->gl_buffer)
|
|
gl->GenBuffers(1, &plane->gl_buffer);
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
|
|
if (needed_size > plane->buffer_size) {
|
|
plane->buffer_size = needed_size;
|
|
gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size,
|
|
NULL, GL_DYNAMIC_DRAW);
|
|
}
|
|
if (!plane->buffer_ptr)
|
|
plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER,
|
|
GL_WRITE_ONLY);
|
|
mpi->planes[n] = plane->buffer_ptr;
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
p->osd_pts = mpi->pts;
|
|
|
|
if (p->hwdec_active) {
|
|
talloc_free(vimg->hwimage);
|
|
vimg->hwimage = mpi;
|
|
p->have_image = true;
|
|
return;
|
|
}
|
|
|
|
assert(mpi->num_planes == p->plane_count);
|
|
|
|
mp_image_t mpi2 = *mpi;
|
|
bool pbo = false;
|
|
if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) {
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n];
|
|
memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n],
|
|
mpi2.stride[n], mpi->stride[n]);
|
|
}
|
|
pbo = true;
|
|
}
|
|
vimg->image_flipped = mpi2.stride[0] < 0;
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
struct texplane *plane = &vimg->planes[n];
|
|
void *plane_ptr = mpi2.planes[n];
|
|
if (pbo) {
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
|
|
if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER))
|
|
MP_FATAL(p, "Video PBO upload failed. "
|
|
"Remove the 'pbo' suboption.\n");
|
|
plane->buffer_ptr = NULL;
|
|
plane_ptr = NULL; // PBO offset 0
|
|
}
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
gl->BindTexture(p->gl_target, plane->gl_texture);
|
|
glUploadTex(gl, p->gl_target, plane->gl_format, plane->gl_type,
|
|
plane_ptr, mpi2.stride[n], 0, 0, plane->w, plane->h, 0);
|
|
}
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
|
|
|
p->have_image = true;
|
|
talloc_free(mpi);
|
|
}
|
|
|
|
struct mp_image *gl_video_download_image(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
if (!p->have_image)
|
|
return NULL;
|
|
|
|
if (p->hwdec_active && p->hwdec->driver->download_image) {
|
|
struct mp_image *dlimage =
|
|
p->hwdec->driver->download_image(p->hwdec, vimg->hwimage);
|
|
if (dlimage)
|
|
mp_image_set_attributes(dlimage, &p->image_params);
|
|
return dlimage;
|
|
}
|
|
|
|
set_image_textures(p, vimg, NULL);
|
|
|
|
assert(p->texture_w >= p->image_params.w);
|
|
assert(p->texture_h >= p->image_params.h);
|
|
|
|
mp_image_t *image = mp_image_alloc(p->image_format, p->texture_w,
|
|
p->texture_h);
|
|
if (image) {
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
struct texplane *plane = &vimg->planes[n];
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
glDownloadTex(gl, p->gl_target, plane->gl_format, plane->gl_type,
|
|
image->planes[n], image->stride[n]);
|
|
}
|
|
mp_image_set_attributes(image, &p->image_params);
|
|
}
|
|
|
|
unset_image_textures(p);
|
|
|
|
return image;
|
|
}
|
|
|
|
static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs)
|
|
{
|
|
struct gl_video *p = ctx;
|
|
GL *gl = p->gl;
|
|
|
|
struct mpgl_osd_part *osd = mpgl_osd_generate(p->osd, imgs);
|
|
if (!osd)
|
|
return;
|
|
|
|
assert(osd->format != SUBBITMAP_EMPTY);
|
|
|
|
if (!osd->num_vertices) {
|
|
osd->vertices = talloc_realloc(osd, osd->vertices, struct vertex,
|
|
osd->packer->count * VERTICES_PER_QUAD);
|
|
|
|
struct vertex *va = osd->vertices;
|
|
|
|
for (int n = 0; n < osd->packer->count; n++) {
|
|
struct sub_bitmap *b = &imgs->parts[n];
|
|
struct pos pos = osd->packer->result[n];
|
|
|
|
// NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it
|
|
// doesn't matter that we upload garbage for the other formats
|
|
uint32_t c = b->libass.color;
|
|
uint8_t color[4] = { c >> 24, (c >> 16) & 0xff,
|
|
(c >> 8) & 0xff, 255 - (c & 0xff) };
|
|
|
|
write_quad(&va[osd->num_vertices],
|
|
b->x, b->y, b->x + b->dw, b->y + b->dh,
|
|
pos.x, pos.y, pos.x + b->w, pos.y + b->h,
|
|
osd->w, osd->h, color, GL_TEXTURE_2D, 0);
|
|
osd->num_vertices += VERTICES_PER_QUAD;
|
|
}
|
|
}
|
|
|
|
debug_check_gl(p, "before drawing osd");
|
|
|
|
gl->UseProgram(p->osd_programs[osd->format]);
|
|
mpgl_osd_set_gl_state(p->osd, osd);
|
|
draw_triangles(p, osd->vertices, osd->num_vertices);
|
|
mpgl_osd_unset_gl_state(p->osd, osd);
|
|
gl->UseProgram(0);
|
|
|
|
debug_check_gl(p, "after drawing osd");
|
|
}
|
|
|
|
static bool test_fbo(struct gl_video *p, GLenum format)
|
|
{
|
|
static const float vals[] = {
|
|
127 / 255.0f, // full 8 bit integer
|
|
32767 / 65535.0f, // full 16 bit integer
|
|
0xFFFFFF / (float)(1 << 25), // float mantissa
|
|
2, // out of range value
|
|
};
|
|
static const char *const val_names[] = {
|
|
"8-bit precision",
|
|
"16-bit precision",
|
|
"full float",
|
|
"out of range value (2)",
|
|
};
|
|
|
|
GL *gl = p->gl;
|
|
bool success = false;
|
|
struct fbotex fbo = {0};
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
|
gl->PixelStorei(GL_PACK_ALIGNMENT, 1);
|
|
gl->PixelStorei(GL_PACK_ROW_LENGTH, 0);
|
|
if (fbotex_init(p, &fbo, 16, 16, format)) {
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo);
|
|
gl->ReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
for (int i = 0; i < 4; i++) {
|
|
float pixel = -1;
|
|
float val = vals[i];
|
|
gl->ClearColor(val, 0.0f, 0.0f, 1.0f);
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
gl->ReadPixels(0, 0, 1, 1, GL_RED, GL_FLOAT, &pixel);
|
|
MP_VERBOSE(p, " %s: %a\n", val_names[i], val - pixel);
|
|
}
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
glCheckError(gl, p->log, "after FBO read");
|
|
success = true;
|
|
}
|
|
fbotex_uninit(p, &fbo);
|
|
glCheckError(gl, p->log, "FBO test");
|
|
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
|
|
return success;
|
|
}
|
|
|
|
// Disable features that are not supported with the current OpenGL version.
|
|
static void check_gl_features(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX;
|
|
bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB;
|
|
bool have_srgb = gl->mpgl_caps & MPGL_CAP_SRGB_TEX;
|
|
bool have_mix = gl->glsl_version >= 130;
|
|
|
|
char *disabled[10];
|
|
int n_disabled = 0;
|
|
|
|
if (have_fbo) {
|
|
MP_VERBOSE(p, "Testing user-set FBO format\n");
|
|
have_fbo = test_fbo(p, p->opts.fbo_format);
|
|
}
|
|
|
|
// fruit dithering mode and the 3D lut use this texture format
|
|
if (have_fbo && ((p->opts.dither_depth >= 0 && p->opts.dither_algo == 0) ||
|
|
p->use_lut_3d))
|
|
{
|
|
// doesn't disable anything; it's just for the log
|
|
MP_VERBOSE(p, "Testing GL_R16 FBO (dithering/LUT)\n");
|
|
test_fbo(p, GL_R16);
|
|
}
|
|
|
|
// Disable these only if the user didn't disable scale-sep on the command
|
|
// line, so convolution filter can still be forced to be run.
|
|
// Normally, we want to disable them by default if FBOs are unavailable,
|
|
// because they will be slow (not critically slow, but still slower).
|
|
// Without FP textures, we must always disable them.
|
|
if (!have_float_tex || (!have_fbo && p->opts.scale_sep)) {
|
|
for (int n = 0; n < 2; n++) {
|
|
struct scaler *scaler = &p->scalers[n];
|
|
if (mp_find_filter_kernel(scaler->name)) {
|
|
scaler->name = "bilinear";
|
|
disabled[n_disabled++]
|
|
= have_float_tex ? "scaler (FBO)" : "scaler (float tex.)";
|
|
}
|
|
}
|
|
}
|
|
|
|
int use_cms = p->opts.srgb || p->use_lut_3d;
|
|
|
|
// srgb_compand() not available
|
|
if (!have_mix && p->opts.srgb) {
|
|
p->opts.srgb = false;
|
|
disabled[n_disabled++] = "sRGB output (GLSL version)";
|
|
}
|
|
if (!have_fbo && use_cms) {
|
|
p->opts.srgb = false;
|
|
p->use_lut_3d = false;
|
|
disabled[n_disabled++] = "color management (FBO)";
|
|
}
|
|
if (p->is_rgb) {
|
|
// When opening RGB files we use SRGB to expand
|
|
if (!have_srgb && use_cms) {
|
|
p->opts.srgb = false;
|
|
p->use_lut_3d = false;
|
|
disabled[n_disabled++] = "color management (SRGB textures)";
|
|
}
|
|
} else {
|
|
// when opening non-RGB files we use bt709_expand()
|
|
if (!have_mix && p->use_lut_3d) {
|
|
p->use_lut_3d = false;
|
|
disabled[n_disabled++] = "color management (GLSL version)";
|
|
}
|
|
}
|
|
if (!have_fbo) {
|
|
p->opts.scale_sep = false;
|
|
p->opts.indirect = false;
|
|
}
|
|
|
|
if (n_disabled) {
|
|
MP_ERR(p, "Some OpenGL extensions not detected, "
|
|
"disabling: ");
|
|
for (int n = 0; n < n_disabled; n++) {
|
|
if (n)
|
|
MP_ERR(p, ", ");
|
|
MP_ERR(p, "%s", disabled[n]);
|
|
}
|
|
MP_ERR(p, ".\n");
|
|
}
|
|
}
|
|
|
|
static void setup_vertex_array(GL *gl)
|
|
{
|
|
size_t stride = sizeof(struct vertex);
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_POSITION);
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE,
|
|
stride, (void*)offsetof(struct vertex, position));
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_COLOR);
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE,
|
|
stride, (void*)offsetof(struct vertex, color));
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_TEXCOORD);
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE,
|
|
stride, (void*)offsetof(struct vertex, texcoord));
|
|
}
|
|
|
|
static int init_gl(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
debug_check_gl(p, "before init_gl");
|
|
|
|
check_gl_features(p);
|
|
|
|
gl->Disable(GL_DITHER);
|
|
gl->Disable(GL_BLEND);
|
|
gl->Disable(GL_DEPTH_TEST);
|
|
gl->DepthMask(GL_FALSE);
|
|
gl->Disable(GL_CULL_FACE);
|
|
|
|
gl->GenBuffers(1, &p->vertex_buffer);
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
|
|
|
|
if (gl->BindVertexArray) {
|
|
gl->GenVertexArrays(1, &p->vao);
|
|
gl->BindVertexArray(p->vao);
|
|
setup_vertex_array(gl);
|
|
gl->BindVertexArray(0);
|
|
} else {
|
|
setup_vertex_array(gl);
|
|
}
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
|
|
|
|
debug_check_gl(p, "after init_gl");
|
|
|
|
return 1;
|
|
}
|
|
|
|
void gl_video_uninit(struct gl_video *p)
|
|
{
|
|
GL *gl = p->gl;
|
|
|
|
uninit_video(p);
|
|
|
|
if (gl->DeleteVertexArrays)
|
|
gl->DeleteVertexArrays(1, &p->vao);
|
|
gl->DeleteBuffers(1, &p->vertex_buffer);
|
|
gl->DeleteTextures(1, &p->lut_3d_texture);
|
|
|
|
mpgl_osd_destroy(p->osd);
|
|
|
|
talloc_free(p);
|
|
}
|
|
|
|
// dest = src.<w> (always using 4 components)
|
|
static void packed_fmt_swizzle(char w[5], const struct packed_fmt_entry *fmt)
|
|
{
|
|
for (int c = 0; c < 4; c++)
|
|
w[c] = "rgba"[MPMAX(fmt->components[c] - 1, 0)];
|
|
w[4] = '\0';
|
|
}
|
|
|
|
static const struct fmt_entry *find_tex_format(int bytes_per_comp, int n_channels)
|
|
{
|
|
assert(bytes_per_comp == 1 || bytes_per_comp == 2);
|
|
assert(n_channels >= 1 && n_channels <= 4);
|
|
return &gl_byte_formats[n_channels - 1 + (bytes_per_comp - 1) * 4];
|
|
}
|
|
|
|
static bool init_format(int fmt, struct gl_video *init)
|
|
{
|
|
struct gl_video dummy;
|
|
if (!init)
|
|
init = &dummy;
|
|
|
|
init->hwdec_active = false;
|
|
if (init->hwdec && init->hwdec->driver->imgfmt == fmt) {
|
|
fmt = init->hwdec->converted_imgfmt;
|
|
init->hwdec_active = true;
|
|
}
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt);
|
|
if (!desc.id)
|
|
return false;
|
|
|
|
if (desc.num_planes > 4)
|
|
return false;
|
|
|
|
const struct fmt_entry *plane_format[4] = {0};
|
|
|
|
init->image_format = fmt;
|
|
init->plane_bits = desc.bpp[0];
|
|
init->color_swizzle[0] = '\0';
|
|
init->has_alpha = false;
|
|
|
|
// YUV/planar formats
|
|
if (desc.flags & MP_IMGFLAG_YUV_P) {
|
|
int bits = desc.plane_bits;
|
|
if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) {
|
|
init->plane_bits = bits;
|
|
init->has_alpha = desc.num_planes > 3;
|
|
plane_format[0] = find_tex_format((bits + 7) / 8, 1);
|
|
for (int p = 1; p < desc.num_planes; p++)
|
|
plane_format[p] = plane_format[0];
|
|
goto supported;
|
|
}
|
|
}
|
|
|
|
// YUV/half-packed
|
|
if (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21) {
|
|
plane_format[0] = find_tex_format(1, 1);
|
|
plane_format[1] = find_tex_format(1, 2);
|
|
if (fmt == IMGFMT_NV21)
|
|
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga");
|
|
goto supported;
|
|
}
|
|
|
|
// RGB/planar
|
|
if (fmt == IMGFMT_GBRP) {
|
|
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga");
|
|
plane_format[0] = find_tex_format(1, 1);
|
|
for (int p = 1; p < desc.num_planes; p++)
|
|
plane_format[p] = plane_format[0];
|
|
goto supported;
|
|
}
|
|
|
|
// XYZ (same organization as RGB packed, but requires conversion matrix)
|
|
if (fmt == IMGFMT_XYZ12) {
|
|
plane_format[0] = find_tex_format(2, 3);
|
|
goto supported;
|
|
}
|
|
|
|
// Packed RGB special formats
|
|
for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) {
|
|
if (e->mp_format == fmt) {
|
|
plane_format[0] = e;
|
|
goto supported;
|
|
}
|
|
}
|
|
|
|
// Packed RGB(A) formats
|
|
for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) {
|
|
if (e->fmt == fmt) {
|
|
int n_comp = desc.bytes[0] / e->component_size;
|
|
plane_format[0] = find_tex_format(e->component_size, n_comp);
|
|
packed_fmt_swizzle(init->color_swizzle, e);
|
|
init->has_alpha = e->components[3] != 0;
|
|
goto supported;
|
|
}
|
|
}
|
|
|
|
// Packed YUV Apple formats
|
|
if (init->gl->mpgl_caps & MPGL_CAP_APPLE_RGB_422) {
|
|
for (const struct fmt_entry *e = gl_apple_formats; e->mp_format; e++) {
|
|
if (e->mp_format == fmt) {
|
|
init->is_packed_yuv = true;
|
|
snprintf(init->color_swizzle, sizeof(init->color_swizzle),
|
|
"gbra");
|
|
plane_format[0] = e;
|
|
goto supported;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unsupported format
|
|
return false;
|
|
|
|
supported:
|
|
|
|
// Stuff like IMGFMT_420AP10. Untested, most likely insane.
|
|
if (desc.num_planes == 4 && (init->plane_bits % 8) != 0)
|
|
return false;
|
|
|
|
for (int p = 0; p < desc.num_planes; p++) {
|
|
struct texplane *plane = &init->image.planes[p];
|
|
const struct fmt_entry *format = plane_format[p];
|
|
assert(format);
|
|
plane->gl_format = format->format;
|
|
plane->gl_internal_format = format->internal_format;
|
|
plane->gl_type = format->type;
|
|
}
|
|
|
|
init->is_yuv = desc.flags & MP_IMGFLAG_YUV;
|
|
init->is_rgb = desc.flags & MP_IMGFLAG_RGB;
|
|
init->is_linear_rgb = false;
|
|
init->plane_count = desc.num_planes;
|
|
init->image_desc = desc;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool gl_video_check_format(struct gl_video *p, int mp_format)
|
|
{
|
|
struct gl_video tmp = *p;
|
|
return init_format(mp_format, &tmp);
|
|
}
|
|
|
|
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
|
|
{
|
|
p->have_image = false;
|
|
mp_image_unrefp(&p->image.hwimage);
|
|
|
|
if (!mp_image_params_equal(&p->image_params, params)) {
|
|
uninit_video(p);
|
|
init_video(p, params);
|
|
}
|
|
}
|
|
|
|
void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b)
|
|
{
|
|
MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b);
|
|
p->depth_g = g;
|
|
}
|
|
|
|
struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd)
|
|
{
|
|
struct gl_video *p = talloc_ptrtype(NULL, p);
|
|
*p = (struct gl_video) {
|
|
.gl = gl,
|
|
.log = log,
|
|
.osd_state = osd,
|
|
.opts = gl_video_opts_def,
|
|
.gl_target = GL_TEXTURE_2D,
|
|
.gl_debug = true,
|
|
.scalers = {
|
|
{ .index = 0, .name = "bilinear" },
|
|
{ .index = 1, .name = "bilinear" },
|
|
},
|
|
.scratch = talloc_zero_array(p, char *, 1),
|
|
};
|
|
init_gl(p);
|
|
recreate_osd(p);
|
|
return p;
|
|
}
|
|
|
|
static bool can_use_filter_kernel(const struct filter_kernel *kernel)
|
|
{
|
|
if (!kernel)
|
|
return false;
|
|
struct filter_kernel k = *kernel;
|
|
return mp_init_filter(&k, filter_sizes, 1);
|
|
}
|
|
|
|
// Get static string for scaler shader.
|
|
static const char* handle_scaler_opt(const char *name)
|
|
{
|
|
if (name) {
|
|
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
|
|
if (can_use_filter_kernel(kernel))
|
|
return kernel->name;
|
|
|
|
for (const char *const *filter = fixed_scale_filters; *filter; filter++) {
|
|
if (strcmp(*filter, name) == 0)
|
|
return *filter;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Set the options, and possibly update the filter chain too.
|
|
// Note: assumes all options are valid and verified by the option parser.
|
|
void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts)
|
|
{
|
|
p->opts = *opts;
|
|
for (int n = 0; n < 2; n++) {
|
|
p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]);
|
|
assert(p->opts.scalers[n]);
|
|
p->scalers[n].name = p->opts.scalers[n];
|
|
}
|
|
|
|
check_gl_features(p);
|
|
reinit_rendering(p);
|
|
}
|
|
|
|
void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params)
|
|
{
|
|
*params = p->image_params; // supports everything
|
|
}
|
|
|
|
bool gl_video_set_equalizer(struct gl_video *p, const char *name, int val)
|
|
{
|
|
if (mp_csp_equalizer_set(&p->video_eq, name, val) >= 0) {
|
|
if (!p->opts.gamma && p->video_eq.values[MP_CSP_EQ_GAMMA] != 0) {
|
|
MP_VERBOSE(p, "Auto-enabling gamma.\n");
|
|
p->opts.gamma = 1.0f;
|
|
compile_shaders(p);
|
|
}
|
|
update_all_uniforms(p);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool gl_video_get_equalizer(struct gl_video *p, const char *name, int *val)
|
|
{
|
|
return mp_csp_equalizer_get(&p->video_eq, name, val) >= 0;
|
|
}
|
|
|
|
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
|
|
struct bstr name, struct bstr param)
|
|
{
|
|
if (bstr_equals0(param, "help")) {
|
|
mp_info(log, "Available scalers:\n");
|
|
for (const char *const *filter = fixed_scale_filters; *filter; filter++)
|
|
mp_info(log, " %s\n", *filter);
|
|
for (int n = 0; mp_filter_kernels[n].name; n++)
|
|
mp_info(log, " %s\n", mp_filter_kernels[n].name);
|
|
return M_OPT_EXIT - 1;
|
|
}
|
|
char s[20];
|
|
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
|
|
return handle_scaler_opt(s) ? 1 : M_OPT_INVALID;
|
|
}
|
|
|
|
// Resize and redraw the contents of the window without further configuration.
|
|
// Intended to be used in situations where the frontend can't really be
|
|
// involved with reconfiguring the VO properly.
|
|
// gl_video_resize() should be called when user interaction is done.
|
|
void gl_video_resize_redraw(struct gl_video *p, int w, int h)
|
|
{
|
|
p->gl->Viewport(p->vp_x, p->vp_y, w, h);
|
|
p->vp_w = w;
|
|
p->vp_h = h;
|
|
gl_video_render_frame(p);
|
|
}
|
|
|
|
void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec)
|
|
{
|
|
p->hwdec = hwdec;
|
|
mp_image_unrefp(&p->image.hwimage);
|
|
}
|