1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-21 23:23:19 +00:00
mpv/libfaad2/cfft.c
rtognimp 82361d50d0 Update to faad2 cvs 20040915+MPlayer fixes
Patch by me and Emanuele Giaquinta


git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@18142 b3059339-0415-0410-9bf9-f77b7e298cf2
2006-04-18 19:39:34 +00:00

1003 lines
34 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: cfft.c,v 1.30 2004/09/08 09:43:11 gcp Exp $
**/
/*
* Algorithmically based on Fortran-77 FFTPACK
* by Paul N. Swarztrauber(Version 4, 1985).
*
* Does even sized fft only
*/
/* isign is +1 for backward and -1 for forward transforms */
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#include "cfft.h"
#include "cfft_tab.h"
/* static function declarations */
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa);
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa);
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
const complex_t *wa4, const int8_t isign);
INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
const uint16_t *ifac, const complex_t *wa, const int8_t isign);
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);
/*----------------------------------------------------------------------
passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
----------------------------------------------------------------------*/
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa)
{
uint16_t i, k, ah, ac;
if (ido == 1)
{
for (k = 0; k < l1; k++)
{
ah = 2*k;
ac = 4*k;
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
}
} else {
for (k = 0; k < l1; k++)
{
ah = k*ido;
ac = 2*k*ido;
for (i = 0; i < ido; i++)
{
complex_t t2;
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
#if 1
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#else
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#endif
}
}
}
}
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa)
{
uint16_t i, k, ah, ac;
if (ido == 1)
{
for (k = 0; k < l1; k++)
{
ah = 2*k;
ac = 4*k;
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
}
} else {
for (k = 0; k < l1; k++)
{
ah = k*ido;
ac = 2*k*ido;
for (i = 0; i < ido; i++)
{
complex_t t2;
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
#if 1
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#else
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#endif
}
}
}
}
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const int8_t isign)
{
static real_t taur = FRAC_CONST(-0.5);
static real_t taui = FRAC_CONST(0.866025403784439);
uint16_t i, k, ac, ah;
complex_t c2, c3, d2, d3, t2;
if (ido == 1)
{
if (isign == 1)
{
for (k = 0; k < l1; k++)
{
ac = 3*k+1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
RE(ch[ah+l1]) = RE(c2) - IM(c3);
IM(ch[ah+l1]) = IM(c2) + RE(c3);
RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
}
} else {
for (k = 0; k < l1; k++)
{
ac = 3*k+1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
RE(ch[ah+l1]) = RE(c2) + IM(c3);
IM(ch[ah+l1]) = IM(c2) - RE(c3);
RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
}
}
} else {
if (isign == 1)
{
for (k = 0; k < l1; k++)
{
for (i = 0; i < ido; i++)
{
ac = i + (3*k+1)*ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
RE(d2) = RE(c2) - IM(c3);
IM(d3) = IM(c2) - RE(c3);
RE(d3) = RE(c2) + IM(c3);
IM(d2) = IM(c2) + RE(c3);
#if 1
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#else
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#endif
}
}
} else {
for (k = 0; k < l1; k++)
{
for (i = 0; i < ido; i++)
{
ac = i + (3*k+1)*ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
RE(d2) = RE(c2) + IM(c3);
IM(d3) = IM(c2) + RE(c3);
RE(d3) = RE(c2) - IM(c3);
IM(d2) = IM(c2) - RE(c3);
#if 1
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#else
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#endif
}
}
}
}
}
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const complex_t *wa3)
{
uint16_t i, k, ac, ah;
if (ido == 1)
{
for (k = 0; k < l1; k++)
{
complex_t t1, t2, t3, t4;
ac = 4*k;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
RE(ch[ah]) = RE(t2) + RE(t3);
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
IM(ch[ah]) = IM(t2) + IM(t3);
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
RE(ch[ah+l1]) = RE(t1) + RE(t4);
RE(ch[ah+3*l1]) = RE(t1) - RE(t4);
IM(ch[ah+l1]) = IM(t1) + IM(t4);
IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
}
} else {
for (k = 0; k < l1; k++)
{
ac = 4*k*ido;
ah = k*ido;
for (i = 0; i < ido; i++)
{
complex_t c2, c3, c4, t1, t2, t3, t4;
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
RE(c2) = RE(t1) + RE(t4);
RE(c4) = RE(t1) - RE(t4);
IM(c2) = IM(t1) + IM(t4);
IM(c4) = IM(t1) - IM(t4);
RE(ch[ah+i]) = RE(t2) + RE(t3);
RE(c3) = RE(t2) - RE(t3);
IM(ch[ah+i]) = IM(t2) + IM(t3);
IM(c3) = IM(t2) - IM(t3);
#if 1
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#else
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#endif
}
}
}
}
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const complex_t *wa3)
{
uint16_t i, k, ac, ah;
if (ido == 1)
{
for (k = 0; k < l1; k++)
{
complex_t t1, t2, t3, t4;
ac = 4*k;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
RE(ch[ah]) = RE(t2) + RE(t3);
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
IM(ch[ah]) = IM(t2) + IM(t3);
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
RE(ch[ah+l1]) = RE(t1) - RE(t4);
RE(ch[ah+3*l1]) = RE(t1) + RE(t4);
IM(ch[ah+l1]) = IM(t1) - IM(t4);
IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
}
} else {
for (k = 0; k < l1; k++)
{
ac = 4*k*ido;
ah = k*ido;
for (i = 0; i < ido; i++)
{
complex_t c2, c3, c4, t1, t2, t3, t4;
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
RE(c2) = RE(t1) - RE(t4);
RE(c4) = RE(t1) + RE(t4);
IM(c2) = IM(t1) - IM(t4);
IM(c4) = IM(t1) + IM(t4);
RE(ch[ah+i]) = RE(t2) + RE(t3);
RE(c3) = RE(t2) - RE(t3);
IM(ch[ah+i]) = IM(t2) + IM(t3);
IM(c3) = IM(t2) - IM(t3);
#if 1
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#else
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#endif
}
}
}
}
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
const complex_t *wa4, const int8_t isign)
{
static real_t tr11 = FRAC_CONST(0.309016994374947);
static real_t ti11 = FRAC_CONST(0.951056516295154);
static real_t tr12 = FRAC_CONST(-0.809016994374947);
static real_t ti12 = FRAC_CONST(0.587785252292473);
uint16_t i, k, ac, ah;
complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;
if (ido == 1)
{
if (isign == 1)
{
for (k = 0; k < l1; k++)
{
ac = 5*k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
ComplexMult(&RE(c5), &RE(c4),
ti11, ti12, RE(t5), RE(t4));
ComplexMult(&IM(c5), &IM(c4),
ti11, ti12, IM(t5), IM(t4));
RE(ch[ah+l1]) = RE(c2) - IM(c5);
IM(ch[ah+l1]) = IM(c2) + RE(c5);
RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
}
} else {
for (k = 0; k < l1; k++)
{
ac = 5*k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
ComplexMult(&RE(c4), &RE(c5),
ti12, ti11, RE(t5), RE(t4));
ComplexMult(&IM(c4), &IM(c5),
ti12, ti12, IM(t5), IM(t4));
RE(ch[ah+l1]) = RE(c2) + IM(c5);
IM(ch[ah+l1]) = IM(c2) - RE(c5);
RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
}
}
} else {
if (isign == 1)
{
for (k = 0; k < l1; k++)
{
for (i = 0; i < ido; i++)
{
ac = i + (k*5 + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
ComplexMult(&RE(c5), &RE(c4),
ti11, ti12, RE(t5), RE(t4));
ComplexMult(&IM(c5), &IM(c4),
ti11, ti12, IM(t5), IM(t4));
IM(d2) = IM(c2) + RE(c5);
IM(d3) = IM(c3) + RE(c4);
RE(d4) = RE(c3) + IM(c4);
RE(d5) = RE(c2) + IM(c5);
RE(d2) = RE(c2) - IM(c5);
IM(d5) = IM(c2) - RE(c5);
RE(d3) = RE(c3) - IM(c4);
IM(d4) = IM(c3) - RE(c4);
#if 1
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#else
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#endif
}
}
} else {
for (k = 0; k < l1; k++)
{
for (i = 0; i < ido; i++)
{
ac = i + (k*5 + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
ComplexMult(&RE(c4), &RE(c5),
ti12, ti11, RE(t5), RE(t4));
ComplexMult(&IM(c4), &IM(c5),
ti12, ti12, IM(t5), IM(t4));
IM(d2) = IM(c2) - RE(c5);
IM(d3) = IM(c3) - RE(c4);
RE(d4) = RE(c3) - IM(c4);
RE(d5) = RE(c2) - IM(c5);
RE(d2) = RE(c2) + IM(c5);
IM(d5) = IM(c2) + RE(c5);
RE(d3) = RE(c3) + IM(c4);
IM(d4) = IM(c3) + RE(c4);
#if 1
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#else
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#endif
}
}
}
}
}
/*----------------------------------------------------------------------
cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
----------------------------------------------------------------------*/
static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
const uint16_t *ifac, const complex_t *wa,
const int8_t isign)
{
uint16_t i;
uint16_t k1, l1, l2;
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
nf = ifac[1];
na = 0;
l1 = 1;
iw = 0;
for (k1 = 2; k1 <= nf+1; k1++)
{
ip = ifac[k1];
l2 = ip*l1;
ido = n / l2;
idl1 = ido*l1;
switch (ip)
{
case 4:
ix2 = iw + ido;
ix3 = ix2 + ido;
if (na == 0)
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
else
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
na = 1 - na;
break;
case 2:
if (na == 0)
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
else
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
na = 1 - na;
break;
case 3:
ix2 = iw + ido;
if (na == 0)
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
else
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
na = 1 - na;
break;
case 5:
ix2 = iw + ido;
ix3 = ix2 + ido;
ix4 = ix3 + ido;
if (na == 0)
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
else
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
na = 1 - na;
break;
}
l1 = l2;
iw += (ip-1) * ido;
}
if (na == 0)
return;
for (i = 0; i < n; i++)
{
RE(c[i]) = RE(ch[i]);
IM(c[i]) = IM(ch[i]);
}
}
static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
const uint16_t *ifac, const complex_t *wa,
const int8_t isign)
{
uint16_t i;
uint16_t k1, l1, l2;
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
nf = ifac[1];
na = 0;
l1 = 1;
iw = 0;
for (k1 = 2; k1 <= nf+1; k1++)
{
ip = ifac[k1];
l2 = ip*l1;
ido = n / l2;
idl1 = ido*l1;
switch (ip)
{
case 4:
ix2 = iw + ido;
ix3 = ix2 + ido;
if (na == 0)
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
else
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
na = 1 - na;
break;
case 2:
if (na == 0)
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
else
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
na = 1 - na;
break;
case 3:
ix2 = iw + ido;
if (na == 0)
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
else
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
na = 1 - na;
break;
case 5:
ix2 = iw + ido;
ix3 = ix2 + ido;
ix4 = ix3 + ido;
if (na == 0)
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
else
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
na = 1 - na;
break;
}
l1 = l2;
iw += (ip-1) * ido;
}
if (na == 0)
return;
for (i = 0; i < n; i++)
{
RE(c[i]) = RE(ch[i]);
IM(c[i]) = IM(ch[i]);
}
}
void cfftf(cfft_info *cfft, complex_t *c)
{
cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
}
void cfftb(cfft_info *cfft, complex_t *c)
{
cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
}
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
{
static uint16_t ntryh[4] = {3, 4, 2, 5};
#ifndef FIXED_POINT
real_t arg, argh, argld, fi;
uint16_t ido, ipm;
uint16_t i1, k1, l1, l2;
uint16_t ld, ii, ip;
#endif
uint16_t ntry = 0, i, j;
uint16_t ib;
uint16_t nf, nl, nq, nr;
nl = n;
nf = 0;
j = 0;
startloop:
j++;
if (j <= 4)
ntry = ntryh[j-1];
else
ntry += 2;
do
{
nq = nl / ntry;
nr = nl - ntry*nq;
if (nr != 0)
goto startloop;
nf++;
ifac[nf+1] = ntry;
nl = nq;
if (ntry == 2 && nf != 1)
{
for (i = 2; i <= nf; i++)
{
ib = nf - i + 2;
ifac[ib+1] = ifac[ib];
}
ifac[2] = 2;
}
} while (nl != 1);
ifac[0] = n;
ifac[1] = nf;
#ifndef FIXED_POINT
argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
i = 0;
l1 = 1;
for (k1 = 1; k1 <= nf; k1++)
{
ip = ifac[k1+1];
ld = 0;
l2 = l1*ip;
ido = n / l2;
ipm = ip - 1;
for (j = 0; j < ipm; j++)
{
i1 = i;
RE(wa[i]) = 1.0;
IM(wa[i]) = 0.0;
ld += l1;
fi = 0;
argld = ld*argh;
for (ii = 0; ii < ido; ii++)
{
i++;
fi++;
arg = fi * argld;
RE(wa[i]) = (real_t)cos(arg);
#if 1
IM(wa[i]) = (real_t)sin(arg);
#else
IM(wa[i]) = (real_t)-sin(arg);
#endif
}
if (ip > 5)
{
RE(wa[i1]) = RE(wa[i]);
IM(wa[i1]) = IM(wa[i]);
}
}
l1 = l2;
}
#endif
}
cfft_info *cffti(uint16_t n)
{
cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));
cfft->n = n;
cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));
#ifndef FIXED_POINT
cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));
cffti1(n, cfft->tab, cfft->ifac);
#else
cffti1(n, NULL, cfft->ifac);
switch (n)
{
case 64: cfft->tab = (complex_t*)cfft_tab_64; break;
case 512: cfft->tab = (complex_t*)cfft_tab_512; break;
#ifdef LD_DEC
case 256: cfft->tab = (complex_t*)cfft_tab_256; break;
#endif
#ifdef ALLOW_SMALL_FRAMELENGTH
case 60: cfft->tab = (complex_t*)cfft_tab_60; break;
case 480: cfft->tab = (complex_t*)cfft_tab_480; break;
#ifdef LD_DEC
case 240: cfft->tab = (complex_t*)cfft_tab_240; break;
#endif
#endif
case 128: cfft->tab = (complex_t*)cfft_tab_128; break;
}
#endif
return cfft;
}
void cfftu(cfft_info *cfft)
{
if (cfft->work) faad_free(cfft->work);
#ifndef FIXED_POINT
if (cfft->tab) faad_free(cfft->tab);
#endif
if (cfft) faad_free(cfft);
}