1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-13 02:16:40 +00:00
mpv/libfaad2/sbr_qmf.c
alex e24087509a synced with current cvs
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10990 b3059339-0415-0410-9bf9-f77b7e298cf2
2003-10-03 22:23:26 +00:00

307 lines
8.2 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_qmf.c,v 1.13 2003/09/30 12:43:05 menno Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include <stdlib.h>
#include <string.h>
#include "sbr_dct.h"
#include "sbr_qmf.h"
#include "sbr_qmf_c.h"
#include "sbr_syntax.h"
qmfa_info *qmfa_init(uint8_t channels)
{
qmfa_info *qmfa = (qmfa_info*)malloc(sizeof(qmfa_info));
qmfa->x = (real_t*)malloc(channels * 10 * sizeof(real_t));
memset(qmfa->x, 0, channels * 10 * sizeof(real_t));
qmfa->channels = channels;
return qmfa;
}
void qmfa_end(qmfa_info *qmfa)
{
if (qmfa)
{
if (qmfa->x) free(qmfa->x);
free(qmfa);
}
}
void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input,
qmf_t *X, uint8_t offset, uint8_t kx)
{
uint8_t l;
real_t u[64];
#ifndef SBR_LOW_POWER
real_t x[64], y[64];
#else
real_t y[32];
#endif
const real_t *inptr = input;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
int16_t n;
/* shift input buffer x */
memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t));
/* add new samples to input buffer x */
for (n = 32 - 1; n >= 0; n--)
{
#ifdef FIXED_POINT
qmfa->x[n] = (*inptr++) >> 5;
#else
qmfa->x[n] = *inptr++;
#endif
}
/* window and summation to create array u */
for (n = 0; n < 64; n++)
{
u[n] = MUL_R_C(qmfa->x[n], qmf_c[2*n]) +
MUL_R_C(qmfa->x[n + 64], qmf_c[2*(n + 64)]) +
MUL_R_C(qmfa->x[n + 128], qmf_c[2*(n + 128)]) +
MUL_R_C(qmfa->x[n + 192], qmf_c[2*(n + 192)]) +
MUL_R_C(qmfa->x[n + 256], qmf_c[2*(n + 256)]);
}
/* calculate 32 subband samples by introducing X */
#ifdef SBR_LOW_POWER
y[0] = u[48];
for (n = 1; n < 16; n++)
y[n] = u[n+48] + u[48-n];
for (n = 16; n < 32; n++)
y[n] = -u[n-16] + u[48-n];
DCT3_32_unscaled(u, y);
for (n = 0; n < 32; n++)
{
if (n < kx)
{
#ifdef FIXED_POINT
QMF_RE(X[((l + offset)<<5) + n]) = u[n] << 1;
#else
QMF_RE(X[((l + offset)<<5) + n]) = 2. * u[n];
#endif
} else {
QMF_RE(X[((l + offset)<<5) + n]) = 0;
}
}
#else
x[0] = u[0];
x[63] = u[32];
for (n = 2; n < 64; n += 2)
{
x[n-1] = u[(n>>1)];
x[n] = -u[64-(n>>1)];
}
DCT4_64(y, x);
for (n = 0; n < 32; n++)
{
if (n < kx)
{
#ifdef FIXED_POINT
QMF_RE(X[((l + offset)<<5) + n]) = y[n] << 1;
QMF_IM(X[((l + offset)<<5) + n]) = -y[63-n] << 1;
#else
QMF_RE(X[((l + offset)<<5) + n]) = 2. * y[n];
QMF_IM(X[((l + offset)<<5) + n]) = -2. * y[63-n];
#endif
} else {
QMF_RE(X[((l + offset)<<5) + n]) = 0;
QMF_IM(X[((l + offset)<<5) + n]) = 0;
}
}
#endif
}
}
qmfs_info *qmfs_init(uint8_t channels)
{
int size = 0;
qmfs_info *qmfs = (qmfs_info*)malloc(sizeof(qmfs_info));
qmfs->v[0] = (real_t*)malloc(channels * 10 * sizeof(real_t));
memset(qmfs->v[0], 0, channels * 10 * sizeof(real_t));
qmfs->v[1] = (real_t*)malloc(channels * 10 * sizeof(real_t));
memset(qmfs->v[1], 0, channels * 10 * sizeof(real_t));
qmfs->v_index = 0;
qmfs->channels = channels;
return qmfs;
}
void qmfs_end(qmfs_info *qmfs)
{
if (qmfs)
{
if (qmfs->v[0]) free(qmfs->v[0]);
if (qmfs->v[1]) free(qmfs->v[1]);
free(qmfs);
}
}
#ifdef SBR_LOW_POWER
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t *X,
real_t *output)
{
uint8_t l;
int16_t n, k;
real_t x[64];
real_t *outptr = output;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
real_t *v0, *v1;
/* shift buffers */
memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t));
memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t));
v0 = qmfs->v[qmfs->v_index];
v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
for (k = 0; k < 64; k++)
{
#ifdef FIXED_POINT
x[k] = QMF_RE(X[(l<<6) + k]);
#else
x[k] = QMF_RE(X[(l<<6) + k]) / 32.;
#endif
}
DCT2_64_unscaled(x, x);
for (n = 0; n < 32; n++)
{
v0[n+32] = x[n];
v1[n] = x[n+32];
}
v0[0] = v1[0];
for (n = 1; n < 32; n++)
{
v0[32 - n] = v0[n + 32];
v1[n + 32] = -v1[32 - n];
}
v1[32] = 0;
/* calculate 64 output samples and window */
for (k = 0; k < 64; k++)
{
*outptr++ = MUL_R_C(v0[k], qmf_c[k]) +
MUL_R_C(v0[64 + k], qmf_c[64 + k]) +
MUL_R_C(v0[128 + k], qmf_c[128 + k]) +
MUL_R_C(v0[192 + k], qmf_c[192 + k]) +
MUL_R_C(v0[256 + k], qmf_c[256 + k]) +
MUL_R_C(v0[320 + k], qmf_c[320 + k]) +
MUL_R_C(v0[384 + k], qmf_c[384 + k]) +
MUL_R_C(v0[448 + k], qmf_c[448 + k]) +
MUL_R_C(v0[512 + k], qmf_c[512 + k]) +
MUL_R_C(v0[576 + k], qmf_c[576 + k]);
}
}
}
#else
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t *X,
real_t *output)
{
uint8_t l;
int16_t n, k;
real_t x1[64], x2[64];
real_t *outptr = output;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
real_t *v0, *v1;
/* shift buffers */
memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t));
memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t));
v0 = qmfs->v[qmfs->v_index];
v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
for (k = 0; k < 64; k++)
{
x1[k] = QMF_RE(X[(l<<6) + k])/64.;
x2[63 - k] = QMF_IM(X[(l<<6) + k])/64.;
}
DCT4_64(x1, x1);
DCT4_64(x2, x2);
for (n = 0; n < 64; n+=2)
{
v0[n] = x2[n] - x1[n];
v0[n+1] = -x2[n+1] - x1[n+1];
v1[63-n] = x2[n] + x1[n];
v1[63-n-1] = -x2[n+1] + x1[n+1];
}
/* calculate 64 output samples and window */
for (k = 0; k < 64; k++)
{
*outptr++ = MUL_R_C(v0[k], qmf_c[k]) +
MUL_R_C(v0[64 + k], qmf_c[64 + k]) +
MUL_R_C(v0[128 + k], qmf_c[128 + k]) +
MUL_R_C(v0[192 + k], qmf_c[192 + k]) +
MUL_R_C(v0[256 + k], qmf_c[256 + k]) +
MUL_R_C(v0[320 + k], qmf_c[320 + k]) +
MUL_R_C(v0[384 + k], qmf_c[384 + k]) +
MUL_R_C(v0[448 + k], qmf_c[448 + k]) +
MUL_R_C(v0[512 + k], qmf_c[512 + k]) +
MUL_R_C(v0[576 + k], qmf_c[576 + k]);
}
}
}
#endif
#endif