1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-11 09:29:29 +00:00
mpv/libfaad2/fixed.h
diego 5f5e40c155 Remove modification notice from files that have not been locally modified.
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@14728 b3059339-0415-0410-9bf9-f77b7e298cf2
2005-02-19 01:04:20 +00:00

266 lines
7.0 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: fixed.h,v 1.24 2004/06/30 12:45:56 menno Exp $
**/
#ifndef __FIXED_H__
#define __FIXED_H__
#ifdef __cplusplus
extern "C" {
#endif
#if defined(_WIN32_WCE) && defined(_ARM_)
#include <cmnintrin.h>
#endif
#define COEF_BITS 28
#define COEF_PRECISION (1 << COEF_BITS)
#define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR
#define REAL_PRECISION (1 << REAL_BITS)
/* FRAC is the fractional only part of the fixed point number [0.0..1.0) */
#define FRAC_SIZE 32 /* frac is a 32 bit integer */
#define FRAC_BITS 31
#define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS))
#define FRAC_MAX 0x7FFFFFFF
typedef int32_t real_t;
#define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5)))
#define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5)))
#define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))))
//#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))
#define Q2_BITS 22
#define Q2_PRECISION (1 << Q2_BITS)
#define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5)))
#if defined(_WIN32) && !defined(_WIN32_WCE)
/* multiply with real shift */
static INLINE real_t MUL_R(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,REAL_BITS
}
}
/* multiply with coef shift */
static INLINE real_t MUL_C(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,COEF_BITS
}
}
static INLINE real_t MUL_Q2(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,Q2_BITS
}
}
static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,6
}
}
static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,23
}
}
#if 1
static INLINE real_t _MulHigh(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
mov eax,edx
}
}
/* multiply with fractional shift */
static INLINE real_t MUL_F(real_t A, real_t B)
{
return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS);
}
/* Complex multiplication */
static INLINE void ComplexMult(real_t *y1, real_t *y2,
real_t x1, real_t x2, real_t c1, real_t c2)
{
*y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
*y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
}
#else
static INLINE real_t MUL_F(real_t A, real_t B)
{
_asm {
mov eax,A
imul B
shrd eax,edx,FRAC_BITS
}
}
/* Complex multiplication */
static INLINE void ComplexMult(real_t *y1, real_t *y2,
real_t x1, real_t x2, real_t c1, real_t c2)
{
*y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
*y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
}
#endif
#elif defined(__GNUC__) && defined (__arm__)
/* taken from MAD */
#define arm_mul(x, y, SCALEBITS) \
({ \
uint32_t __hi; \
uint32_t __lo; \
uint32_t __result; \
asm("smull %0, %1, %3, %4\n\t" \
"movs %0, %0, lsr %5\n\t" \
"adc %2, %0, %1, lsl %6" \
: "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
: "%r" (x), "r" (y), \
"M" (SCALEBITS), "M" (32 - (SCALEBITS)) \
: "cc"); \
__result; \
})
static INLINE real_t MUL_R(real_t A, real_t B)
{
return arm_mul(A, B, REAL_BITS);
}
static INLINE real_t MUL_C(real_t A, real_t B)
{
return arm_mul(A, B, COEF_BITS);
}
static INLINE real_t MUL_Q2(real_t A, real_t B)
{
return arm_mul(A, B, Q2_BITS);
}
static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
{
return arm_mul(A, B, 6);
}
static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
{
return arm_mul(A, B, 23);
}
static INLINE real_t _MulHigh(real_t x, real_t y)
{
uint32_t __lo;
uint32_t __hi;
asm("smull\t%0, %1, %2, %3"
: "=&r"(__lo),"=&r"(__hi)
: "%r"(x),"r"(y)
: "cc");
return __hi;
}
static INLINE real_t MUL_F(real_t A, real_t B)
{
return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS);
}
/* Complex multiplication */
static INLINE void ComplexMult(real_t *y1, real_t *y2,
real_t x1, real_t x2, real_t c1, real_t c2)
{
int32_t tmp, yt1, yt2;
asm("smull %0, %1, %4, %6\n\t"
"smlal %0, %1, %5, %7\n\t"
"rsb %3, %4, #0\n\t"
"smull %0, %2, %5, %6\n\t"
"smlal %0, %2, %3, %7"
: "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1)
: "3" (x1), "r" (x2), "r" (c1), "r" (c2)
: "cc" );
*y1 = yt1 << (FRAC_SIZE-FRAC_BITS);
*y2 = yt2 << (FRAC_SIZE-FRAC_BITS);
}
#else
/* multiply with real shift */
#define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS)
/* multiply with coef shift */
#define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS)
/* multiply with fractional shift */
#if defined(_WIN32_WCE) && defined(_ARM_)
/* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */
static INLINE real_t MUL_F(real_t A, real_t B)
{
return _MulHigh(A,B) << (32-FRAC_BITS);
}
#else
#define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE)
#define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS)
#endif
#define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS)
#define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6)
#define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23)
/* Complex multiplication */
static INLINE void ComplexMult(real_t *y1, real_t *y2,
real_t x1, real_t x2, real_t c1, real_t c2)
{
*y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
*y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
}
#endif
#ifdef __cplusplus
}
#endif
#endif