1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-27 09:32:40 +00:00
mpv/liba52/srfftp.h
nickols_k d29c15dbdf libac3 now is full 3dnow! optimized
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@921 b3059339-0415-0410-9bf9-f77b7e298cf2
2001-05-31 17:58:56 +00:00

304 lines
8.8 KiB
C

/*
* srfftp.h
*
* Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000
*
* 64 and 128 point split radix fft for ac3dec
*
* The algorithm is desribed in the book:
* "Computational Frameworks of the Fast Fourier Transform".
*
* The ideas and the the organization of code borrowed from djbfft written by
* D. J. Bernstein <djb@cr.py.to>. djbff can be found at
* http://cr.yp.to/djbfft.html.
*
* srfftp.h is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* srfftp.h is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#ifndef SRFFTP_H__
#define SRFFTP_H__
static complex_t delta16[4] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.92387953251129, -0.38268343236509},
{0.70710678118655, -0.70710678118655},
{0.38268343236509, -0.92387953251129}};
static complex_t delta16_3[4] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.38268343236509, -0.92387953251129},
{-0.70710678118655, -0.70710678118655},
{-0.92387953251129, 0.38268343236509}};
static complex_t delta32[8] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.98078528040323, -0.19509032201613},
{0.92387953251129, -0.38268343236509},
{0.83146961230255, -0.55557023301960},
{0.70710678118655, -0.70710678118655},
{0.55557023301960, -0.83146961230255},
{0.38268343236509, -0.92387953251129},
{0.19509032201613, -0.98078528040323}};
static complex_t delta32_3[8] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.83146961230255, -0.55557023301960},
{0.38268343236509, -0.92387953251129},
{-0.19509032201613, -0.98078528040323},
{-0.70710678118655, -0.70710678118655},
{-0.98078528040323, -0.19509032201613},
{-0.92387953251129, 0.38268343236509},
{-0.55557023301960, 0.83146961230255}};
static complex_t delta64[16] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.99518472667220, -0.09801714032956},
{0.98078528040323, -0.19509032201613},
{0.95694033573221, -0.29028467725446},
{0.92387953251129, -0.38268343236509},
{0.88192126434836, -0.47139673682600},
{0.83146961230255, -0.55557023301960},
{0.77301045336274, -0.63439328416365},
{0.70710678118655, -0.70710678118655},
{0.63439328416365, -0.77301045336274},
{0.55557023301960, -0.83146961230255},
{0.47139673682600, -0.88192126434835},
{0.38268343236509, -0.92387953251129},
{0.29028467725446, -0.95694033573221},
{0.19509032201613, -0.98078528040323},
{0.09801714032956, -0.99518472667220}};
static complex_t delta64_3[16] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.95694033573221, -0.29028467725446},
{0.83146961230255, -0.55557023301960},
{0.63439328416365, -0.77301045336274},
{0.38268343236509, -0.92387953251129},
{0.09801714032956, -0.99518472667220},
{-0.19509032201613, -0.98078528040323},
{-0.47139673682600, -0.88192126434836},
{-0.70710678118655, -0.70710678118655},
{-0.88192126434835, -0.47139673682600},
{-0.98078528040323, -0.19509032201613},
{-0.99518472667220, 0.09801714032956},
{-0.92387953251129, 0.38268343236509},
{-0.77301045336274, 0.63439328416365},
{-0.55557023301960, 0.83146961230255},
{-0.29028467725446, 0.95694033573221}};
static complex_t delta128[32] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.99879545620517, -0.04906767432742},
{0.99518472667220, -0.09801714032956},
{0.98917650996478, -0.14673047445536},
{0.98078528040323, -0.19509032201613},
{0.97003125319454, -0.24298017990326},
{0.95694033573221, -0.29028467725446},
{0.94154406518302, -0.33688985339222},
{0.92387953251129, -0.38268343236509},
{0.90398929312344, -0.42755509343028},
{0.88192126434836, -0.47139673682600},
{0.85772861000027, -0.51410274419322},
{0.83146961230255, -0.55557023301960},
{0.80320753148064, -0.59569930449243},
{0.77301045336274, -0.63439328416365},
{0.74095112535496, -0.67155895484702},
{0.70710678118655, -0.70710678118655},
{0.67155895484702, -0.74095112535496},
{0.63439328416365, -0.77301045336274},
{0.59569930449243, -0.80320753148064},
{0.55557023301960, -0.83146961230255},
{0.51410274419322, -0.85772861000027},
{0.47139673682600, -0.88192126434835},
{0.42755509343028, -0.90398929312344},
{0.38268343236509, -0.92387953251129},
{0.33688985339222, -0.94154406518302},
{0.29028467725446, -0.95694033573221},
{0.24298017990326, -0.97003125319454},
{0.19509032201613, -0.98078528040323},
{0.14673047445536, -0.98917650996478},
{0.09801714032956, -0.99518472667220},
{0.04906767432742, -0.99879545620517}};
static complex_t delta128_3[32] __attribute__((aligned(16))) =
{ {1.00000000000000, 0.00000000000000},
{0.98917650996478, -0.14673047445536},
{0.95694033573221, -0.29028467725446},
{0.90398929312344, -0.42755509343028},
{0.83146961230255, -0.55557023301960},
{0.74095112535496, -0.67155895484702},
{0.63439328416365, -0.77301045336274},
{0.51410274419322, -0.85772861000027},
{0.38268343236509, -0.92387953251129},
{0.24298017990326, -0.97003125319454},
{0.09801714032956, -0.99518472667220},
{-0.04906767432742, -0.99879545620517},
{-0.19509032201613, -0.98078528040323},
{-0.33688985339222, -0.94154406518302},
{-0.47139673682600, -0.88192126434836},
{-0.59569930449243, -0.80320753148065},
{-0.70710678118655, -0.70710678118655},
{-0.80320753148065, -0.59569930449243},
{-0.88192126434835, -0.47139673682600},
{-0.94154406518302, -0.33688985339222},
{-0.98078528040323, -0.19509032201613},
{-0.99879545620517, -0.04906767432742},
{-0.99518472667220, 0.09801714032956},
{-0.97003125319454, 0.24298017990326},
{-0.92387953251129, 0.38268343236509},
{-0.85772861000027, 0.51410274419322},
{-0.77301045336274, 0.63439328416365},
{-0.67155895484702, 0.74095112535496},
{-0.55557023301960, 0.83146961230255},
{-0.42755509343028, 0.90398929312344},
{-0.29028467725446, 0.95694033573221},
{-0.14673047445536, 0.98917650996478}};
#define HSQRT2 0.707106781188;
#define TRANSZERO(A0,A4,A8,A12) { \
u_r = wTB[0].re; \
v_i = u_r - wTB[k*2].re; \
u_r += wTB[k*2].re; \
u_i = wTB[0].im; \
v_r = wTB[k*2].im - u_i; \
u_i += wTB[k*2].im; \
a_r = A0.re; \
a_i = A0.im; \
a1_r = a_r; \
a1_r += u_r; \
A0.re = a1_r; \
a_r -= u_r; \
A8.re = a_r; \
a1_i = a_i; \
a1_i += u_i; \
A0.im = a1_i; \
a_i -= u_i; \
A8.im = a_i; \
a1_r = A4.re; \
a1_i = A4.im; \
a_r = a1_r; \
a_r -= v_r; \
A4.re = a_r; \
a1_r += v_r; \
A12.re = a1_r; \
a_i = a1_i; \
a_i -= v_i; \
A4.im = a_i; \
a1_i += v_i; \
A12.im = a1_i; \
}
#define TRANSHALF_16(A2,A6,A10,A14) {\
u_r = wTB[2].re; \
a_r = u_r; \
u_i = wTB[2].im; \
u_r += u_i; \
u_i -= a_r; \
a_r = wTB[6].re; \
a1_r = a_r; \
a_i = wTB[6].im; \
a_r = a_i - a_r; \
a_i += a1_r; \
v_i = u_r - a_r; \
u_r += a_r; \
v_r = u_i + a_i; \
u_i -= a_i; \
v_i *= HSQRT2; \
v_r *= HSQRT2; \
u_r *= HSQRT2; \
u_i *= HSQRT2; \
a_r = A2.re; \
a_i = A2.im; \
a1_r = a_r; \
a1_r += u_r; \
A2.re = a1_r; \
a_r -= u_r; \
A10.re = a_r; \
a1_i = a_i; \
a1_i += u_i; \
A2.im = a1_i; \
a_i -= u_i; \
A10.im = a_i; \
a1_r = A6.re; \
a1_i = A6.im; \
a_r = a1_r; \
a1_r += v_r; \
A6.re = a1_r; \
a_r -= v_r; \
A14.re = a_r; \
a_i = a1_i; \
a1_i -= v_i; \
A6.im = a1_i; \
a_i += v_i; \
A14.im = a_i; \
}
#define TRANS(A1,A5,A9,A13,WT,WB,D,D3) { \
u_r = WT.re; \
a_r = u_r; \
a_r *= D.im; \
u_r *= D.re; \
a_i = WT.im; \
a1_i = a_i; \
a1_i *= D.re; \
a_i *= D.im; \
u_r -= a_i; \
u_i = a_r; \
u_i += a1_i; \
a_r = WB.re; \
a1_r = a_r; \
a1_r *= D3.re; \
a_r *= D3.im; \
a_i = WB.im; \
a1_i = a_i; \
a_i *= D3.re; \
a1_i *= D3.im; \
a1_r -= a1_i; \
a_r += a_i; \
v_i = u_r - a1_r; \
u_r += a1_r; \
v_r = a_r - u_i; \
u_i += a_r; \
a_r = A1.re; \
a_i = A1.im; \
a1_r = a_r; \
a1_r += u_r; \
A1.re = a1_r; \
a_r -= u_r; \
A9.re = a_r; \
a1_i = a_i; \
a1_i += u_i; \
A1.im = a1_i; \
a_i -= u_i; \
A9.im = a_i; \
a1_r = A5.re; \
a1_i = A5.im; \
a_r = a1_r; \
a1_r -= v_r; \
A5.re = a1_r; \
a_r += v_r; \
A13.re = a_r; \
a_i = a1_i; \
a1_i -= v_i; \
A5.im = a1_i; \
a_i += v_i; \
A13.im = a_i; \
}
#endif