1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-29 10:32:15 +00:00
mpv/video/mp_image.c
wm4 77f730f63c mp_image: add helper for clearing regions outside of a rectangle
Not sure if generally useful; the following commit uses it.
2020-05-22 14:18:35 +02:00

1183 lines
41 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <limits.h>
#include <pthread.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include <libavutil/bswap.h>
#include <libavutil/hwcontext.h>
#include <libavutil/intreadwrite.h>
#include <libavutil/rational.h>
#include <libavcodec/avcodec.h>
#include <libavutil/mastering_display_metadata.h>
#include "mpv_talloc.h"
#include "config.h"
#include "common/av_common.h"
#include "common/common.h"
#include "hwdec.h"
#include "mp_image.h"
#include "sws_utils.h"
#include "fmt-conversion.h"
// Determine strides, plane sizes, and total required size for an image
// allocation. Returns total size on success, <0 on error. Unused planes
// have out_stride/out_plane_size to 0, and out_plane_offset set to -1 up
// until MP_MAX_PLANES-1.
static int mp_image_layout(int imgfmt, int w, int h, int stride_align,
int out_stride[MP_MAX_PLANES],
int out_plane_offset[MP_MAX_PLANES],
int out_plane_size[MP_MAX_PLANES])
{
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
w = MP_ALIGN_UP(w, desc.align_x);
h = MP_ALIGN_UP(h, desc.align_y);
struct mp_image_params params = {.imgfmt = imgfmt, .w = w, .h = h};
if (!mp_image_params_valid(&params) || desc.flags & MP_IMGFLAG_HWACCEL)
return -1;
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
// top/right border. This is needed for correct handling of such
// images in filter and VO code (e.g. vo_vdpau or vo_gpu).
for (int n = 0; n < MP_MAX_PLANES; n++) {
int alloc_w = mp_chroma_div_up(w, desc.xs[n]);
int alloc_h = MP_ALIGN_UP(h, 32) >> desc.ys[n];
int line_bytes = (alloc_w * desc.bpp[n] + 7) / 8;
out_stride[n] = MP_ALIGN_UP(line_bytes, stride_align);
out_plane_size[n] = out_stride[n] * alloc_h;
}
if (desc.flags & MP_IMGFLAG_PAL)
out_plane_size[1] = AVPALETTE_SIZE;
int sum = 0;
for (int n = 0; n < MP_MAX_PLANES; n++) {
out_plane_offset[n] = out_plane_size[n] ? sum : -1;
sum += out_plane_size[n];
}
return sum;
}
// Return the total size needed for an image allocation of the given
// configuration (imgfmt, w, h must be set). Returns -1 on error.
// Assumes the allocation is already aligned on stride_align (otherwise you
// need to add padding yourself).
int mp_image_get_alloc_size(int imgfmt, int w, int h, int stride_align)
{
int stride[MP_MAX_PLANES];
int plane_offset[MP_MAX_PLANES];
int plane_size[MP_MAX_PLANES];
return mp_image_layout(imgfmt, w, h, stride_align, stride, plane_offset,
plane_size);
}
// Fill the mpi->planes and mpi->stride fields of the given mpi with data
// from buffer according to the mpi's w/h/imgfmt fields. See mp_image_from_buffer
// aboud remarks how to allocate/use buffer/buffer_size.
// This does not free the data. You are expected to setup refcounting by
// setting mp_image.bufs before or after this function is called.
// Returns true on success, false on failure.
static bool mp_image_fill_alloc(struct mp_image *mpi, int stride_align,
void *buffer, int buffer_size)
{
int stride[MP_MAX_PLANES];
int plane_offset[MP_MAX_PLANES];
int plane_size[MP_MAX_PLANES];
int size = mp_image_layout(mpi->imgfmt, mpi->w, mpi->h, stride_align,
stride, plane_offset, plane_size);
if (size < 0 || size > buffer_size)
return false;
int align = MP_ALIGN_UP((uintptr_t)buffer, stride_align) - (uintptr_t)buffer;
if (buffer_size - size < align)
return false;
uint8_t *s = buffer;
s += align;
for (int n = 0; n < MP_MAX_PLANES; n++) {
mpi->planes[n] = plane_offset[n] >= 0 ? s + plane_offset[n] : NULL;
mpi->stride[n] = stride[n];
}
return true;
}
// Create a mp_image from the provided buffer. The mp_image is filled according
// to the imgfmt/w/h parameters, and respecting the stride_align parameter to
// align the plane start pointers and strides. Once the last reference to the
// returned image is destroyed, free(free_opaque, buffer) is called. (Be aware
// that this can happen from any thread.)
// The allocated size of buffer must be given by buffer_size. buffer_size should
// be at least the value returned by mp_image_get_alloc_size(). If buffer is not
// already aligned to stride_align, the function will attempt to align the
// pointer itself by incrementing the buffer pointer until ther alignment is
// achieved (if buffer_size is not large enough to allow aligning the buffer
// safely, the function fails). To be safe, you may want to overallocate the
// buffer by stride_align bytes, and include the overallocation in buffer_size.
// Returns NULL on failure. On failure, the free() callback is not called.
struct mp_image *mp_image_from_buffer(int imgfmt, int w, int h, int stride_align,
uint8_t *buffer, int buffer_size,
void *free_opaque,
void (*free)(void *opaque, uint8_t *data))
{
struct mp_image *mpi = mp_image_new_dummy_ref(NULL);
mp_image_setfmt(mpi, imgfmt);
mp_image_set_size(mpi, w, h);
if (!mp_image_fill_alloc(mpi, stride_align, buffer, buffer_size))
goto fail;
mpi->bufs[0] = av_buffer_create(buffer, buffer_size, free, free_opaque, 0);
if (!mpi->bufs[0])
goto fail;
return mpi;
fail:
talloc_free(mpi);
return NULL;
}
static bool mp_image_alloc_planes(struct mp_image *mpi)
{
assert(!mpi->planes[0]);
assert(!mpi->bufs[0]);
int align = MP_IMAGE_BYTE_ALIGN;
int size = mp_image_get_alloc_size(mpi->imgfmt, mpi->w, mpi->h, align);
if (size < 0)
return false;
// Note: mp_image_pool assumes this creates only 1 AVBufferRef.
mpi->bufs[0] = av_buffer_alloc(size + align);
if (!mpi->bufs[0])
return false;
if (!mp_image_fill_alloc(mpi, align, mpi->bufs[0]->data, mpi->bufs[0]->size)) {
av_buffer_unref(&mpi->bufs[0]);
return false;
}
return true;
}
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
{
struct mp_image_params params = mpi->params;
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
params.imgfmt = fmt.id;
mpi->fmt = fmt;
mpi->imgfmt = fmt.id;
mpi->num_planes = fmt.num_planes;
mpi->params = params;
}
static void mp_image_destructor(void *ptr)
{
mp_image_t *mpi = ptr;
for (int p = 0; p < MP_MAX_PLANES; p++)
av_buffer_unref(&mpi->bufs[p]);
av_buffer_unref(&mpi->hwctx);
av_buffer_unref(&mpi->icc_profile);
av_buffer_unref(&mpi->a53_cc);
for (int n = 0; n < mpi->num_ff_side_data; n++)
av_buffer_unref(&mpi->ff_side_data[n].buf);
talloc_free(mpi->ff_side_data);
}
int mp_chroma_div_up(int size, int shift)
{
return (size + (1 << shift) - 1) >> shift;
}
// Return the storage width in pixels of the given plane.
int mp_image_plane_w(struct mp_image *mpi, int plane)
{
return mp_chroma_div_up(MP_ALIGN_UP(mpi->w, mpi->fmt.align_x),
mpi->fmt.xs[plane]);
}
// Return the storage height in pixels of the given plane.
int mp_image_plane_h(struct mp_image *mpi, int plane)
{
return mp_chroma_div_up(MP_ALIGN_UP(mpi->h, mpi->fmt.align_y),
mpi->fmt.ys[plane]);
}
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
assert(w >= 0 && h >= 0);
mpi->w = mpi->params.w = w;
mpi->h = mpi->params.h = h;
}
void mp_image_set_params(struct mp_image *image,
const struct mp_image_params *params)
{
// possibly initialize other stuff
mp_image_setfmt(image, params->imgfmt);
mp_image_set_size(image, params->w, params->h);
image->params = *params;
}
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
{
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
talloc_set_destructor(mpi, mp_image_destructor);
mp_image_set_size(mpi, w, h);
mp_image_setfmt(mpi, imgfmt);
if (!mp_image_alloc_planes(mpi)) {
talloc_free(mpi);
return NULL;
}
return mpi;
}
int mp_image_approx_byte_size(struct mp_image *img)
{
int total = sizeof(*img);
for (int n = 0; n < MP_MAX_PLANES; n++) {
struct AVBufferRef *buf = img->bufs[n];
if (buf)
total += buf->size;
}
return total;
}
struct mp_image *mp_image_new_copy(struct mp_image *img)
{
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
if (!new)
return NULL;
mp_image_copy(new, img);
mp_image_copy_attributes(new, img);
return new;
}
// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
assert(dst->bufs[0] && src->bufs[0]);
mp_image_destructor(dst); // unref old
talloc_free_children(dst);
*dst = *src;
*src = (struct mp_image){0};
talloc_free(src);
}
// Unref most data buffer (and clear the data array), but leave other fields
// allocated. In particular, mp_image.hwctx is preserved.
void mp_image_unref_data(struct mp_image *img)
{
for (int n = 0; n < MP_MAX_PLANES; n++) {
img->planes[n] = NULL;
img->stride[n] = 0;
av_buffer_unref(&img->bufs[n]);
}
}
static void ref_buffer(bool *ok, AVBufferRef **dst)
{
if (*dst) {
*dst = av_buffer_ref(*dst);
if (!*dst)
*ok = false;
}
}
// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
if (!img)
return NULL;
if (!img->bufs[0])
return mp_image_new_copy(img);
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
bool ok = true;
for (int p = 0; p < MP_MAX_PLANES; p++)
ref_buffer(&ok, &new->bufs[p]);
ref_buffer(&ok, &new->hwctx);
ref_buffer(&ok, &new->icc_profile);
ref_buffer(&ok, &new->a53_cc);
new->ff_side_data = talloc_memdup(NULL, new->ff_side_data,
new->num_ff_side_data * sizeof(new->ff_side_data[0]));
for (int n = 0; n < new->num_ff_side_data; n++)
ref_buffer(&ok, &new->ff_side_data[n].buf);
if (ok)
return new;
// Do this after _all_ bufs were changed; we don't want it to free bufs
// from the original image if this fails.
talloc_free(new);
return NULL;
}
struct free_args {
void *arg;
void (*free)(void *arg);
};
static void call_free(void *opaque, uint8_t *data)
{
struct free_args *args = opaque;
args->free(args->arg);
talloc_free(args);
}
// Create a new mp_image based on img, but don't set any buffers.
// Using this is only valid until the original img is unreferenced (including
// implicit unreferencing of the data by mp_image_make_writeable()), unless
// a new reference is set.
struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = img ? *img : (struct mp_image){0};
for (int p = 0; p < MP_MAX_PLANES; p++)
new->bufs[p] = NULL;
new->hwctx = NULL;
new->icc_profile = NULL;
new->a53_cc = NULL;
new->num_ff_side_data = 0;
new->ff_side_data = NULL;
return new;
}
// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
// On allocation failure, unref the frame and return NULL.
// This is only used for hw decoding; this is important, because libav* expects
// all plane data to be accounted for by AVBufferRefs.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
void (*free)(void *arg))
{
struct mp_image *new = mp_image_new_dummy_ref(img);
struct free_args *args = talloc_ptrtype(NULL, args);
*args = (struct free_args){free_arg, free};
new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
AV_BUFFER_FLAG_READONLY);
if (new->bufs[0])
return new;
talloc_free(new);
return NULL;
}
bool mp_image_is_writeable(struct mp_image *img)
{
if (!img->bufs[0])
return true; // not ref-counted => always considered writeable
for (int p = 0; p < MP_MAX_PLANES; p++) {
if (!img->bufs[p])
break;
if (!av_buffer_is_writable(img->bufs[p]))
return false;
}
return true;
}
// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
// Returns success; if false is returned, the image could not be made writeable.
bool mp_image_make_writeable(struct mp_image *img)
{
if (mp_image_is_writeable(img))
return true;
struct mp_image *new = mp_image_new_copy(img);
if (!new)
return false;
mp_image_steal_data(img, new);
assert(mp_image_is_writeable(img));
return true;
}
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
// Only unrefs *p_img and sets it to NULL if out of memory.
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
if (*p_img != new_value) {
talloc_free(*p_img);
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
}
}
// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
talloc_free(*p_img);
*p_img = NULL;
}
void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
int dstStride, int srcStride)
{
if (bytesPerLine == dstStride && dstStride == srcStride && height) {
if (srcStride < 0) {
src = (uint8_t*)src + (height - 1) * srcStride;
dst = (uint8_t*)dst + (height - 1) * dstStride;
srcStride = -srcStride;
}
memcpy(dst, src, srcStride * (height - 1) + bytesPerLine);
} else {
for (int i = 0; i < height; i++) {
memcpy(dst, src, bytesPerLine);
src = (uint8_t*)src + srcStride;
dst = (uint8_t*)dst + dstStride;
}
}
}
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt);
assert(dst->w == src->w && dst->h == src->h);
assert(mp_image_is_writeable(dst));
for (int n = 0; n < dst->num_planes; n++) {
int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
int plane_h = mp_image_plane_h(dst, n);
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, plane_h,
dst->stride[n], src->stride[n]);
}
if (dst->fmt.flags & MP_IMGFLAG_PAL)
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
}
static enum mp_csp mp_image_params_get_forced_csp(struct mp_image_params *params)
{
int imgfmt = params->hw_subfmt ? params->hw_subfmt : params->imgfmt;
return mp_imgfmt_get_forced_csp(imgfmt);
}
static void assign_bufref(AVBufferRef **dst, AVBufferRef *new)
{
av_buffer_unref(dst);
if (new) {
*dst = av_buffer_ref(new);
MP_HANDLE_OOM(*dst);
}
}
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
dst->pict_type = src->pict_type;
dst->fields = src->fields;
dst->pts = src->pts;
dst->dts = src->dts;
dst->pkt_duration = src->pkt_duration;
dst->params.rotate = src->params.rotate;
dst->params.stereo3d = src->params.stereo3d;
dst->params.p_w = src->params.p_w;
dst->params.p_h = src->params.p_h;
dst->params.color = src->params.color;
dst->params.chroma_location = src->params.chroma_location;
dst->params.alpha = src->params.alpha;
dst->nominal_fps = src->nominal_fps;
// ensure colorspace consistency
if (mp_image_params_get_forced_csp(&dst->params) !=
mp_image_params_get_forced_csp(&src->params))
dst->params.color = (struct mp_colorspace){0};
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
if (dst->planes[1] && src->planes[1]) {
if (mp_image_make_writeable(dst))
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
}
}
assign_bufref(&dst->icc_profile, src->icc_profile);
assign_bufref(&dst->a53_cc, src->a53_cc);
}
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
// x0/y0 must be naturally aligned.
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
for (int p = 0; p < img->num_planes; ++p) {
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
}
mp_image_set_size(img, x1 - x0, y1 - y0);
}
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
{
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
}
// Repeatedly write count patterns of src[0..src_size] to p.
static void memset_pattern(void *p, size_t count, uint8_t *src, size_t src_size)
{
assert(src_size >= 1);
if (src_size == 1) {
memset(p, src[0], count);
} else if (src_size == 2) { // >8 bit YUV => common, be slightly less naive
uint16_t val;
memcpy(&val, src, 2);
uint16_t *p16 = p;
while (count--)
*p16++ = val;
} else {
while (count--) {
memcpy(p, src, src_size);
p = (char *)p + src_size;
}
}
}
static bool endian_swap_bytes(void *d, size_t bytes, size_t word_size)
{
if (word_size != 2 && word_size != 4)
return false;
size_t num_words = bytes / word_size;
uint8_t *ud = d;
switch (word_size) {
case 2:
for (size_t x = 0; x < num_words; x++)
AV_WL16(ud + x * 2, AV_RB16(ud + x * 2));
break;
case 4:
for (size_t x = 0; x < num_words; x++)
AV_WL32(ud + x * 2, AV_RB32(ud + x * 2));
break;
default:
assert(0);
}
return true;
}
// Bottom/right border is allowed not to be aligned, but it might implicitly
// overwrite pixel data until the alignment (align_x/align_y) is reached.
// Alpha is cleared to 0 (fully transparent).
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
struct mp_image area = *img;
struct mp_imgfmt_desc *fmt = &area.fmt;
mp_image_crop(&area, x0, y0, x1, y1);
// "Black" color for each plane.
uint8_t plane_clear[MP_MAX_PLANES][8] = {0};
int plane_size[MP_MAX_PLANES] = {0};
int misery = 1; // pixel group width
// YUV integer chroma needs special consideration, and technically luma is
// usually not 0 either.
if ((fmt->flags & (MP_IMGFLAG_HAS_COMPS | MP_IMGFLAG_PACKED_SS_YUV)) &&
(fmt->flags & MP_IMGFLAG_TYPE_MASK) == MP_IMGFLAG_TYPE_UINT &&
(fmt->flags & MP_IMGFLAG_COLOR_MASK) == MP_IMGFLAG_COLOR_YUV)
{
uint64_t plane_clear_i[MP_MAX_PLANES] = {0};
// Need to handle "multiple" pixels with packed YUV.
uint8_t luma_offsets[4] = {0};
if (fmt->flags & MP_IMGFLAG_PACKED_SS_YUV) {
misery = fmt->align_x;
if (misery <= MP_ARRAY_SIZE(luma_offsets)) // ignore if out of bounds
mp_imgfmt_get_packed_yuv_locations(fmt->id, luma_offsets);
}
for (int c = 0; c < 4; c++) {
struct mp_imgfmt_comp_desc *cd = &fmt->comps[c];
int plane_bits = fmt->bpp[cd->plane] * misery;
if (plane_bits <= 64 && plane_bits % 8u == 0 && cd->size) {
plane_size[cd->plane] = plane_bits / 8u;
int depth = cd->size + MPMIN(cd->pad, 0);
double m, o;
mp_get_csp_uint_mul(area.params.color.space,
area.params.color.levels,
depth, c + 1, &m, &o);
uint64_t val = MPCLAMP(lrint((0 - o) / m), 0, 1ull << depth);
plane_clear_i[cd->plane] |= val << cd->offset;
for (int x = 1; x < (c ? 0 : misery); x++)
plane_clear_i[cd->plane] |= val << luma_offsets[x];
}
}
for (int p = 0; p < MP_MAX_PLANES; p++) {
if (!plane_clear_i[p])
plane_size[p] = 0;
memcpy(&plane_clear[p][0], &plane_clear_i[p], 8); // endian dependent
if (fmt->endian_shift) {
endian_swap_bytes(&plane_clear[p][0], plane_size[p],
1 << fmt->endian_shift);
}
}
}
for (int p = 0; p < area.num_planes; p++) {
int p_h = mp_image_plane_h(&area, p);
int p_w = mp_image_plane_w(&area, p);
for (int y = 0; y < p_h; y++) {
void *ptr = area.planes[p] + (ptrdiff_t)area.stride[p] * y;
if (plane_size[p] && plane_clear[p]) {
memset_pattern(ptr, p_w / misery, plane_clear[p], plane_size[p]);
} else {
memset(ptr, 0, mp_image_plane_bytes(&area, p, 0, area.w));
}
}
}
}
void mp_image_clear_rc(struct mp_image *mpi, struct mp_rect rc)
{
mp_image_clear(mpi, rc.x0, rc.y0, rc.x1, rc.y1);
}
// Clear the are of the image _not_ covered by rc.
void mp_image_clear_rc_inv(struct mp_image *mpi, struct mp_rect rc)
{
struct mp_rect clr[4];
int cnt = mp_rect_subtract(&(struct mp_rect){0, 0, mpi->w, mpi->h}, &rc, clr);
for (int n = 0; n < cnt; n++)
mp_image_clear_rc(mpi, clr[n]);
}
void mp_image_vflip(struct mp_image *img)
{
for (int p = 0; p < img->num_planes; p++) {
int plane_h = mp_image_plane_h(img, p);
img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
img->stride[p] = -img->stride[p];
}
}
// Display size derived from image size and pixel aspect ratio.
void mp_image_params_get_dsize(const struct mp_image_params *p,
int *d_w, int *d_h)
{
*d_w = p->w;
*d_h = p->h;
if (p->p_w > p->p_h && p->p_h >= 1)
*d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
if (p->p_h > p->p_w && p->p_w >= 1)
*d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
}
void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
{
AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
p->p_w = ds.num;
p->p_h = ds.den;
}
char *mp_image_params_to_str_buf(char *b, size_t bs,
const struct mp_image_params *p)
{
if (p && p->imgfmt) {
snprintf(b, bs, "%dx%d", p->w, p->h);
if (p->p_w != p->p_h || !p->p_w)
mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
if (p->hw_subfmt)
mp_snprintf_cat(b, bs, "[%s]", mp_imgfmt_to_name(p->hw_subfmt));
mp_snprintf_cat(b, bs, " %s/%s/%s/%s/%s",
m_opt_choice_str(mp_csp_names, p->color.space),
m_opt_choice_str(mp_csp_prim_names, p->color.primaries),
m_opt_choice_str(mp_csp_trc_names, p->color.gamma),
m_opt_choice_str(mp_csp_levels_names, p->color.levels),
m_opt_choice_str(mp_csp_light_names, p->color.light));
if (p->color.sig_peak)
mp_snprintf_cat(b, bs, " SP=%f", p->color.sig_peak);
mp_snprintf_cat(b, bs, " CL=%s",
m_opt_choice_str(mp_chroma_names, p->chroma_location));
if (p->rotate)
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
if (p->stereo3d > 0) {
mp_snprintf_cat(b, bs, " stereo=%s",
MP_STEREO3D_NAME_DEF(p->stereo3d, "?"));
}
if (p->alpha) {
mp_snprintf_cat(b, bs, " A=%s",
m_opt_choice_str(mp_alpha_names, p->alpha));
}
} else {
snprintf(b, bs, "???");
}
return b;
}
// Return whether the image parameters are valid.
// Some non-essential fields are allowed to be unset (like colorspace flags).
bool mp_image_params_valid(const struct mp_image_params *p)
{
// av_image_check_size has similar checks and triggers around 16000*16000
// It's mostly needed to deal with the fact that offsets are sometimes
// ints. We also should (for now) do the same as FFmpeg, to be sure large
// images don't crash with libswscale or when wrapping with AVFrame and
// passing the result to filters.
if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
return false;
if (p->p_w < 0 || p->p_h < 0)
return false;
if (p->rotate < 0 || p->rotate >= 360)
return false;
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
if (!desc.id)
return false;
if (p->hw_subfmt && !(desc.flags & MP_IMGFLAG_HWACCEL))
return false;
return true;
}
bool mp_image_params_equal(const struct mp_image_params *p1,
const struct mp_image_params *p2)
{
return p1->imgfmt == p2->imgfmt &&
p1->hw_subfmt == p2->hw_subfmt &&
p1->w == p2->w && p1->h == p2->h &&
p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
mp_colorspace_equal(p1->color, p2->color) &&
p1->chroma_location == p2->chroma_location &&
p1->rotate == p2->rotate &&
p1->stereo3d == p2->stereo3d &&
p1->alpha == p2->alpha;
}
// Set most image parameters, but not image format or size.
// Display size is used to set the PAR.
void mp_image_set_attributes(struct mp_image *image,
const struct mp_image_params *params)
{
struct mp_image_params nparams = *params;
nparams.imgfmt = image->imgfmt;
nparams.w = image->w;
nparams.h = image->h;
if (nparams.imgfmt != params->imgfmt)
nparams.color = (struct mp_colorspace){0};
mp_image_set_params(image, &nparams);
}
// If details like params->colorspace/colorlevels are missing, guess them from
// the other settings. Also, even if they are set, make them consistent with
// the colorspace as implied by the pixel format.
void mp_image_params_guess_csp(struct mp_image_params *params)
{
enum mp_csp forced_csp = mp_image_params_get_forced_csp(params);
if (forced_csp == MP_CSP_AUTO) { // YUV/other
if (params->color.space != MP_CSP_BT_601 &&
params->color.space != MP_CSP_BT_709 &&
params->color.space != MP_CSP_BT_2020_NC &&
params->color.space != MP_CSP_BT_2020_C &&
params->color.space != MP_CSP_SMPTE_240M &&
params->color.space != MP_CSP_YCGCO)
{
// Makes no sense, so guess instead
// YCGCO should be separate, but libavcodec disagrees
params->color.space = MP_CSP_AUTO;
}
if (params->color.space == MP_CSP_AUTO)
params->color.space = mp_csp_guess_colorspace(params->w, params->h);
if (params->color.levels == MP_CSP_LEVELS_AUTO) {
if (params->color.gamma == MP_CSP_TRC_V_LOG) {
params->color.levels = MP_CSP_LEVELS_PC;
} else {
params->color.levels = MP_CSP_LEVELS_TV;
}
}
if (params->color.primaries == MP_CSP_PRIM_AUTO) {
// Guess based on the colormatrix as a first priority
if (params->color.space == MP_CSP_BT_2020_NC ||
params->color.space == MP_CSP_BT_2020_C) {
params->color.primaries = MP_CSP_PRIM_BT_2020;
} else if (params->color.space == MP_CSP_BT_709) {
params->color.primaries = MP_CSP_PRIM_BT_709;
} else {
// Ambiguous colormatrix for BT.601, guess based on res
params->color.primaries = mp_csp_guess_primaries(params->w, params->h);
}
}
if (params->color.gamma == MP_CSP_TRC_AUTO)
params->color.gamma = MP_CSP_TRC_BT_1886;
} else if (forced_csp == MP_CSP_RGB) {
params->color.space = MP_CSP_RGB;
params->color.levels = MP_CSP_LEVELS_PC;
// The majority of RGB content is either sRGB or (rarely) some other
// color space which we don't even handle, like AdobeRGB or
// ProPhotoRGB. The only reasonable thing we can do is assume it's
// sRGB and hope for the best, which should usually just work out fine.
// Note: sRGB primaries = BT.709 primaries
if (params->color.primaries == MP_CSP_PRIM_AUTO)
params->color.primaries = MP_CSP_PRIM_BT_709;
if (params->color.gamma == MP_CSP_TRC_AUTO)
params->color.gamma = MP_CSP_TRC_SRGB;
} else if (forced_csp == MP_CSP_XYZ) {
params->color.space = MP_CSP_XYZ;
params->color.levels = MP_CSP_LEVELS_PC;
// In theory, XYZ data does not really need a concept of 'primaries' to
// function, but this field can still be relevant for guiding gamut
// mapping optimizations, and it's also used by `mp_get_csp_matrix`
// when deciding what RGB space to map XYZ to for VOs that don't want
// to directly ingest XYZ into their color pipeline. BT.709 would be a
// sane default here, but it runs the risk of clipping any wide gamut
// content, so we pick BT.2020 instead to be on the safer side.
if (params->color.primaries == MP_CSP_PRIM_AUTO)
params->color.primaries = MP_CSP_PRIM_BT_2020;
if (params->color.gamma == MP_CSP_TRC_AUTO)
params->color.gamma = MP_CSP_TRC_LINEAR;
} else {
// We have no clue.
params->color.space = MP_CSP_AUTO;
params->color.levels = MP_CSP_LEVELS_AUTO;
params->color.primaries = MP_CSP_PRIM_AUTO;
params->color.gamma = MP_CSP_TRC_AUTO;
}
if (!params->color.sig_peak) {
if (params->color.gamma == MP_CSP_TRC_HLG) {
params->color.sig_peak = 1000 / MP_REF_WHITE; // reference display
} else {
// If the signal peak is unknown, we're forced to pick the TRC's
// nominal range as the signal peak to prevent clipping
params->color.sig_peak = mp_trc_nom_peak(params->color.gamma);
}
}
if (!mp_trc_is_hdr(params->color.gamma)) {
// Some clips have leftover HDR metadata after conversion to SDR, so to
// avoid blowing up the tone mapping code, strip/sanitize it
params->color.sig_peak = 1.0;
}
if (params->chroma_location == MP_CHROMA_AUTO) {
if (params->color.levels == MP_CSP_LEVELS_TV)
params->chroma_location = MP_CHROMA_LEFT;
if (params->color.levels == MP_CSP_LEVELS_PC)
params->chroma_location = MP_CHROMA_CENTER;
}
if (params->color.light == MP_CSP_LIGHT_AUTO) {
// HLG is always scene-referred (using its own OOTF), everything else
// we assume is display-refered by default.
if (params->color.gamma == MP_CSP_TRC_HLG) {
params->color.light = MP_CSP_LIGHT_SCENE_HLG;
} else {
params->color.light = MP_CSP_LIGHT_DISPLAY;
}
}
}
// Create a new mp_image reference to av_frame.
struct mp_image *mp_image_from_av_frame(struct AVFrame *src)
{
struct mp_image *dst = &(struct mp_image){0};
AVFrameSideData *sd;
for (int p = 0; p < MP_MAX_PLANES; p++)
dst->bufs[p] = src->buf[p];
dst->hwctx = src->hw_frames_ctx;
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
mp_image_set_size(dst, src->width, src->height);
dst->params.p_w = src->sample_aspect_ratio.num;
dst->params.p_h = src->sample_aspect_ratio.den;
for (int i = 0; i < 4; i++) {
dst->planes[i] = src->data[i];
dst->stride[i] = src->linesize[i];
}
dst->pict_type = src->pict_type;
dst->fields = 0;
if (src->interlaced_frame)
dst->fields |= MP_IMGFIELD_INTERLACED;
if (src->top_field_first)
dst->fields |= MP_IMGFIELD_TOP_FIRST;
if (src->repeat_pict == 1)
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
dst->params.color = (struct mp_colorspace){
.space = avcol_spc_to_mp_csp(src->colorspace),
.levels = avcol_range_to_mp_csp_levels(src->color_range),
.primaries = avcol_pri_to_mp_csp_prim(src->color_primaries),
.gamma = avcol_trc_to_mp_csp_trc(src->color_trc),
};
dst->params.chroma_location = avchroma_location_to_mp(src->chroma_location);
if (src->opaque_ref) {
struct mp_image_params *p = (void *)src->opaque_ref->data;
dst->params.rotate = p->rotate;
dst->params.stereo3d = p->stereo3d;
// Might be incorrect if colorspace changes.
dst->params.color.light = p->color.light;
dst->params.alpha = p->alpha;
}
sd = av_frame_get_side_data(src, AV_FRAME_DATA_ICC_PROFILE);
if (sd)
dst->icc_profile = sd->buf;
// Get the content light metadata if available
sd = av_frame_get_side_data(src, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
if (sd) {
AVContentLightMetadata *clm = (AVContentLightMetadata *)sd->data;
dst->params.color.sig_peak = clm->MaxCLL / MP_REF_WHITE;
}
// Otherwise, try getting the mastering metadata if available
sd = av_frame_get_side_data(src, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
if (!dst->params.color.sig_peak && sd) {
AVMasteringDisplayMetadata *mdm = (AVMasteringDisplayMetadata *)sd->data;
if (mdm->has_luminance)
dst->params.color.sig_peak = av_q2d(mdm->max_luminance) / MP_REF_WHITE;
}
sd = av_frame_get_side_data(src, AV_FRAME_DATA_A53_CC);
if (sd)
dst->a53_cc = sd->buf;
for (int n = 0; n < src->nb_side_data; n++) {
sd = src->side_data[n];
struct mp_ff_side_data mpsd = {
.type = sd->type,
.buf = sd->buf,
};
MP_TARRAY_APPEND(NULL, dst->ff_side_data, dst->num_ff_side_data, mpsd);
}
if (dst->hwctx) {
AVHWFramesContext *fctx = (void *)dst->hwctx->data;
dst->params.hw_subfmt = pixfmt2imgfmt(fctx->sw_format);
}
struct mp_image *res = mp_image_new_ref(dst);
// Allocated, but non-refcounted data.
talloc_free(dst->ff_side_data);
return res;
}
// Convert the mp_image reference to a AVFrame reference.
struct AVFrame *mp_image_to_av_frame(struct mp_image *src)
{
struct mp_image *new_ref = mp_image_new_ref(src);
AVFrame *dst = av_frame_alloc();
if (!dst || !new_ref) {
talloc_free(new_ref);
av_frame_free(&dst);
return NULL;
}
for (int p = 0; p < MP_MAX_PLANES; p++) {
dst->buf[p] = new_ref->bufs[p];
new_ref->bufs[p] = NULL;
}
dst->hw_frames_ctx = new_ref->hwctx;
new_ref->hwctx = NULL;
dst->format = imgfmt2pixfmt(src->imgfmt);
dst->width = src->w;
dst->height = src->h;
dst->sample_aspect_ratio.num = src->params.p_w;
dst->sample_aspect_ratio.den = src->params.p_h;
for (int i = 0; i < 4; i++) {
dst->data[i] = src->planes[i];
dst->linesize[i] = src->stride[i];
}
dst->extended_data = dst->data;
dst->pict_type = src->pict_type;
if (src->fields & MP_IMGFIELD_INTERLACED)
dst->interlaced_frame = 1;
if (src->fields & MP_IMGFIELD_TOP_FIRST)
dst->top_field_first = 1;
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
dst->repeat_pict = 1;
dst->colorspace = mp_csp_to_avcol_spc(src->params.color.space);
dst->color_range = mp_csp_levels_to_avcol_range(src->params.color.levels);
dst->color_primaries =
mp_csp_prim_to_avcol_pri(src->params.color.primaries);
dst->color_trc = mp_csp_trc_to_avcol_trc(src->params.color.gamma);
dst->chroma_location = mp_chroma_location_to_av(src->params.chroma_location);
dst->opaque_ref = av_buffer_alloc(sizeof(struct mp_image_params));
if (!dst->opaque_ref)
abort();
*(struct mp_image_params *)dst->opaque_ref->data = src->params;
if (src->icc_profile) {
AVFrameSideData *sd =
av_frame_new_side_data_from_buf(dst, AV_FRAME_DATA_ICC_PROFILE,
new_ref->icc_profile);
if (!sd)
abort();
new_ref->icc_profile = NULL;
}
if (src->params.color.sig_peak) {
AVContentLightMetadata *clm =
av_content_light_metadata_create_side_data(dst);
if (!clm)
abort();
clm->MaxCLL = src->params.color.sig_peak * MP_REF_WHITE;
}
// Add back side data, but only for types which are not specially handled
// above. Keep in mind that the types above will be out of sync anyway.
for (int n = 0; n < new_ref->num_ff_side_data; n++) {
struct mp_ff_side_data *mpsd = &new_ref->ff_side_data[n];
if (!av_frame_get_side_data(dst, mpsd->type)) {
AVFrameSideData *sd = av_frame_new_side_data_from_buf(dst, mpsd->type,
mpsd->buf);
if (!sd)
abort();
mpsd->buf = NULL;
}
}
talloc_free(new_ref);
if (dst->format == AV_PIX_FMT_NONE)
av_frame_free(&dst);
return dst;
}
// Same as mp_image_to_av_frame(), but unref img. (It does so even on failure.)
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
{
AVFrame *frame = mp_image_to_av_frame(img);
talloc_free(img);
return frame;
}
void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
{
if (bytesPerLine == stride && height) {
memset(dst, fill, stride * (height - 1) + bytesPerLine);
} else {
for (int i = 0; i < height; i++) {
memset(dst, fill, bytesPerLine);
dst = (uint8_t *)dst + stride;
}
}
}
void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
{
if (fill == 0) {
memset_pic(dst, 0, unitsPerLine * 2, height, stride);
} else {
for (int i = 0; i < height; i++) {
uint16_t *line = dst;
uint16_t *end = line + unitsPerLine;
while (line < end)
*line++ = fill;
dst = (uint8_t *)dst + stride;
}
}
}
// Pixel at the given luma position on the given plane. x/y always refer to
// non-subsampled coordinates (even if plane is chroma).
// The coordinates must be aligned to mp_imgfmt_desc.align_x/y (these are byte
// and chroma boundaries).
// You cannot access e.g. individual luma pixels on the luma plane with yuv420p.
void *mp_image_pixel_ptr(struct mp_image *img, int plane, int x, int y)
{
assert(MP_IS_ALIGNED(x, img->fmt.align_x));
assert(MP_IS_ALIGNED(y, img->fmt.align_y));
return mp_image_pixel_ptr_ny(img, plane, x, y);
}
// Like mp_image_pixel_ptr(), but do not require alignment on Y coordinates if
// the plane does not require it. Use with care.
// Useful for addressing luma rows.
void *mp_image_pixel_ptr_ny(struct mp_image *img, int plane, int x, int y)
{
assert(MP_IS_ALIGNED(x, img->fmt.align_x));
assert(MP_IS_ALIGNED(y, 1 << img->fmt.ys[plane]));
return img->planes[plane] +
img->stride[plane] * (ptrdiff_t)(y >> img->fmt.ys[plane]) +
(x >> img->fmt.xs[plane]) * (size_t)img->fmt.bpp[plane] / 8;
}
// Return size of pixels [x0, x0+w-1] in bytes. The coordinates refer to non-
// subsampled pixels (basically plane 0), and the size is rounded to chroma
// and byte alignment boundaries for the entire image, even if plane!=0.
// x0!=0 is useful for rounding (e.g. 8 bpp, x0=7, w=7 => 0..15 => 2 bytes).
size_t mp_image_plane_bytes(struct mp_image *img, int plane, int x0, int w)
{
int x1 = MP_ALIGN_UP(x0 + w, img->fmt.align_x);
x0 = MP_ALIGN_DOWN(x0, img->fmt.align_x);
size_t bpp = img->fmt.bpp[plane];
int xs = img->fmt.xs[plane];
return (x1 >> xs) * bpp / 8 - (x0 >> xs) * bpp / 8;
}