mirror of
https://github.com/mpv-player/mpv
synced 2025-01-05 14:40:43 +00:00
73829e43ab
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@12626 b3059339-0415-0410-9bf9-f77b7e298cf2
1409 lines
47 KiB
C
1409 lines
47 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** Initially modified for use with MPlayer by Arpad Gereöffy on 2003/08/30
|
|
** $Id: cfft.c,v 1.3 2004/06/02 22:59:02 diego Exp $
|
|
** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/
|
|
**/
|
|
|
|
/*
|
|
* Algorithmically based on Fortran-77 FFTPACK
|
|
* by Paul N. Swarztrauber(Version 4, 1985).
|
|
*
|
|
* Does even sized fft only
|
|
*/
|
|
|
|
/* isign is +1 for backward and -1 for forward transforms */
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "cfft.h"
|
|
#include "cfft_tab.h"
|
|
|
|
|
|
/* static function declarations */
|
|
#ifdef USE_SSE
|
|
static void passf2pos_sse(const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa);
|
|
static void passf2pos_sse_ido(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa);
|
|
static void passf4pos_sse_ido(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
|
|
#endif
|
|
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa);
|
|
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa);
|
|
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
|
|
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
|
|
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
|
|
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
|
|
const complex_t *wa4, const int8_t isign);
|
|
INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
|
|
const uint16_t *ifac, const complex_t *wa, const int8_t isign);
|
|
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
|
|
----------------------------------------------------------------------*/
|
|
|
|
#if 0 //def USE_SSE
|
|
static void passf2pos_sse(const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa)
|
|
{
|
|
uint16_t k, ah, ac;
|
|
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = 2*k;
|
|
ac = 4*k;
|
|
|
|
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
|
|
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
|
|
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
|
|
}
|
|
}
|
|
|
|
static void passf2pos_sse_ido(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa)
|
|
{
|
|
uint16_t i, k, ah, ac;
|
|
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = k*ido;
|
|
ac = 2*k*ido;
|
|
|
|
for (i = 0; i < ido; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14;
|
|
__m128 m15, m16, m17, m18, m19, m20, m21, m22, m23, m24;
|
|
__m128 w1, w2, w3, w4;
|
|
|
|
m1 = _mm_load_ps(&RE(cc[ac+i]));
|
|
m2 = _mm_load_ps(&RE(cc[ac+ido+i]));
|
|
m5 = _mm_load_ps(&RE(cc[ac+i+2]));
|
|
m6 = _mm_load_ps(&RE(cc[ac+ido+i+2]));
|
|
w1 = _mm_load_ps(&RE(wa[i]));
|
|
w3 = _mm_load_ps(&RE(wa[i+2]));
|
|
|
|
m3 = _mm_add_ps(m1, m2);
|
|
m15 = _mm_add_ps(m5, m6);
|
|
|
|
m4 = _mm_sub_ps(m1, m2);
|
|
m16 = _mm_sub_ps(m5, m6);
|
|
|
|
_mm_store_ps(&RE(ch[ah+i]), m3);
|
|
_mm_store_ps(&RE(ch[ah+i+2]), m15);
|
|
|
|
|
|
w2 = _mm_shuffle_ps(w1, w1, _MM_SHUFFLE(2, 3, 0, 1));
|
|
w4 = _mm_shuffle_ps(w3, w3, _MM_SHUFFLE(2, 3, 0, 1));
|
|
|
|
m7 = _mm_mul_ps(m4, w1);
|
|
m17 = _mm_mul_ps(m16, w3);
|
|
m8 = _mm_mul_ps(m4, w2);
|
|
m18 = _mm_mul_ps(m16, w4);
|
|
|
|
m9 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(2, 0, 2, 0));
|
|
m19 = _mm_shuffle_ps(m17, m18, _MM_SHUFFLE(2, 0, 2, 0));
|
|
m10 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(3, 1, 3, 1));
|
|
m20 = _mm_shuffle_ps(m17, m18, _MM_SHUFFLE(3, 1, 3, 1));
|
|
|
|
m11 = _mm_add_ps(m9, m10);
|
|
m21 = _mm_add_ps(m19, m20);
|
|
m12 = _mm_sub_ps(m9, m10);
|
|
m22 = _mm_sub_ps(m19, m20);
|
|
|
|
m13 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(0, 0, 3, 2));
|
|
m23 = _mm_shuffle_ps(m21, m21, _MM_SHUFFLE(0, 0, 3, 2));
|
|
|
|
m14 = _mm_unpacklo_ps(m12, m13);
|
|
m24 = _mm_unpacklo_ps(m22, m23);
|
|
|
|
_mm_store_ps(&RE(ch[ah+i+l1*ido]), m14);
|
|
_mm_store_ps(&RE(ch[ah+i+2+l1*ido]), m24);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa)
|
|
{
|
|
uint16_t i, k, ah, ac;
|
|
|
|
if (ido == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = 2*k;
|
|
ac = 4*k;
|
|
|
|
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
|
|
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = k*ido;
|
|
ac = 2*k*ido;
|
|
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
complex_t t2;
|
|
|
|
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
|
|
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
|
|
|
|
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
|
|
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
|
|
|
|
#if 1
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
|
|
#else
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa)
|
|
{
|
|
uint16_t i, k, ah, ac;
|
|
|
|
if (ido == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = 2*k;
|
|
ac = 4*k;
|
|
|
|
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
|
|
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ah = k*ido;
|
|
ac = 2*k*ido;
|
|
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
complex_t t2;
|
|
|
|
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
|
|
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
|
|
|
|
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
|
|
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
|
|
|
|
#if 1
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
|
|
#else
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
const int8_t isign)
|
|
{
|
|
static real_t taur = FRAC_CONST(-0.5);
|
|
static real_t taui = FRAC_CONST(0.866025403784439);
|
|
uint16_t i, k, ac, ah;
|
|
complex_t c2, c3, d2, d3, t2;
|
|
|
|
if (ido == 1)
|
|
{
|
|
if (isign == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 3*k+1;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
|
|
|
|
RE(ch[ah+l1]) = RE(c2) - IM(c3);
|
|
IM(ch[ah+l1]) = IM(c2) + RE(c3);
|
|
RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
|
|
IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 3*k+1;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
|
|
|
|
RE(ch[ah+l1]) = RE(c2) + IM(c3);
|
|
IM(ch[ah+l1]) = IM(c2) - RE(c3);
|
|
RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
|
|
IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
|
|
}
|
|
}
|
|
} else {
|
|
if (isign == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
ac = i + (3*k+1)*ido;
|
|
ah = i + k * ido;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
|
|
|
|
RE(d2) = RE(c2) - IM(c3);
|
|
IM(d3) = IM(c2) - RE(c3);
|
|
RE(d3) = RE(c2) + IM(c3);
|
|
IM(d2) = IM(c2) + RE(c3);
|
|
|
|
#if 1
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
#else
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
#endif
|
|
}
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
ac = i + (3*k+1)*ido;
|
|
ah = i + k * ido;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
|
|
|
|
RE(d2) = RE(c2) + IM(c3);
|
|
IM(d3) = IM(c2) + RE(c3);
|
|
RE(d3) = RE(c2) - IM(c3);
|
|
IM(d2) = IM(c2) - RE(c3);
|
|
|
|
#if 1
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
#else
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SSE
|
|
ALIGN static const int32_t negate[4] = { 0x0, 0x0, 0x0, 0x80000000 };
|
|
|
|
__declspec(naked) static void passf4pos_sse(const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
const complex_t *wa3)
|
|
{
|
|
__asm {
|
|
push ebx
|
|
mov ebx, esp
|
|
and esp, -16
|
|
push edi
|
|
push esi
|
|
sub esp, 8
|
|
movzx edi, WORD PTR [ebx+8]
|
|
|
|
movaps xmm1, XMMWORD PTR negate
|
|
|
|
test edi, edi
|
|
jle l1_is_zero
|
|
|
|
lea esi, DWORD PTR [edi+edi]
|
|
add esi, esi
|
|
sub esi, edi
|
|
add esi, esi
|
|
add esi, esi
|
|
add esi, esi
|
|
mov eax, DWORD PTR [ebx+16]
|
|
add esi, eax
|
|
lea ecx, DWORD PTR [edi+edi]
|
|
add ecx, ecx
|
|
add ecx, ecx
|
|
add ecx, ecx
|
|
add ecx, eax
|
|
lea edx, DWORD PTR [edi+edi]
|
|
add edx, edx
|
|
add edx, edx
|
|
add edx, eax
|
|
xor eax, eax
|
|
mov DWORD PTR [esp], ebp
|
|
mov ebp, DWORD PTR [ebx+12]
|
|
|
|
fftloop:
|
|
lea edi, DWORD PTR [eax+eax]
|
|
add edi, edi
|
|
movaps xmm2, XMMWORD PTR [ebp+edi*8]
|
|
movaps xmm0, XMMWORD PTR [ebp+edi*8+16]
|
|
movaps xmm7, XMMWORD PTR [ebp+edi*8+32]
|
|
movaps xmm5, XMMWORD PTR [ebp+edi*8+48]
|
|
movaps xmm6, xmm2
|
|
addps xmm6, xmm0
|
|
movaps xmm4, xmm1
|
|
xorps xmm4, xmm7
|
|
movaps xmm3, xmm1
|
|
xorps xmm3, xmm5
|
|
xorps xmm2, xmm1
|
|
xorps xmm0, xmm1
|
|
addps xmm7, xmm5
|
|
subps xmm2, xmm0
|
|
movaps xmm0, xmm6
|
|
shufps xmm0, xmm7, 68
|
|
subps xmm4, xmm3
|
|
shufps xmm6, xmm7, 238
|
|
movaps xmm5, xmm2
|
|
shufps xmm5, xmm4, 68
|
|
movaps xmm3, xmm0
|
|
addps xmm3, xmm6
|
|
shufps xmm2, xmm4, 187
|
|
subps xmm0, xmm6
|
|
movaps xmm4, xmm5
|
|
addps xmm4, xmm2
|
|
mov edi, DWORD PTR [ebx+16]
|
|
movaps XMMWORD PTR [edi+eax*8], xmm3
|
|
subps xmm5, xmm2
|
|
movaps XMMWORD PTR [edx+eax*8], xmm4
|
|
movaps XMMWORD PTR [ecx+eax*8], xmm0
|
|
movaps XMMWORD PTR [esi+eax*8], xmm5
|
|
add eax, 2
|
|
movzx eax, ax
|
|
movzx edi, WORD PTR [ebx+8]
|
|
cmp eax, edi
|
|
jl fftloop
|
|
|
|
mov ebp, DWORD PTR [esp]
|
|
|
|
l1_is_zero:
|
|
|
|
add esp, 8
|
|
pop esi
|
|
pop edi
|
|
mov esp, ebx
|
|
pop ebx
|
|
ret
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static void passf4pos_sse_ido(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
const complex_t *wa3)
|
|
{
|
|
uint16_t i, k, ac, ah;
|
|
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 4*k*ido;
|
|
ah = k*ido;
|
|
|
|
for (i = 0; i < ido; i+=2)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15, m16;
|
|
__m128 n1, n2, n3, n4, n5, n6, n7, n8, n9, m17, m18, m19, m20, m21, m22, m23;
|
|
__m128 w1, w2, w3, w4, w5, w6, m24, m25, m26, m27, m28, m29, m30;
|
|
__m128 neg1 = _mm_set_ps(-1.0, 1.0, -1.0, 1.0);
|
|
|
|
m1 = _mm_load_ps(&RE(cc[ac+i]));
|
|
m2 = _mm_load_ps(&RE(cc[ac+i+2*ido]));
|
|
m3 = _mm_add_ps(m1, m2);
|
|
m4 = _mm_sub_ps(m1, m2);
|
|
|
|
n1 = _mm_load_ps(&RE(cc[ac+i+ido]));
|
|
n2 = _mm_load_ps(&RE(cc[ac+i+3*ido]));
|
|
n3 = _mm_add_ps(n1, n2);
|
|
|
|
n4 = _mm_mul_ps(neg1, n1);
|
|
n5 = _mm_mul_ps(neg1, n2);
|
|
n6 = _mm_sub_ps(n4, n5);
|
|
|
|
m5 = _mm_add_ps(m3, n3);
|
|
|
|
n7 = _mm_shuffle_ps(n6, n6, _MM_SHUFFLE(2, 3, 0, 1));
|
|
n8 = _mm_add_ps(m4, n7);
|
|
|
|
m6 = _mm_sub_ps(m3, n3);
|
|
n9 = _mm_sub_ps(m4, n7);
|
|
|
|
_mm_store_ps(&RE(ch[ah+i]), m5);
|
|
|
|
#if 0
|
|
static INLINE void ComplexMult(real_t *y1, real_t *y2,
|
|
real_t x1, real_t x2, real_t c1, real_t c2)
|
|
{
|
|
*y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
|
|
*y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
|
|
}
|
|
|
|
m7.0 = RE(c2)*RE(wa1[i])
|
|
m7.1 = IM(c2)*IM(wa1[i])
|
|
m7.2 = RE(c6)*RE(wa1[i+1])
|
|
m7.3 = IM(c6)*IM(wa1[i+1])
|
|
|
|
m8.0 = RE(c2)*IM(wa1[i])
|
|
m8.1 = IM(c2)*RE(wa1[i])
|
|
m8.2 = RE(c6)*IM(wa1[i+1])
|
|
m8.3 = IM(c6)*RE(wa1[i+1])
|
|
|
|
RE(0) = m7.0 - m7.1
|
|
IM(0) = m8.0 + m8.1
|
|
RE(1) = m7.2 - m7.3
|
|
IM(1) = m8.2 + m8.3
|
|
|
|
////
|
|
RE(0) = RE(c2)*RE(wa1[i]) - IM(c2)*IM(wa1[i])
|
|
IM(0) = RE(c2)*IM(wa1[i]) + IM(c2)*RE(wa1[i])
|
|
RE(1) = RE(c6)*RE(wa1[i+1]) - IM(c6)*IM(wa1[i+1])
|
|
IM(1) = RE(c6)*IM(wa1[i+1]) + IM(c6)*RE(wa1[i+1])
|
|
#endif
|
|
|
|
w1 = _mm_load_ps(&RE(wa1[i]));
|
|
w3 = _mm_load_ps(&RE(wa2[i]));
|
|
w5 = _mm_load_ps(&RE(wa3[i]));
|
|
|
|
w2 = _mm_shuffle_ps(w1, w1, _MM_SHUFFLE(2, 3, 0, 1));
|
|
w4 = _mm_shuffle_ps(w3, w3, _MM_SHUFFLE(2, 3, 0, 1));
|
|
w6 = _mm_shuffle_ps(w5, w5, _MM_SHUFFLE(2, 3, 0, 1));
|
|
|
|
m7 = _mm_mul_ps(n8, w1);
|
|
m15 = _mm_mul_ps(m6, w3);
|
|
m23 = _mm_mul_ps(n9, w5);
|
|
m8 = _mm_mul_ps(n8, w2);
|
|
m16 = _mm_mul_ps(m6, w4);
|
|
m24 = _mm_mul_ps(n9, w6);
|
|
|
|
m9 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(2, 0, 2, 0));
|
|
m17 = _mm_shuffle_ps(m15, m16, _MM_SHUFFLE(2, 0, 2, 0));
|
|
m25 = _mm_shuffle_ps(m23, m24, _MM_SHUFFLE(2, 0, 2, 0));
|
|
m10 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(3, 1, 3, 1));
|
|
m18 = _mm_shuffle_ps(m15, m16, _MM_SHUFFLE(3, 1, 3, 1));
|
|
m26 = _mm_shuffle_ps(m23, m24, _MM_SHUFFLE(3, 1, 3, 1));
|
|
|
|
m11 = _mm_add_ps(m9, m10);
|
|
m19 = _mm_add_ps(m17, m18);
|
|
m27 = _mm_add_ps(m25, m26);
|
|
m12 = _mm_sub_ps(m9, m10);
|
|
m20 = _mm_sub_ps(m17, m18);
|
|
m28 = _mm_sub_ps(m25, m26);
|
|
|
|
m13 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(0, 0, 3, 2));
|
|
m21 = _mm_shuffle_ps(m19, m19, _MM_SHUFFLE(0, 0, 3, 2));
|
|
m29 = _mm_shuffle_ps(m27, m27, _MM_SHUFFLE(0, 0, 3, 2));
|
|
m14 = _mm_unpacklo_ps(m12, m13);
|
|
m22 = _mm_unpacklo_ps(m20, m21);
|
|
m30 = _mm_unpacklo_ps(m28, m29);
|
|
|
|
_mm_store_ps(&RE(ch[ah+i+l1*ido]), m14);
|
|
_mm_store_ps(&RE(ch[ah+i+2*l1*ido]), m22);
|
|
_mm_store_ps(&RE(ch[ah+i+3*l1*ido]), m30);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
const complex_t *wa3)
|
|
{
|
|
uint16_t i, k, ac, ah;
|
|
|
|
if (ido == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
complex_t t1, t2, t3, t4;
|
|
|
|
ac = 4*k;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
|
|
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
|
|
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
|
|
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
|
|
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
|
|
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
|
|
|
|
RE(ch[ah]) = RE(t2) + RE(t3);
|
|
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
|
|
|
|
IM(ch[ah]) = IM(t2) + IM(t3);
|
|
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
|
|
|
|
RE(ch[ah+l1]) = RE(t1) + RE(t4);
|
|
RE(ch[ah+3*l1]) = RE(t1) - RE(t4);
|
|
|
|
IM(ch[ah+l1]) = IM(t1) + IM(t4);
|
|
IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 4*k*ido;
|
|
ah = k*ido;
|
|
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
complex_t c2, c3, c4, t1, t2, t3, t4;
|
|
|
|
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
|
|
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
|
|
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
|
|
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
|
|
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
|
|
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
|
|
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
|
|
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
|
|
|
|
RE(c2) = RE(t1) + RE(t4);
|
|
RE(c4) = RE(t1) - RE(t4);
|
|
|
|
IM(c2) = IM(t1) + IM(t4);
|
|
IM(c4) = IM(t1) - IM(t4);
|
|
|
|
RE(ch[ah+i]) = RE(t2) + RE(t3);
|
|
RE(c3) = RE(t2) - RE(t3);
|
|
|
|
IM(ch[ah+i]) = IM(t2) + IM(t3);
|
|
IM(c3) = IM(t2) - IM(t3);
|
|
|
|
#if 1
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
|
|
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
|
|
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
|
|
#else
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
|
|
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
|
|
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
const complex_t *wa3)
|
|
{
|
|
uint16_t i, k, ac, ah;
|
|
|
|
if (ido == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
complex_t t1, t2, t3, t4;
|
|
|
|
ac = 4*k;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
|
|
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
|
|
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
|
|
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
|
|
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
|
|
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
|
|
|
|
RE(ch[ah]) = RE(t2) + RE(t3);
|
|
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
|
|
|
|
IM(ch[ah]) = IM(t2) + IM(t3);
|
|
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
|
|
|
|
RE(ch[ah+l1]) = RE(t1) - RE(t4);
|
|
RE(ch[ah+3*l1]) = RE(t1) + RE(t4);
|
|
|
|
IM(ch[ah+l1]) = IM(t1) - IM(t4);
|
|
IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 4*k*ido;
|
|
ah = k*ido;
|
|
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
complex_t c2, c3, c4, t1, t2, t3, t4;
|
|
|
|
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
|
|
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
|
|
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
|
|
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
|
|
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
|
|
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
|
|
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
|
|
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
|
|
|
|
RE(c2) = RE(t1) - RE(t4);
|
|
RE(c4) = RE(t1) + RE(t4);
|
|
|
|
IM(c2) = IM(t1) - IM(t4);
|
|
IM(c4) = IM(t1) + IM(t4);
|
|
|
|
RE(ch[ah+i]) = RE(t2) + RE(t3);
|
|
RE(c3) = RE(t2) - RE(t3);
|
|
|
|
IM(ch[ah+i]) = IM(t2) + IM(t3);
|
|
IM(c3) = IM(t2) - IM(t3);
|
|
|
|
#if 1
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
|
|
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
|
|
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
|
|
#else
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
|
|
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
|
|
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
|
|
const complex_t *wa4, const int8_t isign)
|
|
{
|
|
static real_t tr11 = FRAC_CONST(0.309016994374947);
|
|
static real_t ti11 = FRAC_CONST(0.951056516295154);
|
|
static real_t tr12 = FRAC_CONST(-0.809016994374947);
|
|
static real_t ti12 = FRAC_CONST(0.587785252292473);
|
|
uint16_t i, k, ac, ah;
|
|
complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;
|
|
|
|
if (ido == 1)
|
|
{
|
|
if (isign == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 5*k + 1;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
|
|
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
|
|
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
|
|
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
ComplexMult(&RE(c5), &RE(c4),
|
|
ti11, ti12, RE(t5), RE(t4));
|
|
ComplexMult(&IM(c5), &IM(c4),
|
|
ti11, ti12, IM(t5), IM(t4));
|
|
|
|
RE(ch[ah+l1]) = RE(c2) - IM(c5);
|
|
IM(ch[ah+l1]) = IM(c2) + RE(c5);
|
|
RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
|
|
IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
|
|
RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
|
|
IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
|
|
RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
|
|
IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
ac = 5*k + 1;
|
|
ah = k;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
|
|
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
|
|
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
|
|
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
ComplexMult(&RE(c4), &RE(c5),
|
|
ti12, ti11, RE(t5), RE(t4));
|
|
ComplexMult(&IM(c4), &IM(c5),
|
|
ti12, ti12, IM(t5), IM(t4));
|
|
|
|
RE(ch[ah+l1]) = RE(c2) + IM(c5);
|
|
IM(ch[ah+l1]) = IM(c2) - RE(c5);
|
|
RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
|
|
IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
|
|
RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
|
|
IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
|
|
RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
|
|
IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
|
|
}
|
|
}
|
|
} else {
|
|
if (isign == 1)
|
|
{
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
ac = i + (k*5 + 1) * ido;
|
|
ah = i + k * ido;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
|
|
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
|
|
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
|
|
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
|
|
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
ComplexMult(&RE(c5), &RE(c4),
|
|
ti11, ti12, RE(t5), RE(t4));
|
|
ComplexMult(&IM(c5), &IM(c4),
|
|
ti11, ti12, IM(t5), IM(t4));
|
|
|
|
IM(d2) = IM(c2) + RE(c5);
|
|
IM(d3) = IM(c3) + RE(c4);
|
|
RE(d4) = RE(c3) + IM(c4);
|
|
RE(d5) = RE(c2) + IM(c5);
|
|
RE(d2) = RE(c2) - IM(c5);
|
|
IM(d5) = IM(c2) - RE(c5);
|
|
RE(d3) = RE(c3) - IM(c4);
|
|
IM(d4) = IM(c3) - RE(c4);
|
|
|
|
#if 1
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
|
|
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
|
|
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
|
|
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
|
|
#else
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
|
|
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
|
|
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
|
|
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
|
|
#endif
|
|
}
|
|
}
|
|
} else {
|
|
for (k = 0; k < l1; k++)
|
|
{
|
|
for (i = 0; i < ido; i++)
|
|
{
|
|
ac = i + (k*5 + 1) * ido;
|
|
ah = i + k * ido;
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
|
|
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
|
|
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
|
|
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
|
|
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
ComplexMult(&RE(c4), &RE(c5),
|
|
ti12, ti11, RE(t5), RE(t4));
|
|
ComplexMult(&IM(c4), &IM(c5),
|
|
ti12, ti12, IM(t5), IM(t4));
|
|
|
|
IM(d2) = IM(c2) - RE(c5);
|
|
IM(d3) = IM(c3) - RE(c4);
|
|
RE(d4) = RE(c3) - IM(c4);
|
|
RE(d5) = RE(c2) - IM(c5);
|
|
RE(d2) = RE(c2) + IM(c5);
|
|
IM(d5) = IM(c2) + RE(c5);
|
|
RE(d3) = RE(c3) + IM(c4);
|
|
IM(d4) = IM(c3) + RE(c4);
|
|
|
|
#if 1
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
|
|
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
|
|
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
|
|
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
|
|
#else
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
|
|
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
|
|
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
|
|
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
|
|
----------------------------------------------------------------------*/
|
|
|
|
#ifdef USE_SSE
|
|
|
|
#define CONV(A,B,C) ( (A<<2) | ((B & 0x1)<<1) | ((C==1)&0x1) )
|
|
|
|
static INLINE void cfftf1pos_sse(uint16_t n, complex_t *c, complex_t *ch,
|
|
const uint16_t *ifac, const complex_t *wa,
|
|
const int8_t isign)
|
|
{
|
|
uint16_t i;
|
|
uint16_t k1, l1, l2;
|
|
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
|
|
|
|
nf = ifac[1];
|
|
na = 0;
|
|
l1 = 1;
|
|
iw = 0;
|
|
|
|
for (k1 = 2; k1 <= nf+1; k1++)
|
|
{
|
|
ip = ifac[k1];
|
|
l2 = ip*l1;
|
|
ido = n / l2;
|
|
idl1 = ido*l1;
|
|
|
|
ix2 = iw + ido;
|
|
ix3 = ix2 + ido;
|
|
ix4 = ix3 + ido;
|
|
|
|
switch (CONV(ip,na,ido))
|
|
{
|
|
case CONV(4,0,0):
|
|
//passf4pos_sse_ido((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
break;
|
|
case CONV(4,0,1):
|
|
passf4pos_sse((const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
break;
|
|
case CONV(4,1,0):
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
//passf4pos_sse_ido((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
break;
|
|
case CONV(4,1,1):
|
|
passf4pos_sse((const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
break;
|
|
case CONV(2,0,0):
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
//passf2pos_sse_ido((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
break;
|
|
case CONV(2,0,1):
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
//passf2pos_sse((const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
break;
|
|
case CONV(2,1,0):
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
//passf2pos_sse_ido((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
break;
|
|
case CONV(2,1,1):
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
//passf2pos_sse((const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
break;
|
|
case CONV(3,0,0):
|
|
case CONV(3,0,1):
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
|
|
break;
|
|
case CONV(3,1,0):
|
|
case CONV(3,1,1):
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
|
|
break;
|
|
case CONV(5,0,0):
|
|
case CONV(5,0,1):
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
break;
|
|
case CONV(5,1,0):
|
|
case CONV(5,1,1):
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
break;
|
|
}
|
|
|
|
na = 1 - na;
|
|
|
|
l1 = l2;
|
|
iw += (ip-1) * ido;
|
|
}
|
|
|
|
if (na == 0)
|
|
return;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
RE(c[i]) = RE(ch[i]);
|
|
IM(c[i]) = IM(ch[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
|
|
const uint16_t *ifac, const complex_t *wa,
|
|
const int8_t isign)
|
|
{
|
|
uint16_t i;
|
|
uint16_t k1, l1, l2;
|
|
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
|
|
|
|
nf = ifac[1];
|
|
na = 0;
|
|
l1 = 1;
|
|
iw = 0;
|
|
|
|
for (k1 = 2; k1 <= nf+1; k1++)
|
|
{
|
|
ip = ifac[k1];
|
|
l2 = ip*l1;
|
|
ido = n / l2;
|
|
idl1 = ido*l1;
|
|
|
|
switch (ip)
|
|
{
|
|
case 4:
|
|
ix2 = iw + ido;
|
|
ix3 = ix2 + ido;
|
|
|
|
if (na == 0)
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
else
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 2:
|
|
if (na == 0)
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
else
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 3:
|
|
ix2 = iw + ido;
|
|
|
|
if (na == 0)
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
|
|
else
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 5:
|
|
ix2 = iw + ido;
|
|
ix3 = ix2 + ido;
|
|
ix4 = ix3 + ido;
|
|
|
|
if (na == 0)
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
else
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
}
|
|
|
|
l1 = l2;
|
|
iw += (ip-1) * ido;
|
|
}
|
|
|
|
if (na == 0)
|
|
return;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
RE(c[i]) = RE(ch[i]);
|
|
IM(c[i]) = IM(ch[i]);
|
|
}
|
|
}
|
|
|
|
static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
|
|
const uint16_t *ifac, const complex_t *wa,
|
|
const int8_t isign)
|
|
{
|
|
uint16_t i;
|
|
uint16_t k1, l1, l2;
|
|
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
|
|
|
|
nf = ifac[1];
|
|
na = 0;
|
|
l1 = 1;
|
|
iw = 0;
|
|
|
|
for (k1 = 2; k1 <= nf+1; k1++)
|
|
{
|
|
ip = ifac[k1];
|
|
l2 = ip*l1;
|
|
ido = n / l2;
|
|
idl1 = ido*l1;
|
|
|
|
switch (ip)
|
|
{
|
|
case 4:
|
|
ix2 = iw + ido;
|
|
ix3 = ix2 + ido;
|
|
|
|
if (na == 0)
|
|
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
else
|
|
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 2:
|
|
if (na == 0)
|
|
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
else
|
|
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 3:
|
|
ix2 = iw + ido;
|
|
|
|
if (na == 0)
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
|
|
else
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
case 5:
|
|
ix2 = iw + ido;
|
|
ix3 = ix2 + ido;
|
|
ix4 = ix3 + ido;
|
|
|
|
if (na == 0)
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
else
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
na = 1 - na;
|
|
break;
|
|
}
|
|
|
|
l1 = l2;
|
|
iw += (ip-1) * ido;
|
|
}
|
|
|
|
if (na == 0)
|
|
return;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
RE(c[i]) = RE(ch[i]);
|
|
IM(c[i]) = IM(ch[i]);
|
|
}
|
|
}
|
|
|
|
void cfftf(cfft_info *cfft, complex_t *c)
|
|
{
|
|
cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
|
|
}
|
|
|
|
void cfftb(cfft_info *cfft, complex_t *c)
|
|
{
|
|
cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
|
|
}
|
|
|
|
#ifdef USE_SSE
|
|
void cfftb_sse(cfft_info *cfft, complex_t *c)
|
|
{
|
|
cfftf1pos_sse(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
|
|
}
|
|
#endif
|
|
|
|
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
|
|
{
|
|
static uint16_t ntryh[4] = {3, 4, 2, 5};
|
|
#ifndef FIXED_POINT
|
|
real_t arg, argh, argld, fi;
|
|
uint16_t ido, ipm;
|
|
uint16_t i1, k1, l1, l2;
|
|
uint16_t ld, ii, ip;
|
|
#endif
|
|
uint16_t ntry = 0, i, j;
|
|
uint16_t ib;
|
|
uint16_t nf, nl, nq, nr;
|
|
|
|
nl = n;
|
|
nf = 0;
|
|
j = 0;
|
|
|
|
startloop:
|
|
j++;
|
|
|
|
if (j <= 4)
|
|
ntry = ntryh[j-1];
|
|
else
|
|
ntry += 2;
|
|
|
|
do
|
|
{
|
|
nq = nl / ntry;
|
|
nr = nl - ntry*nq;
|
|
|
|
if (nr != 0)
|
|
goto startloop;
|
|
|
|
nf++;
|
|
ifac[nf+1] = ntry;
|
|
nl = nq;
|
|
|
|
if (ntry == 2 && nf != 1)
|
|
{
|
|
for (i = 2; i <= nf; i++)
|
|
{
|
|
ib = nf - i + 2;
|
|
ifac[ib+1] = ifac[ib];
|
|
}
|
|
ifac[2] = 2;
|
|
}
|
|
} while (nl != 1);
|
|
|
|
ifac[0] = n;
|
|
ifac[1] = nf;
|
|
|
|
#ifndef FIXED_POINT
|
|
argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
|
|
i = 0;
|
|
l1 = 1;
|
|
|
|
for (k1 = 1; k1 <= nf; k1++)
|
|
{
|
|
ip = ifac[k1+1];
|
|
ld = 0;
|
|
l2 = l1*ip;
|
|
ido = n / l2;
|
|
ipm = ip - 1;
|
|
|
|
for (j = 0; j < ipm; j++)
|
|
{
|
|
i1 = i;
|
|
RE(wa[i]) = 1.0;
|
|
IM(wa[i]) = 0.0;
|
|
ld += l1;
|
|
fi = 0;
|
|
argld = ld*argh;
|
|
|
|
for (ii = 0; ii < ido; ii++)
|
|
{
|
|
i++;
|
|
fi++;
|
|
arg = fi * argld;
|
|
RE(wa[i]) = (real_t)cos(arg);
|
|
#if 1
|
|
IM(wa[i]) = (real_t)sin(arg);
|
|
#else
|
|
IM(wa[i]) = (real_t)-sin(arg);
|
|
#endif
|
|
}
|
|
|
|
if (ip > 5)
|
|
{
|
|
RE(wa[i1]) = RE(wa[i]);
|
|
IM(wa[i1]) = IM(wa[i]);
|
|
}
|
|
}
|
|
l1 = l2;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
cfft_info *cffti(uint16_t n)
|
|
{
|
|
cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));
|
|
|
|
cfft->n = n;
|
|
cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));
|
|
|
|
#ifndef FIXED_POINT
|
|
cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));
|
|
|
|
cffti1(n, cfft->tab, cfft->ifac);
|
|
#else
|
|
cffti1(n, NULL, cfft->ifac);
|
|
|
|
switch (n)
|
|
{
|
|
case 64: cfft->tab = cfft_tab_64; break;
|
|
case 512: cfft->tab = cfft_tab_512; break;
|
|
#ifdef LD_DEC
|
|
case 256: cfft->tab = cfft_tab_256; break;
|
|
#endif
|
|
|
|
#ifdef ALLOW_SMALL_FRAMELENGTH
|
|
case 60: cfft->tab = cfft_tab_60; break;
|
|
case 480: cfft->tab = cfft_tab_480; break;
|
|
#ifdef LD_DEC
|
|
case 240: cfft->tab = cfft_tab_240; break;
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
return cfft;
|
|
}
|
|
|
|
void cfftu(cfft_info *cfft)
|
|
{
|
|
if (cfft->work) faad_free(cfft->work);
|
|
#ifndef FIXED_POINT
|
|
if (cfft->tab) faad_free(cfft->tab);
|
|
#endif
|
|
|
|
if (cfft) faad_free(cfft);
|
|
}
|
|
|