1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-02 13:02:24 +00:00
mpv/libmpcodecs/vf_zrmjpeg.c
2010-03-10 00:52:17 +02:00

1068 lines
32 KiB
C

/*
* This files includes a straightforward (to be) optimized JPEG encoder for
* the YUV422 format, based on mjpeg code from ffmpeg.
*
* For an excellent introduction to the JPEG format, see:
* http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
*
* Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>
* - based on vd_lavc.c by A'rpi (C) 2002-2003
* - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* \file vf_zrmjpeg.c
*
* \brief Does mjpeg encoding as required by the zrmjpeg filter as well
* as by the zr video driver.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "config.h"
#include "mp_msg.h"
#include "img_format.h"
#include "mp_image.h"
#include "vf.h"
/* We need this #define because we need ../libavcodec/common.h to #define
* be2me_32, otherwise the linker will complain that it doesn't exist */
#define HAVE_AV_CONFIG_H
#include "libavcodec/avcodec.h"
#include "libavcodec/mjpegenc.h"
#undef malloc
#undef free
/* some convenient #define's, is this portable enough? */
/// Printout with vf_zrmjpeg: prefix at VERBOSE level
#define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
/// Printout with vf_zrmjpeg: prefix at ERROR level
#define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
/// Printout with vf_zrmjpeg: prefix at WARNING level
#define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
"vf_zrmjpeg: " __VA_ARGS__)
// "local" flag in vd_ffmpeg.c. If not set, avcodec_init() et. al. need to be called
// set when init is done, so that initialization is not done twice.
extern int avcodec_initialized;
/// The get_pixels() routine to use. The real routine comes from dsputil
static void (*get_pixels)(DCTELEM *restrict block, const uint8_t *pixels, int line_size);
/* Begin excessive code duplication ************************************/
/* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
/// copy of the table in mpegvideo.c
static const unsigned short aanscales[64] = {
/**< precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
/// Precompute DCT quantizing matrix
/**
* This routine will precompute the combined DCT matrix with qscale
* and DCT renorm needed by the MPEG encoder here. It is basically the
* same as the routine with the same name in mpegvideo.c, except for
* some coefficient changes. The matrix will be computed in two variations,
* depending on the DCT version used. The second used by the MMX version of DCT.
*
* \param s MpegEncContext pointer
* \param qmat[OUT] pointer to where the matrix is stored
* \param qmat16[OUT] pointer to where matrix for MMX is stored.
* This matrix is not permutated
* and second 64 entries are bias
* \param quant_matrix[IN] the quantizion matrix to use
* \param bias bias for the quantizer
* \param qmin minimum qscale value to set up for
* \param qmax maximum qscale value to set up for
*
* Only rows between qmin and qmax will be populated in the matrix.
* In this MJPEG encoder, only the value 8 for qscale is used.
*/
static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix,
int bias, int qmin, int qmax) {
int qscale;
for(qscale = qmin; qscale <= qmax; qscale++) {
int i;
if (s->dsp.fdct == ff_jpeg_fdct_islow) {
for (i = 0; i < 64; i++) {
const int j = s->dsp.idct_permutation[i];
/* 16 <= qscale * quant_matrix[i] <= 7905
* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
* >= (1<<36)/249205026
* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(1) <<
(QMAT_SHIFT-3))/
(qscale*quant_matrix[j]));
}
} else if (s->dsp.fdct == fdct_ifast) {
for (i = 0; i < 64; i++) {
const int j = s->dsp.idct_permutation[i];
/* 16 <= qscale * quant_matrix[i] <= 7905
* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
* >= (1<<36)/249205026
* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(1) <<
(QMAT_SHIFT + 11))/(aanscales[i]
*qscale * quant_matrix[j]));
}
} else {
for (i = 0; i < 64; i++) {
const int j = s->dsp.idct_permutation[i];
/* We can safely assume that 16 <= quant_matrix[i] <= 255
* So 16 <= qscale * quant_matrix[i] <= 7905
* so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
* so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
qmat[qscale][i] = (int)((UINT64_C(1) <<
QMAT_SHIFT_MMX) / (qscale
*quant_matrix[j]));
qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX)
/(qscale * quant_matrix[j]);
if (qmat16[qscale][0][i] == 0 ||
qmat16[qscale][0][i] == 128*256)
qmat16[qscale][0][i]=128*256-1;
qmat16[qscale][1][i]=ROUNDED_DIV(bias
<<(16-QUANT_BIAS_SHIFT),
qmat16[qscale][0][i]);
}
}
}
}
/// Emit the DC value into a MJPEG code sream
/**
* This routine is only intended to be used from encode_block
*
* \param s pointer to MpegEncContext structure
* \param val the DC value to emit
* \param huff_size pointer to huffman code size array
* \param huff_code pointer to the code array corresponding to \a huff_size
*
* This routine is a clone of mjpeg_encode_dc
*/
static inline void encode_dc(MpegEncContext *s, int val,
uint8_t *huff_size, uint16_t *huff_code) {
int mant, nbits;
if (val == 0) {
put_bits(&s->pb, huff_size[0], huff_code[0]);
} else {
mant = val;
if (val < 0) {
val = -val;
mant--;
}
nbits= av_log2_16bit(val) + 1;
put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
}
}
/// Huffman encode and emit one DCT block into the MJPEG code stream
/**
* \param s pointer to MpegEncContext structure
* \param block pointer to the DCT block to emit
* \param n
*
* This routine is a duplicate of encode_block in mjpeg.c
*/
static void encode_block(MpegEncContext *s, DCTELEM *block, int n) {
int mant, nbits, code, i, j;
int component, dc, run, last_index, val;
MJpegContext *m = s->mjpeg_ctx;
uint8_t *huff_size_ac;
uint16_t *huff_code_ac;
/* DC coef */
component = (n <= 3 ? 0 : n - 4 + 1);
dc = block[0]; /* overflow is impossible */
val = dc - s->last_dc[component];
if (n < 4) {
encode_dc(s, val, m->huff_size_dc_luminance,
m->huff_code_dc_luminance);
huff_size_ac = m->huff_size_ac_luminance;
huff_code_ac = m->huff_code_ac_luminance;
} else {
encode_dc(s, val, m->huff_size_dc_chrominance,
m->huff_code_dc_chrominance);
huff_size_ac = m->huff_size_ac_chrominance;
huff_code_ac = m->huff_code_ac_chrominance;
}
s->last_dc[component] = dc;
/* AC coefs */
run = 0;
last_index = s->block_last_index[n];
for (i = 1; i <= last_index; i++) {
j = s->intra_scantable.permutated[i];
val = block[j];
if (val == 0) run++;
else {
while (run >= 16) {
put_bits(&s->pb, huff_size_ac[0xf0],
huff_code_ac[0xf0]);
run -= 16;
}
mant = val;
if (val < 0) {
val = -val;
mant--;
}
nbits= av_log2_16bit(val) + 1;
code = (run << 4) | nbits;
put_bits(&s->pb, huff_size_ac[code],
huff_code_ac[code]);
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
run = 0;
}
}
/* output EOB only if not already 64 values */
if (last_index < 63 || run != 0)
put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
}
/// clip overflowing DCT coefficients
/**
* If the computed DCT coefficients in a block overflow, this routine
* will go through them and clip them to be in the valid range.
*
* \param s pointer to MpegEncContext
* \param block pointer to DCT block to process
* \param last_index index of the last non-zero coefficient in block
*
* The max and min level, which are clipped to, are stored in
* s->min_qcoeff and s->max_qcoeff respectively.
*/
static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block,
int last_index) {
int i;
const int maxlevel= s->max_qcoeff;
const int minlevel= s->min_qcoeff;
for (i = 0; i <= last_index; i++) {
const int j = s->intra_scantable.permutated[i];
int level = block[j];
if (level > maxlevel) level=maxlevel;
else if(level < minlevel) level=minlevel;
block[j]= level;
}
}
/* End excessive code duplication **************************************/
typedef struct {
struct MpegEncContext *s;
int cheap_upsample;
int bw;
int y_rs;
int u_rs;
int v_rs;
} jpeg_enc_t;
// Huffman encode and emit one MCU of MJPEG code
/**
* \param j pointer to jpeg_enc_t structure
*
* This function huffman encodes one MCU, and emits the
* resulting bitstream into the MJPEG code that is currently worked on.
*
* this function is a reproduction of the one in mjpeg, it includes two
* changes, it allows for black&white encoding (it skips the U and V
* macroblocks and it outputs the huffman code for 'no change' (dc) and
* 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
*/
static av_always_inline void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
MJpegContext *m = j->s->mjpeg_ctx;
encode_block(j->s, j->s->block[0], 0);
encode_block(j->s, j->s->block[1], 1);
if (j->bw) {
/* U */
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
m->huff_code_dc_chrominance[0]);
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
m->huff_code_ac_chrominance[0]);
/* V */
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
m->huff_code_dc_chrominance[0]);
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
m->huff_code_ac_chrominance[0]);
} else {
/* we trick encode_block here so that it uses
* chrominance huffman tables instead of luminance ones
* (see the effect of second argument of encode_block) */
encode_block(j->s, j->s->block[2], 4);
encode_block(j->s, j->s->block[3], 5);
}
}
/// Fill one DCT MCU from planar storage
/**
* This routine will convert one MCU from YUYV planar storage into 4
* DCT macro blocks, converting from 8-bit format in the planar
* storage to 16-bit format used in the DCT.
*
* \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
* \param x pixel x-coordinate for the first pixel
* \param y pixel y-coordinate for the first pixel
* \param y_data pointer to the Y plane
* \param u_data pointer to the U plane
* \param v_data pointer to the V plane
*/
static av_always_inline void fill_block(jpeg_enc_t *j, int x, int y,
unsigned char *y_data, unsigned char *u_data,
unsigned char *v_data)
{
int i, k;
short int *dest;
unsigned char *source;
// The first Y, Y0
get_pixels(j->s->block[0], y*8*j->y_rs + 16*x + y_data, j->y_rs);
// The second Y, Y1
get_pixels(j->s->block[1], y*8*j->y_rs + 16*x + 8 + y_data, j->y_rs);
if (!j->bw && j->cheap_upsample) {
source = y * 4 * j->u_rs + 8*x + u_data;
dest = j->s->block[2];
for (i = 0; i < 4; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k]; // First row
dest[k+8] = source[k]; // Duplicate to next row
}
dest += 16;
source += j->u_rs;
}
source = y * 4 * j->v_rs + 8*x + v_data;
dest = j->s->block[3];
for (i = 0; i < 4; i++) {
for (k = 0; k < 8; k++) {
dest[k] = source[k];
dest[k+8] = source[k];
}
dest += 16;
source += j->u_rs;
}
} else if (!j->bw && !j->cheap_upsample) {
// U
get_pixels(j->s->block[2], y*8*j->u_rs + 8*x + u_data, j->u_rs);
// V
get_pixels(j->s->block[3], y*8*j->v_rs + 8*x + v_data, j->v_rs);
}
}
/**
* \brief initialize mjpeg encoder
*
* This routine is to set up the parameters and initialize the mjpeg encoder.
* It does all the initializations needed of lower level routines.
* The formats accepted by this encoder is YUV422P and YUV420
*
* \param w width in pixels of the image to encode, must be a multiple of 16
* \param h height in pixels of the image to encode, must be a multiple of 8
* \param y_rsize size of each plane row Y component
* \param y_rsize size of each plane row U component
* \param v_rsize size of each plane row V component
* \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
* when set to 1, the encoder will assume that there is only half th
* number of rows of chroma information, and every chroma row is
* duplicated.
* \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
* is best quality and 20 is the worst quality.
* \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
* In that case, the colour information is omitted, and actually the
* colour planes are not touched.
*
* \returns an appropriately set up jpeg_enc_t structure
*
* The actual plane buffer addreses are passed by jpeg_enc_frame().
*
* The encoder doesn't know anything about interlacing, the halve height
* needs to be passed and the double rowstride. Which field gets encoded
* is decided by what buffers are passed to mjpeg_encode_frame()
*/
static jpeg_enc_t *jpeg_enc_init(int w, int h, int y_rsize,
int u_rsize, int v_rsize,
int cu, int q, int b) {
jpeg_enc_t *j;
int i = 0;
VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
w, h, y_rsize, u_rsize, v_rsize, cu, q, b);
j = av_mallocz(sizeof(jpeg_enc_t));
if (j == NULL) return NULL;
j->s = av_mallocz(sizeof(MpegEncContext));
if (j->s == NULL) {
av_free(j);
return NULL;
}
/* info on how to access the pixels */
j->y_rs = y_rsize;
j->u_rs = u_rsize;
j->v_rs = v_rsize;
j->s->width = w; // image width and height
j->s->height = h;
j->s->qscale = q; // Encoding quality
j->s->out_format = FMT_MJPEG;
j->s->intra_only = 1; // Generate only intra pictures for jpeg
j->s->encoding = 1; // Set mode to encode
j->s->pict_type = FF_I_TYPE;
j->s->y_dc_scale = 8;
j->s->c_dc_scale = 8;
/*
* This sets up the MCU (Minimal Code Unit) number
* of appearances of the various component
* for the SOF0 table in the generated MJPEG.
* The values are not used for anything else.
* The current setup is simply YUV422, with two horizontal Y components
* for every UV component.
*/
//FIXME j->s->mjpeg_write_tables = 1; // setup to write tables
j->s->mjpeg_vsample[0] = 1; // 1 appearance of Y vertically
j->s->mjpeg_vsample[1] = 1; // 1 appearance of U vertically
j->s->mjpeg_vsample[2] = 1; // 1 appearance of V vertically
j->s->mjpeg_hsample[0] = 2; // 2 appearances of Y horizontally
j->s->mjpeg_hsample[1] = 1; // 1 appearance of U horizontally
j->s->mjpeg_hsample[2] = 1; // 1 appearance of V horizontally
j->cheap_upsample = cu;
j->bw = b;
// Is this needed?
/* if libavcodec is used by the decoder then we must not
* initialize again, but if it is not initialized then we must
* initialize it here. */
if (!avcodec_initialized) {
avcodec_init();
avcodec_register_all();
avcodec_initialized=1;
}
// Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
if (ff_mjpeg_encode_init(j->s) < 0) {
av_free(j->s);
av_free(j);
return NULL;
}
/* alloc bogus avctx to keep MPV_common_init from segfaulting */
j->s->avctx = avcodec_alloc_context();
if (j->s->avctx == NULL) {
av_free(j->s);
av_free(j);
return NULL;
}
// Set some a minimum amount of default values that are needed
// Indicates that we should generated normal MJPEG
j->s->avctx->codec_id = CODEC_ID_MJPEG;
// Which DCT method to use. AUTO will select the fastest one
j->s->avctx->dct_algo = FF_DCT_AUTO;
j->s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x
// indicate we 'decode' to jpeg 4:2:2
j->s->avctx->pix_fmt = PIX_FMT_YUVJ422P;
j->s->avctx->thread_count = 1;
/* make MPV_common_init allocate important buffers, like s->block
* Also initializes dsputil */
if (MPV_common_init(j->s) < 0) {
av_free(j->s);
av_free(j);
return NULL;
}
/* correct the value for sc->mb_height. MPV_common_init put other
* values there */
j->s->mb_height = j->s->height/8;
j->s->mb_intra = 1;
// Init q matrix
j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
for (i = 1; i < 64; i++)
j->s->intra_matrix[i] = av_clip_uint8(
(ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
// precompute matrix
convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
j->s->intra_matrix, j->s->intra_quant_bias, 8, 8);
/* Pick up the selection of the optimal get_pixels() routine
* to use, which was done in MPV_common_init() */
get_pixels = j->s->dsp.get_pixels;
return j;
}
/**
* \brief mjpeg encode an image
*
* This routine will take a 3-plane YUV422 image and encoded it with MJPEG
* base line format, as suitable as input for the Zoran hardare MJPEG chips.
*
* It requires that the \a j parameter points the structure set up by the
* jpeg_enc_init() routine.
*
* \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
* \param y_data pointer to Y component plane, packed one byte/pixel
* \param u_data pointer to U component plane, packed one byte per every
* other pixel
* \param v_data pointer to V component plane, packed one byte per every
* other pixel
* \param bufr pointer to the buffer where the mjpeg encoded code is stored
*
* \returns the number of bytes stored into \a bufr
*
* If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
* otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
* variable will be reset to 0 by the routine.
*/
static int jpeg_enc_frame(jpeg_enc_t *j, uint8_t *y_data,
uint8_t *u_data, uint8_t *v_data, uint8_t *bufr) {
int mb_x, mb_y, overflow;
/* initialize the buffer */
init_put_bits(&j->s->pb, bufr, 1024*256);
// Emit the mjpeg header blocks
ff_mjpeg_encode_picture_header(j->s);
j->s->header_bits = put_bits_count(&j->s->pb);
j->s->last_dc[0] = 128;
j->s->last_dc[1] = 128;
j->s->last_dc[2] = 128;
for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
/*
* Fill one DCT block (8x8 pixels) from
* 2 Y macroblocks and one U and one V
*/
fill_block(j, mb_x, mb_y, y_data, u_data, v_data);
emms_c(); /* is this really needed? */
j->s->block_last_index[0] =
j->s->dct_quantize(j->s, j->s->block[0],
0, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[0],
j->s->block_last_index[0]);
j->s->block_last_index[1] =
j->s->dct_quantize(j->s, j->s->block[1],
1, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[1],
j->s->block_last_index[1]);
if (!j->bw) {
j->s->block_last_index[4] =
j->s->dct_quantize(j->s, j->s->block[2],
4, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[2],
j->s->block_last_index[2]);
j->s->block_last_index[5] =
j->s->dct_quantize(j->s, j->s->block[3],
5, 8, &overflow);
if (overflow) clip_coeffs(j->s, j->s->block[3],
j->s->block_last_index[3]);
}
zr_mjpeg_encode_mb(j);
}
}
emms_c();
ff_mjpeg_encode_picture_trailer(j->s);
flush_put_bits(&j->s->pb);
//FIXME
//if (j->s->mjpeg_write_tables == 1)
// j->s->mjpeg_write_tables = 0;
return put_bits_ptr(&(j->s->pb)) - j->s->pb.buf;
}
/// the real uninit routine
/**
* This is the real routine that does the uninit of the ZRMJPEG filter
*
* \param j pointer to jpeg_enc structure
*/
static void jpeg_enc_uninit(jpeg_enc_t *j) {
ff_mjpeg_encode_close(j->s);
av_free(j->s);
av_free(j);
}
/// Private structure for ZRMJPEG filter
struct vf_priv_s {
jpeg_enc_t *j;
unsigned char buf[256*1024];
int bw, fd, hdec, vdec;
int fields;
int y_stride;
int c_stride;
int quality;
int maxwidth;
int maxheight;
};
/// vf CONFIGURE entry point for the ZRMJPEG filter
/**
* \param vf video filter instance pointer
* \param width image source width in pixels
* \param height image source height in pixels
* \param d_width width of requested window, just a hint
* \param d_height height of requested window, just a hint
* \param flags vf filter flags
* \param outfmt
*
* \returns returns 0 on error
*
* This routine will make the necessary hardware-related decisions for
* the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
* then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
* arrange to dispatch to the config() entry pointer for the one
* selected.
*/
static int config(struct vf_instance* vf, int width, int height, int d_width,
int d_height, unsigned int flags, unsigned int outfmt){
struct vf_priv_s *priv = vf->priv;
float aspect_decision;
int stretchx, stretchy, err = 0, maxstretchx = 4;
priv->fields = 1;
VERBOSE("config() called\n");
if (priv->j) {
VERBOSE("re-configuring, resetting JPEG encoder\n");
jpeg_enc_uninit(priv->j);
priv->j = NULL;
}
aspect_decision = ((float)d_width/(float)d_height)/
((float)width/(float)height);
if (aspect_decision > 1.8 && aspect_decision < 2.2) {
VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width, priv->maxwidth);
if (2*width <= priv->maxwidth) {
d_width = 2*width;
d_height = height;
maxstretchx = 2;
} else {
WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
d_width = width;
d_height = height;
}
/* prestretch movie */
} else {
/* uncorrecting output for now */
d_width = width;
d_height = height;
}
/* make the scaling decision
* we are capable of stretching the image in the horizontal
* direction by factors 1, 2 and 4
* we can stretch the image in the vertical direction by a
* factor of 1 and 2 AND we must decide about interlacing */
if (d_width > priv->maxwidth/2 || height > priv->maxheight/2
|| maxstretchx == 1) {
stretchx = 1;
stretchy = 1;
priv->fields = 2;
if (priv->vdec == 2) {
priv->fields = 1;
} else if (priv->vdec == 4) {
priv->fields = 1;
stretchy = 2;
}
if (priv->hdec > maxstretchx) {
if (priv->fd) {
WARNING("horizontal decimation too high, "
"changing to %d (use fd to keep"
" hdec=%d)\n",
maxstretchx, priv->hdec);
priv->hdec = maxstretchx;
}
}
stretchx = priv->hdec;
} else if (d_width > priv->maxwidth/4 ||
height > priv->maxheight/4 ||
maxstretchx == 2) {
stretchx = 2;
stretchy = 1;
priv->fields = 1;
if (priv->vdec == 2) {
stretchy = 2;
} else if (priv->vdec == 4) {
if (!priv->fd) {
WARNING("vertical decimation too high, "
"changing to 2 (use fd to keep "
"vdec=4)\n");
priv->vdec = 2;
}
stretchy = 2;
}
if (priv->hdec == 2) {
stretchx = 4;
} else if (priv->hdec == 4) {
if (priv->fd) {
WARNING("horizontal decimation too high, "
"changing to 2 (use fd to keep "
"hdec=4)\n");
priv->hdec = 2;
}
stretchx = 4;
}
} else {
/* output image is maximally stretched */
stretchx = 4;
stretchy = 2;
priv->fields = 1;
if (priv->vdec != 1 && !priv->fd) {
WARNING("vertical decimation too high, changing to 1 "
"(use fd to keep vdec=%d)\n",
priv->vdec);
priv->vdec = 1;
}
if (priv->hdec != 1 && !priv->fd) {
WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv->hdec);
priv->hdec = 1;
}
}
VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
width/priv->hdec, (priv->fields == 2) ? "(" : "",
height/(priv->vdec*priv->fields),
(priv->fields == 2) ? "x2)" : "",
(width/priv->hdec)*stretchx,
(height/(priv->vdec*priv->fields))*
stretchy*priv->fields);
if ((width/priv->hdec)*stretchx > priv->maxwidth ||
(height/(priv->vdec*priv->fields))*
stretchy*priv->fields > priv->maxheight) {
ERROR("output dimensions too large (%dx%d), max (%dx%d) "
"insert crop to fix\n",
(width/priv->hdec)*stretchx,
(height/(priv->vdec*priv->fields))*
stretchy*priv->fields,
priv->maxwidth, priv->maxheight);
err = 1;
}
if (width%(16*priv->hdec) != 0) {
ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
priv->hdec*16);
err = 1;
}
if (height%(8*priv->fields*priv->vdec) != 0) {
ERROR("height must be a multiple of 8*fields*vdec (%d),"
" use expand\n", priv->vdec*priv->fields*8);
err = 1;
}
if (err) return 0;
priv->y_stride = width;
priv->c_stride = width/2;
priv->j = jpeg_enc_init(width, height/priv->fields,
priv->fields*priv->y_stride,
priv->fields*priv->c_stride,
priv->fields*priv->c_stride,
1, priv->quality, priv->bw);
if (!priv->j) return 0;
return vf_next_config(vf, width, height, d_width, d_height, flags,
(priv->fields == 2) ? IMGFMT_ZRMJPEGIT : IMGFMT_ZRMJPEGNI);
}
/// put_image entrypoint for the ZRMJPEG vf filter
/***
* \param vf pointer to vf_instance
* \param mpi pointer to mp_image_t structure
* \param pts
*/
static int put_image(struct vf_instance* vf, mp_image_t *mpi, double pts){
struct vf_priv_s *priv = vf->priv;
int size = 0;
int i;
mp_image_t* dmpi;
for (i = 0; i < priv->fields; i++)
size += jpeg_enc_frame(priv->j,
mpi->planes[0] + i*priv->y_stride,
mpi->planes[1] + i*priv->c_stride,
mpi->planes[2] + i*priv->c_stride,
priv->buf + size);
dmpi = vf_get_image(vf->next, IMGFMT_ZRMJPEGNI,
MP_IMGTYPE_EXPORT, 0, mpi->w, mpi->h);
dmpi->planes[0] = (uint8_t*)priv->buf;
dmpi->planes[1] = (uint8_t*)size;
return vf_next_put_image(vf,dmpi, pts);
}
/// query_format entrypoint for the ZRMJPEG vf filter
/***
* \param vf pointer to vf_instance
* \param fmt image format to query for
*
* \returns 0 if image format in fmt is not supported
*
* Given the image format specified by \a fmt, this routine is called
* to ask if the format is supported or not.
*/
static int query_format(struct vf_instance* vf, unsigned int fmt){
VERBOSE("query_format() called\n");
switch (fmt) {
case IMGFMT_YV12:
case IMGFMT_YUY2:
/* strictly speaking the output format of
* this filter will be known after config(),
* but everything that supports IMGFMT_ZRMJPEGNI
* should also support all other IMGFMT_ZRMJPEG* */
return vf_next_query_format(vf, IMGFMT_ZRMJPEGNI);
}
return 0;
}
/// vf UNINIT entry point for the ZRMJPEG filter
/**
* \param vf pointer to the vf instance structure
*/
static void uninit(vf_instance_t *vf) {
struct vf_priv_s *priv = vf->priv;
VERBOSE("uninit() called\n");
if (priv->j) jpeg_enc_uninit(priv->j);
free(priv);
}
/// vf OPEN entry point for the ZRMJPEG filter
/**
* \param vf pointer to the vf instance structure
* \param args the argument list string for the -vf zrmjpeg command
*
* \returns 0 for error, 1 for success
*
* This routine will do some basic initialization of local structures etc.,
* and then parse the command line arguments specific for the ZRMJPEG filter.
*/
static int vf_open(vf_instance_t *vf, char *args){
struct vf_priv_s *priv;
VERBOSE("vf_open() called: args=\"%s\"\n", args);
vf->config = config;
vf->put_image = put_image;
vf->query_format = query_format;
vf->uninit = uninit;
priv = vf->priv = calloc(sizeof(*priv), 1);
if (!vf->priv) {
ERROR("out of memory error\n");
return 0;
}
/* maximum displayable size by zoran card, these defaults
* are for my own zoran card in PAL mode, these can be changed
* by filter options. But... in an ideal world these values would
* be queried from the vo device itself... */
priv->maxwidth = 768;
priv->maxheight = 576;
priv->quality = 2;
priv->hdec = 1;
priv->vdec = 1;
/* if libavcodec is already initialized, we must not initialize it
* again, but if it is not initialized then we mustinitialize it now. */
if (!avcodec_initialized) {
/* we need to initialize libavcodec */
avcodec_init();
avcodec_register_all();
avcodec_initialized=1;
}
if (args) {
char *arg, *tmp, *ptr, junk;
int last = 0, input;
/* save arguments, to be able to safely modify them */
arg = strdup(args);
if (!arg) {
ERROR("out of memory, this is bad\n");
return 0;
}
tmp = ptr = arg;
do {
while (*tmp != ':' && *tmp) tmp++;
if (*tmp == ':') *tmp++ = '\0';
else last = 1;
VERBOSE("processing filter option \"%s\"\n", ptr);
/* These options deal with the maximum output
* resolution of the zoran card. These should
* be queried from the vo device, but it is currently
* too difficult, so the user should tell the filter */
if (!strncmp("maxheight=", ptr, 10)) {
if (sscanf(ptr+10, "%d%c", &input, &junk) != 1)
ERROR(
"error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
, ptr + 10);
else {
priv->maxheight = input;
VERBOSE("setting maxheight to %d\n",
priv->maxheight);
}
} else if (!strncmp("quality=", ptr, 8)) {
if (sscanf(ptr+8, "%d%c", &input, &junk) != 1)
ERROR(
"error parsing parameter to \"quality=\", \"%s\", ignoring\n"
, ptr + 8);
else if (input < 1 || input > 20)
ERROR(
"parameter to \"quality=\" out of range (1..20), %d\n", input);
else {
priv->quality = input;
VERBOSE("setting JPEG quality to %d\n",
priv->quality);
}
} else if (!strncmp("maxwidth=", ptr, 9)) {
if (sscanf(ptr+9, "%d%c", &input, &junk) != 1)
ERROR(
"error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
, ptr + 9);
else {
priv->maxwidth = input;
VERBOSE("setting maxwidth to %d\n",
priv->maxwidth);
}
} else if (!strncmp("hdec=", ptr, 5)) {
if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
ERROR(
"error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
, ptr + 9);
else if (input != 1 && input != 2 && input != 4)
ERROR(
"illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
input);
else {
priv->hdec = input;
VERBOSE(
"setting horizontal decimation to %d\n", priv->maxwidth);
}
} else if (!strncmp("vdec=", ptr, 5)) {
if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
ERROR(
"error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
, ptr + 9);
else if (input != 1 && input != 2 && input != 4)
ERROR(
"illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
input);
else {
priv->vdec = input;
VERBOSE(
"setting vertical decimation to %d\n", priv->maxwidth);
}
} else if (!strcasecmp("dc10+-PAL", ptr) ||
!strcasecmp("dc10-PAL", ptr)) {
priv->maxwidth = 768;
priv->maxheight = 576;
VERBOSE("setting DC10(+) PAL profile\n");
} else if (!strcasecmp("fd", ptr)) {
priv->fd = 1;
VERBOSE("forcing decimation\n");
} else if (!strcasecmp("nofd", ptr)) {
priv->fd = 0;
VERBOSE("decimate only if beautiful\n");
} else if (!strcasecmp("bw", ptr)) {
priv->bw = 1;
VERBOSE("setting black and white encoding\n");
} else if (!strcasecmp("color", ptr)) {
priv->bw = 0;
VERBOSE("setting color encoding\n");
} else if (!strcasecmp("dc10+-NTSC", ptr) ||
!strcasecmp("dc10-NTSC", ptr)) {
priv->maxwidth = 640;
priv->maxheight = 480;
VERBOSE("setting DC10(+) NTSC profile\n");
} else if (!strcasecmp("buz-PAL", ptr) ||
!strcasecmp("lml33-PAL", ptr)) {
priv->maxwidth = 720;
priv->maxheight = 576;
VERBOSE("setting buz/lml33 PAL profile\n");
} else if (!strcasecmp("buz-NTSC", ptr) ||
!strcasecmp("lml33-NTSC", ptr)) {
priv->maxwidth = 720;
priv->maxheight = 480;
VERBOSE("setting buz/lml33 NTSC profile\n");
} else {
WARNING("ignoring unknown filter option "
"\"%s\", or missing argument\n",
ptr);
}
ptr = tmp;
} while (!last);
free(arg);
}
return 1;
}
const vf_info_t vf_info_zrmjpeg = {
"realtime zoran MJPEG encoding",
"zrmjpeg",
"Rik Snel",
"",
vf_open,
NULL
};