1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-28 02:23:06 +00:00
mpv/libmpcodecs/native/svq1.c
atmos4 b9f428f9d3 Small fix: Correct mathematical order in MEDIAN macro (gcc 3.1 didn't like it).
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@6685 b3059339-0415-0410-9bf9-f77b7e298cf2
2002-07-09 20:38:21 +00:00

796 lines
19 KiB
C

/*
* Copyright (C) 2002 the xine project
*
* This file is part of xine, a unix video player.
*
* xine is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* xine is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* $Id$
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "../../config.h"
#include "bswap.h"
/* variable length (bit) code */
typedef struct vlc_code_s {
int16_t value :10,
length :6;
} vlc_code_t;
#define VIDEOBUFSIZE 1280 * 1024
//char temp_buf[VIDEOBUFSIZE];
#define MEDIAN(a,b,c) (((a < b) != (b >= c)) ? b : (((a < c) != (c > b)) ? c : a))
#include "svq1.h"
#include "svq1_cb.h"
#ifdef USE_LIBAVCODEC
typedef void (*op_pixels_func)(unsigned char *block, const unsigned char *pixels, int line_size, int h);
extern op_pixels_func put_pixels_tab[4];
extern op_pixels_func put_no_rnd_pixels_tab[4];
//#define HAVE_AV_CONFIG_H
#endif
#ifdef HAVE_AV_CONFIG_H
// use libavcodec's get_bits():
//#define ALT_BITSTREAM_READER
//#define ALIGNED_BITSTREAM
#include "../../libavcodec/common.h"
#define bit_buffer_t GetBitContext
#define get_bit_cache(buf) (show_bits(buf,24)<<8)
//#define get_bit_cache(buf) show_bits(buf,32)
#else
// use built-in version:
/* memory bit stream */
typedef struct bit_buffer_s {
uint8_t *buffer;
uint32_t bitpos;
} bit_buffer_t;
static inline void skip_bits(bit_buffer_t *bitbuf, int n){
bitbuf->bitpos+=n;
}
static void init_get_bits(bit_buffer_t *bitbuf,
unsigned char *buffer, int buffer_size){
bitbuf->buffer=buffer;
bitbuf->bitpos=0;
}
static inline uint32_t get_bits (bit_buffer_t *bitbuf, int count) {
uint32_t result;
/* load 32 bits of data (byte-aligned) */
result = be2me_32 (*((uint32_t *) &bitbuf->buffer[bitbuf->bitpos >> 3]));
/* compensate for sub-byte offset */
result <<= (bitbuf->bitpos & 0x7);
/* flush num bits */
bitbuf->bitpos += count;
/* return num bits */
return result >> (32 - count);
}
/*
* Return next 32 bits (left aligned).
*/
static inline uint32_t get_bit_cache(bit_buffer_t *bitbuf) {
uint32_t result;
/* load 32 bits of data (byte-aligned) */
result = be2me_32 (*((uint32_t *) &bitbuf->buffer[bitbuf->bitpos >> 3]));
/* compensate for sub-byte offset */
result <<= (bitbuf->bitpos & 0x7);
return result;
}
#endif
static int decode_svq1_block (bit_buffer_t *bitbuf, uint8_t *pixels, int pitch, int intra) {
uint32_t bit_cache;
vlc_code_t *vlc;
uint8_t *list[63];
uint32_t *dst;
uint32_t *codebook;
int entries[6];
int i, j, m, n;
int mean, stages;
int x, y, width, height, level;
uint32_t n1, n2, n3, n4;
/* initialize list for breadth first processing of vectors */
list[0] = pixels;
/* recursively process vector */
for (i=0, m=1, n=1, level=5; i < n; i++) {
for (; level > 0; i++) {
/* process next depth */
if (i == m) {
m = n;
if (--level == 0)
break;
}
/* divide block if next bit set */
if (get_bits (bitbuf, 1) == 0)
break;
/* add child nodes */
list[n++] = list[i];
list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));
}
/* destination address and vector size */
dst = (uint32_t *) list[i];
width = 1 << ((4 + level) /2);
height = 1 << ((3 + level) /2);
/* get number of stages (-1 skips vector, 0 for mean only) */
bit_cache = get_bit_cache (bitbuf);
if (intra)
vlc = &intra_vector_tables[level][bit_cache >> (32 - 7)];
else
vlc = &inter_vector_tables[level][bit_cache >> (32 - 6)];
/* flush bits */
stages = vlc->value;
skip_bits(bitbuf,vlc->length);
if (stages == -1) {
if (intra) {
for (y=0; y < height; y++) {
memset (&dst[y*(pitch / 4)], 0, width);
}
}
continue; /* skip vector */
}
if ((stages > 0) && (level >= 4)) {
return -1; /* invalid vector */
}
/* get mean value for vector */
bit_cache = get_bit_cache (bitbuf);
if (intra) {
if (bit_cache >= 0x25000000)
vlc = &intra_mean_table_0[(bit_cache >> (32 - 8)) - 37];
else if (bit_cache >= 0x03400000)
vlc = &intra_mean_table_1[(bit_cache >> (32 - 10)) - 13];
else if (bit_cache >= 0x00040000)
vlc = &intra_mean_table_2[(bit_cache >> (32 - 14)) - 1];
else
vlc = &intra_mean_table_3[bit_cache >> (32 - 20)];
} else {
if (bit_cache >= 0x0B000000)
vlc = &inter_mean_table_0[(bit_cache >> (32 - 8)) - 11];
else if (bit_cache >= 0x01200000)
vlc = &inter_mean_table_1[(bit_cache >> (32 - 12)) - 18];
else if (bit_cache >= 0x002E0000)
vlc = &inter_mean_table_2[(bit_cache >> (32 - 15)) - 23];
else if (bit_cache >= 0x00094000)
vlc = &inter_mean_table_3[(bit_cache >> (32 - 18)) - 37];
else if (bit_cache >= 0x00049000)
vlc = &inter_mean_table_4[(bit_cache >> (32 - 20)) - 73];
else
vlc = &inter_mean_table_5[bit_cache >> (32 - 22)];
}
/* flush bits */
mean = vlc->value;
skip_bits(bitbuf,vlc->length);
if (intra && stages == 0) {
for (y=0; y < height; y++) {
memset (&dst[y*(pitch / 4)], mean, width);
}
} else {
codebook = (uint32_t *) (intra ? intra_codebooks[level] : inter_codebooks[level]);
bit_cache = get_bits (bitbuf, 4*stages);
/* calculate codebook entries for this vector */
for (j=0; j < stages; j++) {
entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1);
}
mean -= (stages * 128);
n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
for (y=0; y < height; y++) {
for (x=0; x < (width / 4); x++, codebook++) {
if (intra) {
n1 = n4;
n2 = n4;
} else {
n3 = dst[x];
/* add mean value to vector */
n1 = ((n3 & 0xFF00FF00) >> 8) + n4;
n2 = (n3 & 0x00FF00FF) + n4;
}
/* add codebook entries to vector */
for (j=0; j < stages; j++) {
n3 = codebook[entries[j]] ^ 0x80808080;
n1 += ((n3 & 0xFF00FF00) >> 8);
n2 += (n3 & 0x00FF00FF);
}
/* clip to [0..255] */
if (n1 & 0xFF00FF00) {
n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 += 0x7F007F00;
n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 &= (n3 & 0x00FF00FF);
}
if (n2 & 0xFF00FF00) {
n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 += 0x7F007F00;
n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 &= (n3 & 0x00FF00FF);
}
/* store result */
dst[x] = (n1 << 8) | n2;
}
dst += (pitch / 4);
}
}
}
return 0;
}
static int decode_motion_vector (bit_buffer_t *bitbuf, svq1_pmv_t *mv, svq1_pmv_t **pmv) {
uint32_t bit_cache;
vlc_code_t *vlc;
int diff, sign;
int i;
for (i=0; i < 2; i++) {
/* get motion code */
bit_cache = get_bit_cache (bitbuf);
if (!(bit_cache & 0xFFE00000))
return -1; /* invalid vlc code */
if (bit_cache & 0x80000000) {
diff = 0;
/* flush bit */
skip_bits(bitbuf,1);
} else {
if (bit_cache >= 0x06000000) {
vlc = &motion_table_0[(bit_cache >> (32 - 7)) - 3];
} else {
vlc = &motion_table_1[(bit_cache >> (32 - 12)) - 2];
}
/* decode motion vector differential */
sign = (int) (bit_cache << (vlc->length - 1)) >> 31;
diff = (vlc->value ^ sign) - sign;
/* flush bits */
skip_bits(bitbuf,vlc->length);
}
/* add median of motion vector predictors and clip result */
if (i == 1)
mv->y = ((diff + MEDIAN(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26;
else
mv->x = ((diff + MEDIAN(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26;
}
return 0;
}
static void skip_block (uint8_t *current, uint8_t *previous, int pitch, int x, int y) {
uint8_t *src;
uint8_t *dst;
int i;
src = &previous[x + y*pitch];
dst = current;
for (i=0; i < 16; i++) {
memcpy (dst, src, 16);
src += pitch;
dst += pitch;
}
}
static int motion_inter_block (bit_buffer_t *bitbuf,
uint8_t *current, uint8_t *previous, int pitch,
svq1_pmv_t *motion, int x, int y) {
uint8_t *src;
uint8_t *dst;
svq1_pmv_t mv;
svq1_pmv_t *pmv[3];
int sx, sy;
int result;
/* predict and decode motion vector */
pmv[0] = &motion[0];
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
if (y == 0) {
pmv[1] = pmv[0];
pmv[2] = pmv[0];
}
result = decode_motion_vector (bitbuf, &mv, pmv);
if (result != 0)
return result;
motion[0].x = mv.x;
motion[0].y = mv.y;
motion[(x / 8) + 2].x = mv.x;
motion[(x / 8) + 2].y = mv.y;
motion[(x / 8) + 3].x = mv.x;
motion[(x / 8) + 3].y = mv.y;
src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch];
dst = current;
#ifdef USE_LIBAVCODEC
put_pixels_tab[((mv.y & 1) << 1) | (mv.x & 1)](dst,src,pitch,16);
put_pixels_tab[((mv.y & 1) << 1) | (mv.x & 1)](dst+8,src+8,pitch,16);
#else
/* form prediction */
if (mv.y & 0x1) {
if (mv.x & 0x1) {
for (sy=0; sy < 16; sy++) {
for (sx=0; sx < 16; sx++) {
dst[sx] = (src[sx] + src[sx + 1] + src[sx + pitch] + src[sx + pitch + 1] + 2) >> 2;
}
src += pitch;
dst += pitch;
}
} else {
for (sy=0; sy < 16; sy++) {
for (sx=0; sx < 16; sx++) {
dst[sx] = (src[sx] + src[sx + pitch] + 1) >> 1;
}
src += pitch;
dst += pitch;
}
}
} else {
if (mv.x & 0x1) {
for (sy=0; sy < 16; sy++) {
for (sx=0; sx < 16; sx++) {
dst[sx] = (src[sx] + src[sx + 1] + 1) >> 1;
}
src += pitch;
dst += pitch;
}
} else {
for (sy=0; sy < 16; sy++) {
memcpy (dst, src, 16);
src += pitch;
dst += pitch;
}
}
}
#endif
return 0;
}
static int motion_inter_4v_block (bit_buffer_t *bitbuf,
uint8_t *current, uint8_t *previous, int pitch,
svq1_pmv_t *motion,int x, int y) {
uint8_t *src;
uint8_t *dst;
svq1_pmv_t mv;
svq1_pmv_t *pmv[4];
int sx, sy;
int i, result;
/* predict and decode motion vector (0) */
pmv[0] = &motion[0];
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
if (y == 0) {
pmv[1] = pmv[0];
pmv[2] = pmv[0];
}
result = decode_motion_vector (bitbuf, &mv, pmv);
if (result != 0)
return result;
/* predict and decode motion vector (1) */
pmv[0] = &mv;
pmv[1] = &motion[(x / 8) + 3];
if (y == 0) {
pmv[1] = pmv[0];
pmv[2] = pmv[0];
}
result = decode_motion_vector (bitbuf, &motion[0], pmv);
if (result != 0)
return result;
/* predict and decode motion vector (2) */
pmv[1] = &motion[0];
pmv[2] = &motion[(x / 8) + 1];
result = decode_motion_vector (bitbuf, &motion[(x / 8) + 2], pmv);
if (result != 0)
return result;
/* predict and decode motion vector (3) */
pmv[2] = &motion[(x / 8) + 2];
pmv[3] = &motion[(x / 8) + 3];
result = decode_motion_vector (bitbuf, pmv[3], pmv);
if (result != 0)
return result;
/* form predictions */
for (i=0; i < 4; i++) {
src = &previous[(x + (pmv[i]->x >> 1)) + (y + (pmv[i]->y >> 1))*pitch];
dst = current;
#ifdef USE_LIBAVCODEC
put_pixels_tab[((pmv[i]->y & 1) << 1) | (pmv[i]->x & 1)](dst,src,pitch,8);
#else
if (pmv[i]->y & 0x1) {
if (pmv[i]->x & 0x1) {
for (sy=0; sy < 8; sy++) {
for (sx=0; sx < 8; sx++) {
dst[sx] = (src[sx] + src[sx + 1] + src[sx + pitch] + src[sx + pitch + 1] + 2) >> 2;
}
src += pitch;
dst += pitch;
}
} else {
for (sy=0; sy < 8; sy++) {
for (sx=0; sx < 8; sx++) {
dst[sx] = (src[sx] + src[sx + pitch] + 1) >> 1;
}
src += pitch;
dst += pitch;
}
}
} else {
if (pmv[i]->x & 0x1) {
for (sy=0; sy < 8; sy++) {
for (sx=0; sx < 8; sx++) {
dst[sx] = (src[sx] + src[sx + 1] + 1) >> 1;
}
src += pitch;
dst += pitch;
}
} else {
for (sy=0; sy < 8; sy++) {
memcpy (dst, src, 8);
src += pitch;
dst += pitch;
}
}
}
#endif
/* select next block */
if (i & 1) {
current += 8*(pitch - 1);
previous += 8*(pitch - 1);
} else {
current += 8;
previous += 8;
}
}
return 0;
}
static int decode_delta_block (bit_buffer_t *bitbuf,
uint8_t *current, uint8_t *previous, int pitch,
svq1_pmv_t *motion, int x, int y) {
uint32_t bit_cache;
uint32_t block_type;
int result = 0;
/* get block type */
bit_cache = get_bit_cache (bitbuf);
bit_cache >>= (32 - 3);
block_type = block_type_table[bit_cache].value;
skip_bits(bitbuf,block_type_table[bit_cache].length);
/* reset motion vectors */
if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) {
motion[0].x = 0;
motion[0].y = 0;
motion[(x / 8) + 2].x = 0;
motion[(x / 8) + 2].y = 0;
motion[(x / 8) + 3].x = 0;
motion[(x / 8) + 3].y = 0;
}
switch (block_type) {
case SVQ1_BLOCK_SKIP:
skip_block (current, previous, pitch, x, y);
break;
case SVQ1_BLOCK_INTER:
result = motion_inter_block (bitbuf, current, previous, pitch, motion, x, y);
if (result != 0)
break;
result = decode_svq1_block (bitbuf, current, pitch, 0);
break;
case SVQ1_BLOCK_INTER_4V:
result = motion_inter_4v_block (bitbuf, current, previous, pitch, motion, x, y);
if (result != 0)
break;
result = decode_svq1_block (bitbuf, current, pitch, 0);
break;
case SVQ1_BLOCK_INTRA:
result = decode_svq1_block (bitbuf, current, pitch, 1);
break;
}
return result;
}
/* standard video sizes */
static struct { int width; int height; } frame_size_table[8] = {
{ 160, 120 }, { 128, 96 }, { 176, 144 }, { 352, 288 },
{ 704, 576 }, { 240, 180 }, { 320, 240 }, { -1, -1 }
};
static int decode_frame_header (bit_buffer_t *bitbuf, svq1_t *svq1) {
int frame_size_code;
/* unknown field */
get_bits (bitbuf, 8);
/* frame type */
svq1->frame_type = get_bits (bitbuf, 2);
if (svq1->frame_type == 3)
return -1;
if (svq1->frame_type == SVQ1_FRAME_INTRA) {
/* unknown fields */
if (svq1->frame_code == 0x50 || svq1->frame_code == 0x60) {
get_bits (bitbuf, 16);
}
if ((svq1->frame_code ^ 0x10) >= 0x50) {
skip_bits(bitbuf,8*get_bits (bitbuf, 8));
}
get_bits (bitbuf, 2);
get_bits (bitbuf, 2);
get_bits (bitbuf, 1);
/* load frame size */
frame_size_code = get_bits (bitbuf, 3);
if (frame_size_code == 7) {
/* load width, height (12 bits each) */
svq1->frame_width = get_bits (bitbuf, 12);
svq1->frame_height = get_bits (bitbuf, 12);
if (!svq1->frame_width || !svq1->frame_height)
return -1;
} else {
/* get width, height from table */
svq1->frame_width = frame_size_table[frame_size_code].width;
svq1->frame_height = frame_size_table[frame_size_code].height;
}
}
/* unknown fields */
if (get_bits (bitbuf, 1) == 1) {
get_bits (bitbuf, 1);
get_bits (bitbuf, 1);
if (get_bits (bitbuf, 2) != 0)
return -1;
}
if (get_bits (bitbuf, 1) == 1) {
get_bits (bitbuf, 1);
get_bits (bitbuf, 4);
get_bits (bitbuf, 1);
get_bits (bitbuf, 2);
while (get_bits (bitbuf, 1) == 1) {
get_bits (bitbuf, 8);
}
}
return 0;
}
int svq1_decode_frame (svq1_t *svq1, uint8_t *buffer,int buffer_len) {
bit_buffer_t bitbuf;
uint8_t *current, *previous;
int result, i, x, y, width, height;
int luma_size, chroma_size;
// memcpy(temp_buf,buffer,buffer_len); buffer=temp_buf;
/* initialize bit buffer */
init_get_bits(&bitbuf,buffer,buffer_len);
/* decode frame header */
svq1->frame_code = get_bits (&bitbuf, 22);
if ((svq1->frame_code & ~0x70) || !(svq1->frame_code & 0x60))
return -1;
/* swap some header bytes (why?) */
if (svq1->frame_code != 0x20) {
uint32_t *src = (uint32_t *) (buffer + 4);
for (i=0; i < 4; i++) {
src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i];
}
}
result = decode_frame_header (&bitbuf, svq1);
if (result != 0)
return result;
/* check frame size (changed?) */
if (((svq1->frame_width + 3) & ~0x3) != svq1->width ||
((svq1->frame_height + 3) & ~0x3) != svq1->height) {
/* free current buffers */
free (svq1->current);
free (svq1->previous);
free (svq1->motion);
svq1->width = (svq1->frame_width + 3) & ~0x3;
svq1->height = (svq1->frame_height + 3) & ~0x3;
svq1->luma_width = (svq1->width + 15) & ~0xF;
svq1->luma_height = (svq1->height + 15) & ~0xF;
svq1->chroma_width = ((svq1->width / 4) + 15) & ~0xF;
svq1->chroma_height = ((svq1->height / 4) + 15) & ~0xF;
/* allocate new pixel and motion buffers for updated frame size */
luma_size = svq1->luma_width * svq1->luma_height;
chroma_size = svq1->chroma_width * svq1->chroma_height;
svq1->motion = (svq1_pmv_t *) malloc (((svq1->luma_width / 8) + 3) * sizeof(svq1_pmv_t));
svq1->current = (uint8_t *) malloc (luma_size + 2*chroma_size);
svq1->previous = (uint8_t *) malloc (luma_size + 2*chroma_size);
svq1->offsets[0] = 0;
svq1->offsets[1] = luma_size;
svq1->offsets[2] = luma_size + chroma_size;
for (i=0; i < 3; i++) {
svq1->base[i] = svq1->current + svq1->offsets[i];
}
svq1->reference_frame = 0;
}
/* delta frame requires reference frame */
if (svq1->frame_type != SVQ1_FRAME_INTRA && !svq1->reference_frame)
return -1;
/* decode y, u and v components */
for (i=0; i < 3; i++) {
if (i == 0) {
width = svq1->luma_width;
height = svq1->luma_height;
} else {
width = svq1->chroma_width;
height = svq1->chroma_height;
}
current = svq1->current + svq1->offsets[i];
previous = svq1->previous + svq1->offsets[i];
if (svq1->frame_type == SVQ1_FRAME_INTRA) {
/* keyframe */
for (y=0; y < height; y+=16) {
for (x=0; x < width; x+=16) {
result = decode_svq1_block (&bitbuf, &current[x], width, 1);
if (result != 0)
return result;
}
current += 16*width;
}
} else {
/* delta frame */
memset (svq1->motion, 0, ((width / 8) + 3) * sizeof(svq1_pmv_t));
for (y=0; y < height; y+=16) {
for (x=0; x < width; x+=16) {
result = decode_delta_block (&bitbuf, &current[x], previous,
width, svq1->motion, x, y);
if (result != 0)
return result;
}
svq1->motion[0].x = 0;
svq1->motion[0].y = 0;
current += 16*width;
}
}
}
/* update pixel buffers for frame copy */
for (i=0; i < 3; i++) {
svq1->base[i] = svq1->current + svq1->offsets[i];
}
/* update backward reference frame */
if (svq1->frame_type != SVQ1_FRAME_DROPPABLE) {
uint8_t *tmp = svq1->previous;
svq1->previous = svq1->current;
svq1->current = tmp;
svq1->reference_frame = 1;
}
return 0;
}
void svq1_free (svq1_t *svq1){
if (svq1) {
free (svq1->current);
free (svq1->previous);
free (svq1->motion);
free (svq1);
}
}