1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-12 09:56:30 +00:00
mpv/libaf/filter.c
anders 1f6c494641 Adding new audio output filter layer libaf
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@7569 b3059339-0415-0410-9bf9-f77b7e298cf2
2002-10-01 06:45:08 +00:00

258 lines
6.9 KiB
C

/*=============================================================================
//
// This software has been released under the terms of the GNU Public
// license. See http://www.gnu.org/copyleft/gpl.html for details.
//
// Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
//
//=============================================================================
*/
/* Design and implementation of different types of digital filters
*/
#include <math.h>
#include "dsp.h"
/* C implementation of FIR filter y=w*x
n number of filter taps, where mod(n,4)==0
w filter taps
x input signal must be a circular buffer which is indexed backwards
*/
inline _ftype_t fir(register unsigned int n, _ftype_t* w, _ftype_t* x)
{
register _ftype_t y; // Output
y = 0.0;
do{
n--;
y+=w[n]*x[n];
}while(n != 0);
return y;
}
/* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)
n number of filter taps, where mod(n,4)==0
d number of filters
xi current index in xq
w filter taps k by n big
x input signal must be a circular buffers which are indexed backwards
y output buffer
s output buffer stride
*/
inline _ftype_t* pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s)
{
register _ftype_t* xt = *x + xi;
register _ftype_t* wt = *w;
register int nt = 2*n;
while(d-- > 0){
*y = fir(n,wt,xt);
wt+=n;
xt+=nt;
y+=s;
}
return y;
}
/* Add new data to circular queue designed to be used with a parallel
FIR filter, with d filters. xq is the circular queue, in pointing
at the new samples, xi current index in xq and n the length of the
filter. xq must be n*2 by k big, s is the index for in.
*/
inline int updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s)
{
register _ftype_t* txq = *xq + xi;
register int nt = n*2;
while(d-- >0){
*txq= *(txq+n) = *in;
txq+=nt;
in+=s;
}
return (++xi)&(n-1);
}
/* Design FIR filter using the Window method
n filter length must be odd for HP and BS filters
w buffer for the filter taps (must be n long)
fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
0 < fc < 1 where 1 <=> Fs/2
flags window and filter type as defined in filter.h
variables are ored together: i.e. LP|HAMMING will give a
low pass filter designed using a hamming window
opt beta constant used only when designing using kaiser windows
returns 0 if OK, -1 if fail
*/
int design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt)
{
unsigned int o = n & 1; // Indicator for odd filter length
unsigned int end = ((n + 1) >> 1) - o; // Loop end
unsigned int i; // Loop index
_ftype_t k1 = 2 * M_PI; // 2*pi*fc1
_ftype_t k2 = 0.5 * (_ftype_t)(1 - o);// Constant used if the filter has even length
_ftype_t k3; // 2*pi*fc2 Constant used in BP and BS design
_ftype_t g = 0.0; // Gain
_ftype_t t1,t2,t3; // Temporary variables
_ftype_t fc1,fc2; // Cutoff frequencies
// Sanity check
if(!w || (n == 0)) return -1;
// Get window coefficients
switch(flags & WINDOW_MASK){
case(BOXCAR):
boxcar(n,w); break;
case(TRIANG):
triang(n,w); break;
case(HAMMING):
hamming(n,w); break;
case(HANNING):
hanning(n,w); break;
case(BLACKMAN):
blackman(n,w); break;
case(FLATTOP):
flattop(n,w); break;
case(KAISER):
kaiser(n,w,opt); break;
default:
return -1;
}
if(flags & (LP | HP)){
fc1=*fc;
// Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
k1 *= fc1;
if(flags & LP){ // Low pass filter
// If the filter length is odd, there is one point which is exactly
// in the middle. The value at this point is 2*fCutoff*sin(x)/x,
// where x is zero. To make sure nothing strange happens, we set this
// value separately.
if (o){
w[end] = fc1 * w[end] * 2.0;
g=w[end];
}
// Create filter
for (i=0 ; i<end ; i++){
t1 = (_ftype_t)(i+1) - k2;
w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
g += 2*w[end-i-1]; // Total gain in filter
}
}
else{ // High pass filter
if (!o) // High pass filters must have odd length
return -1;
w[end] = 1.0 - (fc1 * w[end] * 2.0);
g= w[end];
// Create filter
for (i=0 ; i<end ; i++){
t1 = (_ftype_t)(i+1);
w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter
}
}
}
if(flags & (BP | BS)){
fc1=fc[0];
fc2=fc[1];
// Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25;
k3 = k1 * fc2; // 2*pi*fc2
k1 *= fc1; // 2*pi*fc1
if(flags & BP){ // Band pass
// Calculate center tap
if (o){
g=w[end]*(fc1+fc2);
w[end] = (fc2 - fc1) * w[end] * 2.0;
}
// Create filter
for (i=0 ; i<end ; i++){
t1 = (_ftype_t)(i+1) - k2;
t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
g += w[end-i-1] * (t3 + t2); // Total gain in filter
w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
}
}
else{ // Band stop
if (!o) // Band stop filters must have odd length
return -1;
w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0;
g= w[end];
// Create filter
for (i=0 ; i<end ; i++){
t1 = (_ftype_t)(i+1);
t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
g += 2*w[end-i-1]; // Total gain in filter
}
}
}
// Normalize gain
g=1/g;
for (i=0; i<n; i++)
w[i] *= g;
return 0;
}
/* Design polyphase FIR filter from prototype filter
n length of prototype filter
k number of polyphase components
w prototype filter taps
pw Parallel FIR filter
g Filter gain
flags FWD forward indexing
REW reverse indexing
ODD multiply every 2nd filter tap by -1 => HP filter
returns 0 if OK, -1 if fail
*/
int design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags)
{
int l = (int)n/k; // Length of individual FIR filters
int i; // Counters
int j;
_ftype_t t; // g * w[i]
// Sanity check
if(l<1 || k<1 || !w || !pw)
return -1;
// Do the stuff
if(flags&REW){
for(j=l-1;j>-1;j--){//Columns
for(i=0;i<(int)k;i++){//Rows
t=g * *w++;
pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1);
}
}
}
else{
for(j=0;j<l;j++){//Columns
for(i=0;i<(int)k;i++){//Rows
t=g * *w++;
pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1);
}
}
}
return -1;
}