1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-20 22:02:59 +00:00
mpv/libaf/af_format.c
diego 1e18468ce0 Remove useless #include.
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@26377 b3059339-0415-0410-9bf9-f77b7e298cf2
2008-04-09 18:20:22 +00:00

510 lines
13 KiB
C

/* This audio output filter changes the format of a data block. Valid
formats are: AFMT_U8, AFMT_S8, AFMT_S16_LE, AFMT_S16_BE
AFMT_U16_LE, AFMT_U16_BE, AFMT_S32_LE and AFMT_S32_BE.
*/
// Must be defined before any libc headers are included!
#define _ISOC9X_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <limits.h>
// Integer to float conversion through lrintf()
#ifdef HAVE_LRINTF
#include <math.h>
long int lrintf(float);
#else
#define lrintf(x) ((int)(x))
#endif
#include "af.h"
#include "mpbswap.h"
#include "libvo/fastmemcpy.h"
/* Functions used by play to convert the input audio to the correct
format */
/* The below includes retrieves functions for converting to and from
ulaw and alaw */
#include "af_format_ulaw.c"
#include "af_format_alaw.c"
// Switch endianness
static void endian(void* in, void* out, int len, int bps);
// From signed to unsigned and the other way
static void si2us(void* data, int len, int bps);
// Change the number of bits per sample
static void change_bps(void* in, void* out, int len, int inbps, int outbps);
// From float to int signed
static void float2int(float* in, void* out, int len, int bps);
// From signed int to float
static void int2float(void* in, float* out, int len, int bps);
static af_data_t* play(struct af_instance_s* af, af_data_t* data);
static af_data_t* play_swapendian(struct af_instance_s* af, af_data_t* data);
static af_data_t* play_float_s16(struct af_instance_s* af, af_data_t* data);
static af_data_t* play_s16_float(struct af_instance_s* af, af_data_t* data);
// Helper functions to check sanity for input arguments
// Sanity check for bytes per sample
static int check_bps(int bps)
{
if(bps != 4 && bps != 3 && bps != 2 && bps != 1){
af_msg(AF_MSG_ERROR,"[format] The number of bytes per sample"
" must be 1, 2, 3 or 4. Current value is %i \n",bps);
return AF_ERROR;
}
return AF_OK;
}
// Check for unsupported formats
static int check_format(int format)
{
char buf[256];
switch(format & AF_FORMAT_SPECIAL_MASK){
case(AF_FORMAT_IMA_ADPCM):
case(AF_FORMAT_MPEG2):
case(AF_FORMAT_AC3):
af_msg(AF_MSG_ERROR,"[format] Sample format %s not yet supported \n",
af_fmt2str(format,buf,256));
return AF_ERROR;
}
return AF_OK;
}
// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
switch(cmd){
case AF_CONTROL_REINIT:{
char buf1[256];
char buf2[256];
af_data_t *data = arg;
// Make sure this filter isn't redundant
if(af->data->format == data->format &&
af->data->bps == data->bps)
return AF_DETACH;
// Check for errors in configuration
if((AF_OK != check_bps(data->bps)) ||
(AF_OK != check_format(data->format)) ||
(AF_OK != check_bps(af->data->bps)) ||
(AF_OK != check_format(af->data->format)))
return AF_ERROR;
af_msg(AF_MSG_VERBOSE,"[format] Changing sample format from %s to %s\n",
af_fmt2str(data->format,buf1,256),
af_fmt2str(af->data->format,buf2,256));
af->data->rate = data->rate;
af->data->nch = data->nch;
af->mul = (double)af->data->bps / data->bps;
af->play = play; // set default
// look whether only endianness differences are there
if ((af->data->format & ~AF_FORMAT_END_MASK) ==
(data->format & ~AF_FORMAT_END_MASK))
{
af_msg(AF_MSG_VERBOSE,"[format] Accelerated endianness conversion only\n");
af->play = play_swapendian;
}
if ((data->format == AF_FORMAT_FLOAT_NE) &&
(af->data->format == AF_FORMAT_S16_NE))
{
af_msg(AF_MSG_VERBOSE,"[format] Accelerated %s to %s conversion\n",
af_fmt2str(data->format,buf1,256),
af_fmt2str(af->data->format,buf2,256));
af->play = play_float_s16;
}
if ((data->format == AF_FORMAT_S16_NE) &&
(af->data->format == AF_FORMAT_FLOAT_NE))
{
af_msg(AF_MSG_VERBOSE,"[format] Accelerated %s to %s conversion\n",
af_fmt2str(data->format,buf1,256),
af_fmt2str(af->data->format,buf2,256));
af->play = play_s16_float;
}
return AF_OK;
}
case AF_CONTROL_COMMAND_LINE:{
int format = af_str2fmt_short(arg);
if (format == -1) {
af_msg(AF_MSG_ERROR, "[format] %s is not a valid format\n", (char *)arg);
return AF_ERROR;
}
if(AF_OK != af->control(af,AF_CONTROL_FORMAT_FMT | AF_CONTROL_SET,&format))
return AF_ERROR;
return AF_OK;
}
case AF_CONTROL_FORMAT_FMT | AF_CONTROL_SET:{
// Check for errors in configuration
if(AF_OK != check_format(*(int*)arg))
return AF_ERROR;
af->data->format = *(int*)arg;
af->data->bps = af_fmt2bits(af->data->format)/8;
return AF_OK;
}
}
return AF_UNKNOWN;
}
// Deallocate memory
static void uninit(struct af_instance_s* af)
{
if (af->data)
free(af->data->audio);
free(af->data);
af->setup = 0;
}
static af_data_t* play_swapendian(struct af_instance_s* af, af_data_t* data)
{
af_data_t* l = af->data; // Local data
af_data_t* c = data; // Current working data
int len = c->len/c->bps; // Length in samples of current audio block
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
endian(c->audio,l->audio,len,c->bps);
c->audio = l->audio;
c->format = l->format;
return c;
}
static af_data_t* play_float_s16(struct af_instance_s* af, af_data_t* data)
{
af_data_t* l = af->data; // Local data
af_data_t* c = data; // Current working data
int len = c->len/4; // Length in samples of current audio block
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
float2int(c->audio, l->audio, len, 2);
c->audio = l->audio;
c->len = len*2;
c->bps = 2;
c->format = l->format;
return c;
}
static af_data_t* play_s16_float(struct af_instance_s* af, af_data_t* data)
{
af_data_t* l = af->data; // Local data
af_data_t* c = data; // Current working data
int len = c->len/2; // Length in samples of current audio block
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
int2float(c->audio, l->audio, len, 2);
c->audio = l->audio;
c->len = len*4;
c->bps = 4;
c->format = l->format;
return c;
}
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
af_data_t* l = af->data; // Local data
af_data_t* c = data; // Current working data
int len = c->len/c->bps; // Length in samples of current audio block
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
// Change to cpu native endian format
if((c->format&AF_FORMAT_END_MASK)!=AF_FORMAT_NE)
endian(c->audio,c->audio,len,c->bps);
// Conversion table
if((c->format & AF_FORMAT_SPECIAL_MASK) == AF_FORMAT_MU_LAW) {
from_ulaw(c->audio, l->audio, len, l->bps, l->format&AF_FORMAT_POINT_MASK);
if(AF_FORMAT_A_LAW == (l->format&AF_FORMAT_SPECIAL_MASK))
to_ulaw(l->audio, l->audio, len, 1, AF_FORMAT_SI);
if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US)
si2us(l->audio,len,l->bps);
} else if((c->format & AF_FORMAT_SPECIAL_MASK) == AF_FORMAT_A_LAW) {
from_alaw(c->audio, l->audio, len, l->bps, l->format&AF_FORMAT_POINT_MASK);
if(AF_FORMAT_A_LAW == (l->format&AF_FORMAT_SPECIAL_MASK))
to_alaw(l->audio, l->audio, len, 1, AF_FORMAT_SI);
if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US)
si2us(l->audio,len,l->bps);
} else if((c->format & AF_FORMAT_POINT_MASK) == AF_FORMAT_F) {
switch(l->format&AF_FORMAT_SPECIAL_MASK){
case(AF_FORMAT_MU_LAW):
to_ulaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK);
break;
case(AF_FORMAT_A_LAW):
to_alaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK);
break;
default:
float2int(c->audio, l->audio, len, l->bps);
if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US)
si2us(l->audio,len,l->bps);
break;
}
} else {
// Input must be int
// Change signed/unsigned
if((c->format&AF_FORMAT_SIGN_MASK) != (l->format&AF_FORMAT_SIGN_MASK)){
si2us(c->audio,len,c->bps);
}
// Convert to special formats
switch(l->format&(AF_FORMAT_SPECIAL_MASK|AF_FORMAT_POINT_MASK)){
case(AF_FORMAT_MU_LAW):
to_ulaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK);
break;
case(AF_FORMAT_A_LAW):
to_alaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK);
break;
case(AF_FORMAT_F):
int2float(c->audio, l->audio, len, c->bps);
break;
default:
// Change the number of bits
if(c->bps != l->bps)
change_bps(c->audio,l->audio,len,c->bps,l->bps);
else
fast_memcpy(l->audio,c->audio,len*c->bps);
break;
}
}
// Switch from cpu native endian to the correct endianness
if((l->format&AF_FORMAT_END_MASK)!=AF_FORMAT_NE)
endian(l->audio,l->audio,len,l->bps);
// Set output data
c->audio = l->audio;
c->len = len*l->bps;
c->bps = l->bps;
c->format = l->format;
return c;
}
// Allocate memory and set function pointers
static int af_open(af_instance_t* af){
af->control=control;
af->uninit=uninit;
af->play=play;
af->mul=1;
af->data=calloc(1,sizeof(af_data_t));
if(af->data == NULL)
return AF_ERROR;
return AF_OK;
}
// Description of this filter
af_info_t af_info_format = {
"Sample format conversion",
"format",
"Anders",
"",
AF_FLAGS_REENTRANT,
af_open
};
static inline uint32_t load24bit(void* data, int pos) {
#if WORDS_BIGENDIAN
return (((uint32_t)((uint8_t*)data)[3*pos])<<24) |
(((uint32_t)((uint8_t*)data)[3*pos+1])<<16) |
(((uint32_t)((uint8_t*)data)[3*pos+2])<<8);
#else
return (((uint32_t)((uint8_t*)data)[3*pos])<<8) |
(((uint32_t)((uint8_t*)data)[3*pos+1])<<16) |
(((uint32_t)((uint8_t*)data)[3*pos+2])<<24);
#endif
}
static inline void store24bit(void* data, int pos, uint32_t expanded_value) {
#if WORDS_BIGENDIAN
((uint8_t*)data)[3*pos]=expanded_value>>24;
((uint8_t*)data)[3*pos+1]=expanded_value>>16;
((uint8_t*)data)[3*pos+2]=expanded_value>>8;
#else
((uint8_t*)data)[3*pos]=expanded_value>>8;
((uint8_t*)data)[3*pos+1]=expanded_value>>16;
((uint8_t*)data)[3*pos+2]=expanded_value>>24;
#endif
}
// Function implementations used by play
static void endian(void* in, void* out, int len, int bps)
{
register int i;
switch(bps){
case(2):{
for(i=0;i<len;i++){
((uint16_t*)out)[i]=bswap_16(((uint16_t*)in)[i]);
}
break;
}
case(3):{
register uint8_t s;
for(i=0;i<len;i++){
s=((uint8_t*)in)[3*i];
((uint8_t*)out)[3*i]=((uint8_t*)in)[3*i+2];
if (in != out)
((uint8_t*)out)[3*i+1]=((uint8_t*)in)[3*i+1];
((uint8_t*)out)[3*i+2]=s;
}
break;
}
case(4):{
for(i=0;i<len;i++){
((uint32_t*)out)[i]=bswap_32(((uint32_t*)in)[i]);
}
break;
}
}
}
static void si2us(void* data, int len, int bps)
{
register long i = -(len * bps);
register uint8_t *p = &((uint8_t *)data)[len * bps];
#if AF_FORMAT_NE == AF_FORMAT_LE
p += bps - 1;
#endif
if (len <= 0) return;
do {
p[i] ^= 0x80;
} while (i += bps);
}
static void change_bps(void* in, void* out, int len, int inbps, int outbps)
{
register int i;
switch(inbps){
case(1):
switch(outbps){
case(2):
for(i=0;i<len;i++)
((uint16_t*)out)[i]=((uint16_t)((uint8_t*)in)[i])<<8;
break;
case(3):
for(i=0;i<len;i++)
store24bit(out, i, ((uint32_t)((uint8_t*)in)[i])<<24);
break;
case(4):
for(i=0;i<len;i++)
((uint32_t*)out)[i]=((uint32_t)((uint8_t*)in)[i])<<24;
break;
}
break;
case(2):
switch(outbps){
case(1):
for(i=0;i<len;i++)
((uint8_t*)out)[i]=(uint8_t)((((uint16_t*)in)[i])>>8);
break;
case(3):
for(i=0;i<len;i++)
store24bit(out, i, ((uint32_t)((uint16_t*)in)[i])<<16);
break;
case(4):
for(i=0;i<len;i++)
((uint32_t*)out)[i]=((uint32_t)((uint16_t*)in)[i])<<16;
break;
}
break;
case(3):
switch(outbps){
case(1):
for(i=0;i<len;i++)
((uint8_t*)out)[i]=(uint8_t)(load24bit(in, i)>>24);
break;
case(2):
for(i=0;i<len;i++)
((uint16_t*)out)[i]=(uint16_t)(load24bit(in, i)>>16);
break;
case(4):
for(i=0;i<len;i++)
((uint32_t*)out)[i]=(uint32_t)load24bit(in, i);
break;
}
break;
case(4):
switch(outbps){
case(1):
for(i=0;i<len;i++)
((uint8_t*)out)[i]=(uint8_t)((((uint32_t*)in)[i])>>24);
break;
case(2):
for(i=0;i<len;i++)
((uint16_t*)out)[i]=(uint16_t)((((uint32_t*)in)[i])>>16);
break;
case(3):
for(i=0;i<len;i++)
store24bit(out, i, ((uint32_t*)in)[i]);
break;
}
break;
}
}
static void float2int(float* in, void* out, int len, int bps)
{
register int i;
switch(bps){
case(1):
for(i=0;i<len;i++)
((int8_t*)out)[i] = lrintf(127.0 * in[i]);
break;
case(2):
for(i=0;i<len;i++)
((int16_t*)out)[i] = lrintf(32767.0 * in[i]);
break;
case(3):
for(i=0;i<len;i++)
store24bit(out, i, lrintf(2147483647.0 * in[i]));
break;
case(4):
for(i=0;i<len;i++)
((int32_t*)out)[i] = lrintf(2147483647.0 * in[i]);
break;
}
}
static void int2float(void* in, float* out, int len, int bps)
{
register int i;
switch(bps){
case(1):
for(i=0;i<len;i++)
out[i]=(1.0/128.0)*((int8_t*)in)[i];
break;
case(2):
for(i=0;i<len;i++)
out[i]=(1.0/32768.0)*((int16_t*)in)[i];
break;
case(3):
for(i=0;i<len;i++)
out[i]=(1.0/2147483648.0)*((int32_t)load24bit(in, i));
break;
case(4):
for(i=0;i<len;i++)
out[i]=(1.0/2147483648.0)*((int32_t*)in)[i];
break;
}
}