mirror of
https://github.com/mpv-player/mpv
synced 2025-01-06 23:20:15 +00:00
e9ac3fc3a1
It's convenient.
220 lines
6.9 KiB
C
220 lines
6.9 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with mpv; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
#include <pthread.h>
|
|
#include <assert.h>
|
|
|
|
#include "talloc.h"
|
|
|
|
#include "common/common.h"
|
|
#include "video/mp_image.h"
|
|
|
|
#include "mp_image_pool.h"
|
|
|
|
static pthread_mutex_t pool_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
#define pool_lock() pthread_mutex_lock(&pool_mutex)
|
|
#define pool_unlock() pthread_mutex_unlock(&pool_mutex)
|
|
|
|
// Thread-safety: the pool itself is not thread-safe, but pool-allocated images
|
|
// can be referenced and unreferenced from other threads. (As long as the image
|
|
// destructors are thread-safe.)
|
|
|
|
struct mp_image_pool {
|
|
int max_count;
|
|
|
|
struct mp_image **images;
|
|
int num_images;
|
|
|
|
mp_image_allocator allocator;
|
|
void *allocator_ctx;
|
|
|
|
bool use_lru;
|
|
unsigned int lru_counter;
|
|
};
|
|
|
|
// Used to gracefully handle the case when the pool is freed while image
|
|
// references allocated from the image pool are still held by someone.
|
|
struct image_flags {
|
|
// If both of these are false, the image must be freed.
|
|
bool referenced; // outside mp_image reference exists
|
|
bool pool_alive; // the mp_image_pool references this
|
|
unsigned int order; // for LRU allocation (basically a timestamp)
|
|
};
|
|
|
|
static void image_pool_destructor(void *ptr)
|
|
{
|
|
struct mp_image_pool *pool = ptr;
|
|
mp_image_pool_clear(pool);
|
|
}
|
|
|
|
struct mp_image_pool *mp_image_pool_new(int max_count)
|
|
{
|
|
struct mp_image_pool *pool = talloc_ptrtype(NULL, pool);
|
|
talloc_set_destructor(pool, image_pool_destructor);
|
|
*pool = (struct mp_image_pool) {
|
|
.max_count = max_count,
|
|
};
|
|
return pool;
|
|
}
|
|
|
|
void mp_image_pool_clear(struct mp_image_pool *pool)
|
|
{
|
|
for (int n = 0; n < pool->num_images; n++) {
|
|
struct mp_image *img = pool->images[n];
|
|
struct image_flags *it = img->priv;
|
|
bool referenced;
|
|
pool_lock();
|
|
assert(it->pool_alive);
|
|
it->pool_alive = false;
|
|
referenced = it->referenced;
|
|
pool_unlock();
|
|
if (!referenced)
|
|
talloc_free(img);
|
|
}
|
|
pool->num_images = 0;
|
|
}
|
|
|
|
// This is the only function that is allowed to run in a different thread.
|
|
// (Consider passing an image to another thread, which frees it.)
|
|
static void unref_image(void *ptr)
|
|
{
|
|
struct mp_image *img = ptr;
|
|
struct image_flags *it = img->priv;
|
|
bool alive;
|
|
pool_lock();
|
|
assert(it->referenced);
|
|
it->referenced = false;
|
|
alive = it->pool_alive;
|
|
pool_unlock();
|
|
if (!alive)
|
|
talloc_free(img);
|
|
}
|
|
|
|
// Return a new image of given format/size. Unlike mp_image_pool_get(), this
|
|
// returns NULL if there is no free image of this format/size.
|
|
struct mp_image *mp_image_pool_get_no_alloc(struct mp_image_pool *pool, int fmt,
|
|
int w, int h)
|
|
{
|
|
struct mp_image *new = NULL;
|
|
pool_lock();
|
|
for (int n = 0; n < pool->num_images; n++) {
|
|
struct mp_image *img = pool->images[n];
|
|
struct image_flags *img_it = img->priv;
|
|
assert(img_it->pool_alive);
|
|
if (!img_it->referenced) {
|
|
if (img->imgfmt == fmt && img->w == w && img->h == h) {
|
|
if (pool->use_lru) {
|
|
struct image_flags *new_it = new ? new->priv : NULL;
|
|
if (!new_it || new_it->order > img_it->order)
|
|
new = img;
|
|
} else {
|
|
new = img;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
pool_unlock();
|
|
if (!new)
|
|
return NULL;
|
|
struct image_flags *it = new->priv;
|
|
assert(!it->referenced && it->pool_alive);
|
|
it->referenced = true;
|
|
it->order = ++pool->lru_counter;
|
|
return mp_image_new_custom_ref(new, new, unref_image);
|
|
}
|
|
|
|
// Return a new image of given format/size. The only difference to
|
|
// mp_image_alloc() is that there is a transparent mechanism to recycle image
|
|
// data allocations through this pool.
|
|
// If pool==NULL, mp_image_alloc() is called (for convenience).
|
|
// The image can be free'd with talloc_free().
|
|
// Returns NULL on OOM.
|
|
struct mp_image *mp_image_pool_get(struct mp_image_pool *pool, int fmt,
|
|
int w, int h)
|
|
{
|
|
if (!pool)
|
|
return mp_image_alloc(fmt, w, h);
|
|
struct mp_image *new = mp_image_pool_get_no_alloc(pool, fmt, w, h);
|
|
if (!new) {
|
|
if (pool->num_images >= pool->max_count)
|
|
mp_image_pool_clear(pool);
|
|
if (pool->allocator) {
|
|
new = pool->allocator(pool->allocator_ctx, fmt, w, h);
|
|
} else {
|
|
new = mp_image_alloc(fmt, w, h);
|
|
}
|
|
if (!new)
|
|
return NULL;
|
|
struct image_flags *it = talloc_ptrtype(new, it);
|
|
*it = (struct image_flags) { .pool_alive = true };
|
|
new->priv = it;
|
|
MP_TARRAY_APPEND(pool, pool->images, pool->num_images, new);
|
|
new = mp_image_pool_get_no_alloc(pool, fmt, w, h);
|
|
}
|
|
return new;
|
|
}
|
|
|
|
// Like mp_image_new_copy(), but allocate the image out of the pool.
|
|
// If pool==NULL, a plain copy is made (for convenience).
|
|
// Returns NULL on OOM.
|
|
struct mp_image *mp_image_pool_new_copy(struct mp_image_pool *pool,
|
|
struct mp_image *img)
|
|
{
|
|
struct mp_image *new = mp_image_pool_get(pool, img->imgfmt, img->w, img->h);
|
|
if (new) {
|
|
mp_image_copy(new, img);
|
|
mp_image_copy_attributes(new, img);
|
|
}
|
|
return new;
|
|
}
|
|
|
|
// Like mp_image_make_writeable(), but if a copy has to be made, allocate it
|
|
// out of the pool.
|
|
// If pool==NULL, mp_image_make_writeable() is called (for convenience).
|
|
// Returns false on failure (see mp_image_make_writeable()).
|
|
bool mp_image_pool_make_writeable(struct mp_image_pool *pool,
|
|
struct mp_image *img)
|
|
{
|
|
if (mp_image_is_writeable(img))
|
|
return true;
|
|
struct mp_image *new = mp_image_pool_new_copy(pool, img);
|
|
if (!new)
|
|
return false;
|
|
mp_image_steal_data(img, new);
|
|
assert(mp_image_is_writeable(img));
|
|
return true;
|
|
}
|
|
|
|
void mp_image_pool_set_allocator(struct mp_image_pool *pool,
|
|
mp_image_allocator cb, void *cb_data)
|
|
{
|
|
pool->allocator = cb;
|
|
pool->allocator_ctx = cb_data;
|
|
}
|
|
|
|
// Put into LRU mode. (Likely better for hwaccel surfaces, but worse for memory.)
|
|
void mp_image_pool_set_lru(struct mp_image_pool *pool)
|
|
{
|
|
pool->use_lru = true;
|
|
}
|