mirror of
https://github.com/mpv-player/mpv
synced 2025-01-06 23:20:15 +00:00
acb40644db
This deals with subsampled YUV video that has odd sizes, for example a 5x5 image with 4:2:0 subsampling. It would be easy to handle if we actually passed separate texture coordinates for each plane to the shader, but as of now the luma coordinates are implicitly rescaled to chroma one. If luma and chroma sizes don't match up, and this is not handled, you'd get a chroma shift by 1 pixel. The existing hack worked, but broke separable scaling. This was exposed by a recent commit which switched to GL_NEAREST sampling for FBOs. The rendering was accidentally scaled by 1 pixel, because the FBO size used the original video size, while textures_sizes[0] was set to the padded texture size (i.e. one pixel larger). It could be fixed by setting the padded texture size only on the first shader. But somehow that is annoying, so do something else. Don't pad textures anymore, and rescale the chroma coordinates in the shader instead. Seems like this somehow doesn't work with rectangle textures (and introduces a chroma shift), but since it's only used when doing VDA hardware decoding, and the bug occurs only with unaligned video sizes, I don't care much. Fixes #1523.
739 lines
25 KiB
C
739 lines
25 KiB
C
/*
|
|
* This file is part of MPlayer.
|
|
*
|
|
* MPlayer is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MPlayer is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <assert.h>
|
|
|
|
#include <libavutil/mem.h>
|
|
#include <libavutil/common.h>
|
|
#include <libavutil/bswap.h>
|
|
#include <libavcodec/avcodec.h>
|
|
|
|
#include "talloc.h"
|
|
|
|
#include "img_format.h"
|
|
#include "mp_image.h"
|
|
#include "sws_utils.h"
|
|
#include "memcpy_pic.h"
|
|
#include "fmt-conversion.h"
|
|
|
|
#include "video/filter/vf.h"
|
|
|
|
static pthread_mutex_t refcount_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
#define refcount_lock() pthread_mutex_lock(&refcount_mutex)
|
|
#define refcount_unlock() pthread_mutex_unlock(&refcount_mutex)
|
|
|
|
struct m_refcount {
|
|
void *arg;
|
|
// free() is called if refcount reaches 0.
|
|
void (*free)(void *arg);
|
|
// External refcounted object (such as libavcodec DR buffers). This assumes
|
|
// that the actual data is managed by the external object, not by
|
|
// m_refcount. The .ext_* calls use that external object's refcount
|
|
// primitives.
|
|
void (*ext_ref)(void *arg);
|
|
void (*ext_unref)(void *arg);
|
|
bool (*ext_is_unique)(void *arg);
|
|
// Native refcount (there may be additional references if .ext_* are set)
|
|
int refcount;
|
|
};
|
|
|
|
// Only for checking API usage
|
|
static void m_refcount_destructor(void *ptr)
|
|
{
|
|
struct m_refcount *ref = ptr;
|
|
assert(ref->refcount == 0);
|
|
}
|
|
|
|
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
|
|
static struct m_refcount *m_refcount_new(void)
|
|
{
|
|
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
|
|
*ref = (struct m_refcount) { .refcount = 1 };
|
|
talloc_set_destructor(ref, m_refcount_destructor);
|
|
return ref;
|
|
}
|
|
|
|
static void m_refcount_ref(struct m_refcount *ref)
|
|
{
|
|
refcount_lock();
|
|
ref->refcount++;
|
|
refcount_unlock();
|
|
|
|
if (ref->ext_ref)
|
|
ref->ext_ref(ref->arg);
|
|
}
|
|
|
|
static void m_refcount_unref(struct m_refcount *ref)
|
|
{
|
|
if (ref->ext_unref)
|
|
ref->ext_unref(ref->arg);
|
|
|
|
bool dead;
|
|
refcount_lock();
|
|
assert(ref->refcount > 0);
|
|
ref->refcount--;
|
|
dead = ref->refcount == 0;
|
|
refcount_unlock();
|
|
|
|
if (dead) {
|
|
if (ref->free)
|
|
ref->free(ref->arg);
|
|
talloc_free(ref);
|
|
}
|
|
}
|
|
|
|
static bool m_refcount_is_unique(struct m_refcount *ref)
|
|
{
|
|
bool nonunique;
|
|
refcount_lock();
|
|
nonunique = ref->refcount > 1;
|
|
refcount_unlock();
|
|
|
|
if (nonunique)
|
|
return false;
|
|
if (ref->ext_is_unique)
|
|
return ref->ext_is_unique(ref->arg); // referenced only by us
|
|
return true;
|
|
}
|
|
|
|
static bool mp_image_alloc_planes(struct mp_image *mpi)
|
|
{
|
|
assert(!mpi->planes[0]);
|
|
|
|
if (!mp_image_params_valid(&mpi->params) || mpi->fmt.flags & MP_IMGFLAG_HWACCEL)
|
|
return false;
|
|
|
|
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
|
|
// top/right border. This is needed for correct handling of such
|
|
// images in filter and VO code (e.g. vo_vdpau or vo_opengl).
|
|
|
|
size_t plane_size[MP_MAX_PLANES];
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
int alloc_h = MP_ALIGN_UP(mpi->h, 32) >> mpi->fmt.ys[n];
|
|
int line_bytes = (mpi->plane_w[n] * mpi->fmt.bpp[n] + 7) / 8;
|
|
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
|
|
plane_size[n] = mpi->stride[n] * alloc_h;
|
|
}
|
|
if (mpi->fmt.flags & MP_IMGFLAG_PAL)
|
|
plane_size[1] = MP_PALETTE_SIZE;
|
|
|
|
size_t sum = 0;
|
|
for (int n = 0; n < MP_MAX_PLANES; n++)
|
|
sum += plane_size[n];
|
|
|
|
uint8_t *data = av_malloc(FFMAX(sum, 1));
|
|
if (!data)
|
|
return false;
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
mpi->planes[n] = plane_size[n] ? data : NULL;
|
|
data += plane_size[n];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
|
|
{
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
|
|
mpi->params.imgfmt = fmt.id;
|
|
mpi->fmt = fmt;
|
|
mpi->flags = fmt.flags;
|
|
mpi->imgfmt = fmt.id;
|
|
mpi->chroma_x_shift = fmt.chroma_xs;
|
|
mpi->chroma_y_shift = fmt.chroma_ys;
|
|
mpi->num_planes = fmt.num_planes;
|
|
mp_image_set_size(mpi, mpi->w, mpi->h);
|
|
}
|
|
|
|
static void mp_image_destructor(void *ptr)
|
|
{
|
|
mp_image_t *mpi = ptr;
|
|
m_refcount_unref(mpi->refcount);
|
|
}
|
|
|
|
int mp_chroma_div_up(int size, int shift)
|
|
{
|
|
return (size + (1 << shift) - 1) >> shift;
|
|
}
|
|
|
|
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
|
|
void mp_image_set_size(struct mp_image *mpi, int w, int h)
|
|
{
|
|
assert(w >= 0 && h >= 0);
|
|
mpi->w = mpi->params.w = mpi->params.d_w = w;
|
|
mpi->h = mpi->params.h = mpi->params.d_h = h;
|
|
for (int n = 0; n < mpi->num_planes; n++) {
|
|
mpi->plane_w[n] = mp_chroma_div_up(mpi->w, mpi->fmt.xs[n]);
|
|
mpi->plane_h[n] = mp_chroma_div_up(mpi->h, mpi->fmt.ys[n]);
|
|
}
|
|
mpi->chroma_width = mpi->plane_w[1];
|
|
mpi->chroma_height = mpi->plane_h[1];
|
|
}
|
|
|
|
void mp_image_set_params(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
// possibly initialize other stuff
|
|
mp_image_setfmt(image, params->imgfmt);
|
|
mp_image_set_size(image, params->w, params->h);
|
|
image->params = *params;
|
|
}
|
|
|
|
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
|
|
{
|
|
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
|
|
talloc_set_destructor(mpi, mp_image_destructor);
|
|
mpi->refcount = m_refcount_new();
|
|
|
|
mp_image_set_size(mpi, w, h);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
if (!mp_image_alloc_planes(mpi)) {
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
mpi->refcount->free = av_free;
|
|
mpi->refcount->arg = mpi->planes[0];
|
|
return mpi;
|
|
}
|
|
|
|
struct mp_image *mp_image_new_copy(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
|
|
if (!new)
|
|
return NULL;
|
|
mp_image_copy(new, img);
|
|
mp_image_copy_attributes(new, img);
|
|
return new;
|
|
}
|
|
|
|
// Make dst take over the image data of src, and free src.
|
|
// This is basically a safe version of *dst = *src; free(src);
|
|
// Only works with ref-counted images, and can't change image size/format.
|
|
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
|
|
assert(dst->refcount && src->refcount);
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
dst->planes[p] = src->planes[p];
|
|
dst->stride[p] = src->stride[p];
|
|
}
|
|
mp_image_copy_attributes(dst, src);
|
|
|
|
m_refcount_unref(dst->refcount);
|
|
dst->refcount = src->refcount;
|
|
talloc_set_destructor(src, NULL);
|
|
talloc_free(src);
|
|
}
|
|
|
|
// Return a new reference to img. The returned reference is owned by the caller,
|
|
// while img is left untouched.
|
|
struct mp_image *mp_image_new_ref(struct mp_image *img)
|
|
{
|
|
if (!img)
|
|
return NULL;
|
|
|
|
if (!img->refcount)
|
|
return mp_image_new_copy(img);
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
|
|
m_refcount_ref(new->refcount);
|
|
return new;
|
|
}
|
|
|
|
// Return a reference counted reference to img. If the reference count reaches
|
|
// 0, call free(free_arg). The data passed by img must not be free'd before
|
|
// that. The new reference will be writeable.
|
|
// On allocation failure, unref the frame and return NULL.
|
|
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
|
|
void (*free)(void *arg))
|
|
{
|
|
return mp_image_new_external_ref(img, free_arg, NULL, NULL, NULL, free);
|
|
}
|
|
|
|
// Return a reference counted reference to img. ref/unref/is_unique are used to
|
|
// connect to an external refcounting API. It is assumed that the new object
|
|
// has an initial reference to that external API. If free is given, that is
|
|
// called after the last unref. All function pointers are optional.
|
|
// On allocation failure, unref the frame and return NULL.
|
|
struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
|
|
void (*ref)(void *arg),
|
|
void (*unref)(void *arg),
|
|
bool (*is_unique)(void *arg),
|
|
void (*free)(void *arg))
|
|
{
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
|
|
new->refcount = m_refcount_new();
|
|
new->refcount->ext_ref = ref;
|
|
new->refcount->ext_unref = unref;
|
|
new->refcount->ext_is_unique = is_unique;
|
|
new->refcount->free = free;
|
|
new->refcount->arg = arg;
|
|
return new;
|
|
}
|
|
|
|
bool mp_image_is_writeable(struct mp_image *img)
|
|
{
|
|
if (!img->refcount)
|
|
return true; // not ref-counted => always considered writeable
|
|
return m_refcount_is_unique(img->refcount);
|
|
}
|
|
|
|
// Make the image data referenced by img writeable. This allocates new data
|
|
// if the data wasn't already writeable, and img->planes[] and img->stride[]
|
|
// will be set to the copy.
|
|
// Returns success; if false is returned, the image could not be made writeable.
|
|
bool mp_image_make_writeable(struct mp_image *img)
|
|
{
|
|
if (mp_image_is_writeable(img))
|
|
return true;
|
|
|
|
struct mp_image *new = mp_image_new_copy(img);
|
|
if (!new)
|
|
return false;
|
|
mp_image_steal_data(img, new);
|
|
assert(mp_image_is_writeable(img));
|
|
return true;
|
|
}
|
|
|
|
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
|
|
// Only unrefs *p_img and sets it to NULL if out of memory.
|
|
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
|
|
{
|
|
if (*p_img != new_value) {
|
|
talloc_free(*p_img);
|
|
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
|
|
}
|
|
}
|
|
|
|
// Mere helper function (mp_image can be directly free'd with talloc_free)
|
|
void mp_image_unrefp(struct mp_image **p_img)
|
|
{
|
|
talloc_free(*p_img);
|
|
*p_img = NULL;
|
|
}
|
|
|
|
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt);
|
|
assert(dst->w == src->w && dst->h == src->h);
|
|
assert(mp_image_is_writeable(dst));
|
|
for (int n = 0; n < dst->num_planes; n++) {
|
|
int line_bytes = (dst->plane_w[n] * dst->fmt.bpp[n] + 7) / 8;
|
|
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, dst->plane_h[n],
|
|
dst->stride[n], src->stride[n]);
|
|
}
|
|
// Watch out for AV_PIX_FMT_FLAG_PSEUDOPAL retardation
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && dst->planes[1] && src->planes[1])
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
|
}
|
|
|
|
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
dst->pict_type = src->pict_type;
|
|
dst->fields = src->fields;
|
|
dst->pts = src->pts;
|
|
dst->params.rotate = src->params.rotate;
|
|
dst->params.stereo_in = src->params.stereo_in;
|
|
dst->params.stereo_out = src->params.stereo_out;
|
|
if (dst->w == src->w && dst->h == src->h) {
|
|
dst->params.d_w = src->params.d_w;
|
|
dst->params.d_h = src->params.d_h;
|
|
}
|
|
if ((dst->flags & MP_IMGFLAG_YUV) == (src->flags & MP_IMGFLAG_YUV)) {
|
|
dst->params.colorspace = src->params.colorspace;
|
|
dst->params.colorlevels = src->params.colorlevels;
|
|
dst->params.primaries = src->params.primaries;
|
|
dst->params.chroma_location = src->params.chroma_location;
|
|
dst->params.outputlevels = src->params.outputlevels;
|
|
}
|
|
mp_image_params_guess_csp(&dst->params); // ensure colorspace consistency
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
|
|
if (dst->planes[1] && src->planes[1])
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
|
}
|
|
}
|
|
|
|
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
|
|
// x0/y0 must be naturally aligned.
|
|
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
for (int p = 0; p < img->num_planes; ++p) {
|
|
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
|
|
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
|
|
}
|
|
mp_image_set_size(img, x1 - x0, y1 - y0);
|
|
}
|
|
|
|
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
|
|
{
|
|
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
}
|
|
|
|
// Bottom/right border is allowed not to be aligned, but it might implicitly
|
|
// overwrite pixel data until the alignment (align_x/align_y) is reached.
|
|
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
struct mp_image area = *img;
|
|
mp_image_crop(&area, x0, y0, x1, y1);
|
|
|
|
uint32_t plane_clear[MP_MAX_PLANES] = {0};
|
|
|
|
if (area.imgfmt == IMGFMT_YUYV) {
|
|
plane_clear[0] = av_le2ne16(0x8000);
|
|
} else if (area.imgfmt == IMGFMT_UYVY) {
|
|
plane_clear[0] = av_le2ne16(0x0080);
|
|
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
|
|
plane_clear[1] = 0x8080;
|
|
} else if (area.flags & MP_IMGFLAG_YUV_P) {
|
|
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
|
|
if (!(area.flags & MP_IMGFLAG_NE))
|
|
chroma_clear = av_bswap16(chroma_clear);
|
|
if (area.num_planes > 2)
|
|
plane_clear[1] = plane_clear[2] = chroma_clear;
|
|
}
|
|
|
|
for (int p = 0; p < area.num_planes; p++) {
|
|
int bpp = area.fmt.bpp[p];
|
|
int bytes = (area.plane_w[p] * bpp + 7) / 8;
|
|
if (bpp <= 8) {
|
|
memset_pic(area.planes[p], plane_clear[p], bytes,
|
|
area.plane_h[p], area.stride[p]);
|
|
} else {
|
|
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
|
|
area.plane_h[p], area.stride[p]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_vflip(struct mp_image *img)
|
|
{
|
|
for (int p = 0; p < img->num_planes; p++) {
|
|
img->planes[p] = img->planes[p] + img->stride[p] * (img->plane_h[p] - 1);
|
|
img->stride[p] = -img->stride[p];
|
|
}
|
|
}
|
|
|
|
char *mp_image_params_to_str_buf(char *b, size_t bs,
|
|
const struct mp_image_params *p)
|
|
{
|
|
if (p && p->imgfmt) {
|
|
snprintf(b, bs, "%dx%d", p->w, p->h);
|
|
if (p->w != p->d_w || p->h != p->d_h)
|
|
mp_snprintf_cat(b, bs, "->%dx%d", p->d_w, p->d_h);
|
|
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
|
|
mp_snprintf_cat(b, bs, " %s/%s", mp_csp_names[p->colorspace],
|
|
mp_csp_levels_names[p->colorlevels]);
|
|
mp_snprintf_cat(b, bs, " CL=%s", mp_chroma_names[p->chroma_location]);
|
|
if (p->outputlevels)
|
|
mp_snprintf_cat(b, bs, " out=%s", mp_csp_levels_names[p->outputlevels]);
|
|
if (p->rotate)
|
|
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
|
|
if (p->stereo_in > 0 || p->stereo_out > 0) {
|
|
mp_snprintf_cat(b, bs, " stereo=%s/%s",
|
|
MP_STEREO3D_NAME_DEF(p->stereo_in, "?"),
|
|
MP_STEREO3D_NAME_DEF(p->stereo_out, "?"));
|
|
}
|
|
} else {
|
|
snprintf(b, bs, "???");
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Return whether the image parameters are valid.
|
|
// Some non-essential fields are allowed to be unset (like colorspace flags).
|
|
bool mp_image_params_valid(const struct mp_image_params *p)
|
|
{
|
|
// av_image_check_size has similar checks and triggers around 16000*16000
|
|
// It's mostly needed to deal with the fact that offsets are sometimes
|
|
// ints. We also should (for now) do the same as FFmpeg, to be sure large
|
|
// images don't crash with libswscale or when wrapping with AVFrame and
|
|
// passing the result to filters.
|
|
// Unlike FFmpeg, consider 0x0 valid (might be needed for OSD/screenshots).
|
|
if (p->w < 0 || p->h < 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
|
|
return false;
|
|
|
|
if (p->d_w <= 0 || p->d_h <= 0)
|
|
return false;
|
|
|
|
if (p->rotate < 0 || p->rotate >= 360)
|
|
return false;
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
|
|
if (!desc.id)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool mp_image_params_equal(const struct mp_image_params *p1,
|
|
const struct mp_image_params *p2)
|
|
{
|
|
return p1->imgfmt == p2->imgfmt &&
|
|
p1->w == p2->w && p1->h == p2->h &&
|
|
p1->d_w == p2->d_w && p1->d_h == p2->d_h &&
|
|
p1->colorspace == p2->colorspace &&
|
|
p1->colorlevels == p2->colorlevels &&
|
|
p1->outputlevels == p2->outputlevels &&
|
|
p1->primaries == p2->primaries &&
|
|
p1->chroma_location == p2->chroma_location &&
|
|
p1->rotate == p2->rotate &&
|
|
p1->stereo_in == p2->stereo_in &&
|
|
p1->stereo_out == p2->stereo_out;
|
|
}
|
|
|
|
// Set most image parameters, but not image format or size.
|
|
// Display size is used to set the PAR.
|
|
void mp_image_set_attributes(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
struct mp_image_params nparams = *params;
|
|
nparams.imgfmt = image->imgfmt;
|
|
nparams.w = image->w;
|
|
nparams.h = image->h;
|
|
if (nparams.imgfmt != params->imgfmt)
|
|
mp_image_params_guess_csp(&nparams);
|
|
if (nparams.w != params->w || nparams.h != params->h) {
|
|
if (nparams.d_w && nparams.d_h) {
|
|
vf_rescale_dsize(&nparams.d_w, &nparams.d_h,
|
|
params->w, params->h, nparams.w, nparams.h);
|
|
}
|
|
}
|
|
mp_image_set_params(image, &nparams);
|
|
}
|
|
|
|
// If details like params->colorspace/colorlevels are missing, guess them from
|
|
// the other settings. Also, even if they are set, make them consistent with
|
|
// the colorspace as implied by the pixel format.
|
|
void mp_image_params_guess_csp(struct mp_image_params *params)
|
|
{
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(params->imgfmt);
|
|
if (!fmt.id)
|
|
return;
|
|
if (fmt.flags & MP_IMGFLAG_YUV) {
|
|
if (params->colorspace != MP_CSP_BT_601 &&
|
|
params->colorspace != MP_CSP_BT_709 &&
|
|
params->colorspace != MP_CSP_BT_2020_NC &&
|
|
params->colorspace != MP_CSP_BT_2020_C &&
|
|
params->colorspace != MP_CSP_SMPTE_240M &&
|
|
params->colorspace != MP_CSP_YCGCO)
|
|
{
|
|
// Makes no sense, so guess instead
|
|
// YCGCO should be separate, but libavcodec disagrees
|
|
params->colorspace = MP_CSP_AUTO;
|
|
}
|
|
if (params->colorspace == MP_CSP_AUTO)
|
|
params->colorspace = mp_csp_guess_colorspace(params->w, params->h);
|
|
if (params->colorlevels == MP_CSP_LEVELS_AUTO)
|
|
params->colorlevels = MP_CSP_LEVELS_TV;
|
|
if (params->primaries == MP_CSP_PRIM_AUTO) {
|
|
// Guess based on the colormatrix as a first priority
|
|
if (params->colorspace == MP_CSP_BT_2020_NC ||
|
|
params->colorspace == MP_CSP_BT_2020_C) {
|
|
params->primaries = MP_CSP_PRIM_BT_2020;
|
|
} else if (params->colorspace == MP_CSP_BT_709) {
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
} else {
|
|
// Ambiguous colormatrix for BT.601, guess based on res
|
|
params->primaries = mp_csp_guess_primaries(params->w, params->h);
|
|
}
|
|
}
|
|
} else if (fmt.flags & MP_IMGFLAG_RGB) {
|
|
params->colorspace = MP_CSP_RGB;
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
|
|
|
// The majority of RGB content is either sRGB or (rarely) some other
|
|
// color space which we don't even handle, like AdobeRGB or
|
|
// ProPhotoRGB. The only reasonable thing we can do is assume it's
|
|
// sRGB and hope for the best, which should usually just work out fine.
|
|
// Note: sRGB primaries = BT.709 primaries
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
} else if (fmt.flags & MP_IMGFLAG_XYZ) {
|
|
params->colorspace = MP_CSP_XYZ;
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
|
|
|
// The default XYZ matrix converts it to BT.709 color space
|
|
// since that's the most likely scenario. Proper VOs should ignore
|
|
// this field as well as the matrix and treat XYZ input as absolute,
|
|
// but for VOs which use the matrix (and hence, consult this field)
|
|
// this is the correct parameter. This doubles as a reasonable output
|
|
// gamut for VOs which *do* use the specialized XYZ matrix but don't
|
|
// know any better output gamut other than whatever the source is
|
|
// tagged with.
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
} else {
|
|
// We have no clue.
|
|
params->colorspace = MP_CSP_AUTO;
|
|
params->colorlevels = MP_CSP_LEVELS_AUTO;
|
|
params->primaries = MP_CSP_PRIM_AUTO;
|
|
}
|
|
}
|
|
|
|
// Copy properties and data of the AVFrame into the mp_image, without taking
|
|
// care of memory management issues.
|
|
void mp_image_copy_fields_from_av_frame(struct mp_image *dst,
|
|
struct AVFrame *src)
|
|
{
|
|
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
|
|
mp_image_set_size(dst, src->width, src->height);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->planes[i] = src->data[i];
|
|
dst->stride[i] = src->linesize[i];
|
|
}
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
dst->fields = MP_IMGFIELD_ORDERED;
|
|
if (src->interlaced_frame)
|
|
dst->fields |= MP_IMGFIELD_INTERLACED;
|
|
if (src->top_field_first)
|
|
dst->fields |= MP_IMGFIELD_TOP_FIRST;
|
|
if (src->repeat_pict == 1)
|
|
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
|
|
|
|
}
|
|
|
|
// Not strictly related, but was added in a similar timeframe.
|
|
#define HAVE_AVFRAME_COLORSPACE HAVE_AVCODEC_CHROMA_POS_API
|
|
|
|
// Copy properties and data of the mp_image into the AVFrame, without taking
|
|
// care of memory management issues.
|
|
void mp_image_copy_fields_to_av_frame(struct AVFrame *dst,
|
|
struct mp_image *src)
|
|
{
|
|
dst->format = imgfmt2pixfmt(src->imgfmt);
|
|
dst->width = src->w;
|
|
dst->height = src->h;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->data[i] = src->planes[i];
|
|
dst->linesize[i] = src->stride[i];
|
|
}
|
|
dst->extended_data = dst->data;
|
|
|
|
dst->pict_type = src->pict_type;
|
|
if (src->fields & MP_IMGFIELD_INTERLACED)
|
|
dst->interlaced_frame = 1;
|
|
if (src->fields & MP_IMGFIELD_TOP_FIRST)
|
|
dst->top_field_first = 1;
|
|
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
|
|
dst->repeat_pict = 1;
|
|
|
|
#if HAVE_AVFRAME_COLORSPACE
|
|
dst->colorspace = mp_csp_to_avcol_spc(src->params.colorspace);
|
|
dst->color_range = mp_csp_levels_to_avcol_range(src->params.colorlevels);
|
|
#endif
|
|
}
|
|
|
|
static void frame_free(void *p)
|
|
{
|
|
AVFrame *frame = p;
|
|
av_frame_free(&frame);
|
|
}
|
|
|
|
static bool frame_is_unique(void *p)
|
|
{
|
|
AVFrame *frame = p;
|
|
return av_frame_is_writable(frame);
|
|
}
|
|
|
|
// Create a new mp_image reference to av_frame.
|
|
struct mp_image *mp_image_from_av_frame(struct AVFrame *av_frame)
|
|
{
|
|
AVFrame *new_ref = av_frame_clone(av_frame);
|
|
if (!new_ref)
|
|
return NULL;
|
|
struct mp_image t = {0};
|
|
mp_image_copy_fields_from_av_frame(&t, new_ref);
|
|
return mp_image_new_external_ref(&t, new_ref, NULL, NULL, frame_is_unique,
|
|
frame_free);
|
|
}
|
|
|
|
static void free_img(void *opaque, uint8_t *data)
|
|
{
|
|
struct mp_image *img = opaque;
|
|
talloc_free(img);
|
|
}
|
|
|
|
// Convert the mp_image reference to a AVFrame reference.
|
|
// Warning: img is unreferenced (i.e. free'd). This is asymmetric to
|
|
// mp_image_from_av_frame(). It's done this way to allow marking the
|
|
// resulting AVFrame as writeable if img is the only reference (in
|
|
// other words, it's an optimization).
|
|
// On failure, img is only unreffed.
|
|
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
|
|
{
|
|
struct mp_image *new_ref = mp_image_new_ref(img); // ensure it's refcounted
|
|
talloc_free(img);
|
|
if (!new_ref)
|
|
return NULL;
|
|
AVFrame *frame = av_frame_alloc();
|
|
if (!frame) {
|
|
talloc_free(new_ref);
|
|
return NULL;
|
|
}
|
|
mp_image_copy_fields_to_av_frame(frame, new_ref);
|
|
// Caveat: if img has shared references, and all other references disappear
|
|
// at a later point, the AVFrame will still be read-only.
|
|
int flags = 0;
|
|
if (!mp_image_is_writeable(new_ref))
|
|
flags |= AV_BUFFER_FLAG_READONLY;
|
|
for (int n = 0; n < new_ref->num_planes; n++) {
|
|
// Make it so that the actual image data is freed only if _all_ buffers
|
|
// are unreferenced.
|
|
struct mp_image *dummy_ref = mp_image_new_ref(new_ref);
|
|
if (!dummy_ref)
|
|
abort(); // out of memory (for the ref, not real image data)
|
|
void *ptr = new_ref->planes[n];
|
|
size_t size = new_ref->stride[n] * new_ref->h;
|
|
frame->buf[n] = av_buffer_create(ptr, size, free_img, dummy_ref, flags);
|
|
if (!frame->buf[n])
|
|
abort();
|
|
}
|
|
talloc_free(new_ref);
|
|
return frame;
|
|
}
|