1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-22 07:33:14 +00:00
mpv/libfaad2/mdct.c
alex e24087509a synced with current cvs
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10990 b3059339-0415-0410-9bf9-f77b7e298cf2
2003-10-03 22:23:26 +00:00

292 lines
9.4 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: mdct.c,v 1.28 2003/09/30 12:43:05 menno Exp $
**/
/*
* Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
* and consists of three steps: pre-(I)FFT complex multiplication, complex
* (I)FFT, post-(I)FFT complex multiplication,
*
* As described in:
* P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
* Implementation of Filter Banks Based on 'Time Domain Aliasing
* Cancellation," IEEE Proc. on ICASSP91, 1991, pp. 2209-2212.
*
*
* As of April 6th 2002 completely rewritten.
* This (I)MDCT can now be used for any data size n, where n is divisible by 8.
*
*/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#ifdef _WIN32_WCE
#define assert(x)
#else
#include <assert.h>
#endif
#include "cfft.h"
#include "mdct.h"
/* const_tab[]:
0: sqrt(2 / N)
1: cos(2 * PI / N)
2: sin(2 * PI / N)
3: cos(2 * PI * (1/8) / N)
4: sin(2 * PI * (1/8) / N)
*/
#ifndef FIXED_POINT
#ifdef _MSC_VER
#pragma warning(disable:4305)
#pragma warning(disable:4244)
#endif
real_t const_tab[][5] =
{
{ COEF_CONST(0.0312500000), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
{ COEF_CONST(0.0322748612), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
COEF_CONST(0.9999999404), COEF_CONST(0.0004090615) }, /* 1920 */
{ COEF_CONST(0.0441941738), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
{ COEF_CONST(0.0456435465), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
{ COEF_CONST(0.0883883476), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
{ COEF_CONST(0.0912870929), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
#ifdef SSR_DEC
,{ COEF_CONST(0.062500000), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
{ COEF_CONST(0.176776695), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
#endif
};
#else
real_t const_tab[][5] =
{
{ COEF_CONST(1), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
{ COEF_CONST(/* sqrt(1024/960) */ 1.03279556), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
COEF_CONST(0), COEF_CONST(0.0004090615) }, /* 1920 */
{ COEF_CONST(1), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
{ COEF_CONST(/* sqrt(512/480) */ 1.03279556), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
{ COEF_CONST(1), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
{ COEF_CONST(/* sqrt(256/240) */ 1.03279556), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
#ifdef SSR_DEC
,{ COEF_CONST(0), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
{ COEF_CONST(0), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
#endif
};
#endif
uint8_t map_N_to_idx(uint16_t N)
{
/* gives an index into const_tab above */
/* for normal AAC deocding (eg. no scalable profile) only */
/* index 0 and 4 will be used */
switch(N)
{
case 2048: return 0;
case 1920: return 1;
case 1024: return 2;
case 960: return 3;
case 256: return 4;
case 240: return 5;
#ifdef SSR_DEC
case 512: return 6;
case 64: return 7;
#endif
}
return 0;
}
mdct_info *faad_mdct_init(uint16_t N)
{
uint16_t k, N_idx;
real_t cangle, sangle, c, s, cold;
real_t scale;
mdct_info *mdct = (mdct_info*)malloc(sizeof(mdct_info));
assert(N % 8 == 0);
mdct->N = N;
mdct->sincos = (complex_t*)malloc(N/4*sizeof(complex_t));
mdct->Z1 = (complex_t*)malloc(N/4*sizeof(complex_t));
N_idx = map_N_to_idx(N);
scale = const_tab[N_idx][0];
cangle = const_tab[N_idx][1];
sangle = const_tab[N_idx][2];
c = const_tab[N_idx][3];
s = const_tab[N_idx][4];
/* (co)sine table build using recurrence relations */
/* this can also be done using static table lookup or */
/* some form of interpolation */
for (k = 0; k < N/4; k++)
{
#if 1
RE(mdct->sincos[k]) = -1*MUL_C_C(c,scale);
IM(mdct->sincos[k]) = -1*MUL_C_C(s,scale);
cold = c;
c = MUL_C_C(c,cangle) - MUL_C_C(s,sangle);
s = MUL_C_C(s,cangle) + MUL_C_C(cold,sangle);
#else
/* no recurrence, just sines */
RE(mdct->sincos[k]) = -scale*cos(2.0*M_PI*(k+1./8.) / (float)N);
IM(mdct->sincos[k]) = -scale*sin(2.0*M_PI*(k+1./8.) / (float)N);
#endif
}
/* initialise fft */
mdct->cfft = cffti(N/4);
return mdct;
}
void faad_mdct_end(mdct_info *mdct)
{
if (mdct != NULL)
{
cfftu(mdct->cfft);
if (mdct->Z1) free(mdct->Z1);
if (mdct->sincos) free(mdct->sincos);
free(mdct);
}
}
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
complex_t x;
complex_t *Z1 = mdct->Z1;
complex_t *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
/* pre-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
RE(Z1[k]) = MUL_R_C(X_in[N2 - 1 - 2*k], RE(sincos[k])) - MUL_R_C(X_in[2*k], IM(sincos[k]));
IM(Z1[k]) = MUL_R_C(X_in[2*k], RE(sincos[k])) + MUL_R_C(X_in[N2 - 1 - 2*k], IM(sincos[k]));
}
/* complex IFFT, any non-scaling FFT can be used here */
cfftb(mdct->cfft, Z1);
/* post-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
RE(x) = RE(Z1[k]);
IM(x) = IM(Z1[k]);
RE(Z1[k]) = MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
IM(Z1[k]) = MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
}
/* reordering */
for (k = 0; k < N8; k++)
{
X_out[ 2*k] = IM(Z1[N8 + k]);
X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]);
X_out[N4 + 2*k] = RE(Z1[ k]);
X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]);
X_out[N2 + 2*k] = RE(Z1[N8 + k]);
X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]);
X_out[N2 + N4 + 2*k] = -IM(Z1[ k]);
X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]);
}
}
#ifdef LTP_DEC
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
complex_t x;
complex_t *Z1 = mdct->Z1;
complex_t *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
real_t scale = REAL_CONST(N);
/* pre-FFT complex multiplication */
for (k = 0; k < N8; k++)
{
uint16_t n = k << 1;
RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n];
RE(Z1[k]) = -MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
IM(Z1[k]) = -MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
RE(x) = X_in[N2 - 1 - n] - X_in[ n];
IM(x) = X_in[N2 + n] + X_in[N - 1 - n];
RE(Z1[k + N8]) = -MUL_R_C(RE(x), RE(sincos[k + N8])) - MUL_R_C(IM(x), IM(sincos[k + N8]));
IM(Z1[k + N8]) = -MUL_R_C(IM(x), RE(sincos[k + N8])) + MUL_R_C(RE(x), IM(sincos[k + N8]));
}
/* complex FFT, any non-scaling FFT can be used here */
cfftf(mdct->cfft, Z1);
/* post-FFT complex multiplication */
for (k = 0; k < N4; k++)
{
uint16_t n = k << 1;
RE(x) = MUL(MUL_R_C(RE(Z1[k]), RE(sincos[k])) + MUL_R_C(IM(Z1[k]), IM(sincos[k])), scale);
IM(x) = MUL(MUL_R_C(IM(Z1[k]), RE(sincos[k])) - MUL_R_C(RE(Z1[k]), IM(sincos[k])), scale);
X_out[ n] = RE(x);
X_out[N2 - 1 - n] = -IM(x);
X_out[N2 + n] = IM(x);
X_out[N - 1 - n] = -RE(x);
}
}
#endif