mirror of https://github.com/mpv-player/mpv
1111 lines
39 KiB
C
1111 lines
39 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include <libavutil/bswap.h>
|
|
#include <libavutil/pixfmt.h>
|
|
|
|
#include "common/common.h"
|
|
#include "repack.h"
|
|
#include "video/fmt-conversion.h"
|
|
#include "video/img_format.h"
|
|
#include "video/mp_image.h"
|
|
|
|
enum repack_step_type {
|
|
REPACK_STEP_REPACK,
|
|
REPACK_STEP_ENDIAN,
|
|
};
|
|
|
|
struct repack_step {
|
|
enum repack_step_type type;
|
|
// 0=input, 1=output
|
|
struct mp_image *buf[2];
|
|
bool user_buf[2]; // user_buf[n]==true if buf[n] = user src/dst buffer
|
|
struct mp_imgfmt_desc fmt[2];
|
|
struct mp_image *tmp; // output buffer, if needed
|
|
};
|
|
|
|
struct mp_repack {
|
|
bool pack; // if false, this is for unpacking
|
|
int flags;
|
|
int imgfmt_user; // original mp format (unchanged endian)
|
|
int imgfmt_a; // original mp format (possibly packed format,
|
|
// swapped endian)
|
|
int imgfmt_b; // equivalent unpacked/planar format
|
|
struct mp_imgfmt_desc fmt_a;// ==imgfmt_a
|
|
struct mp_imgfmt_desc fmt_b;// ==imgfmt_b
|
|
|
|
void (*repack)(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w);
|
|
|
|
bool passthrough_y; // possible luma plane optimization for e.g. nv12
|
|
int endian_size; // endian swap; 0=none, 2/4=swap word size
|
|
|
|
// For packed_repack.
|
|
int components[4]; // b[n] = mp_image.planes[components[n]]
|
|
// pack: a is dst, b is src
|
|
// unpack: a is src, b is dst
|
|
void (*packed_repack_scanline)(void *a, void *b[], int w);
|
|
|
|
// Fringe RGB/YUV.
|
|
uint8_t comp_size;
|
|
uint8_t *comp_map;
|
|
uint8_t comp_shifts[3];
|
|
uint8_t *comp_lut;
|
|
|
|
// REPACK_STEP_REPACK: if true, need to copy this plane
|
|
bool copy_buf[4];
|
|
|
|
struct repack_step steps[4];
|
|
int num_steps;
|
|
|
|
bool configured;
|
|
};
|
|
|
|
// depth = number of LSB in use
|
|
static int find_gbrp_format(int depth, int num_planes)
|
|
{
|
|
if (num_planes != 3 && num_planes != 4)
|
|
return 0;
|
|
struct mp_regular_imgfmt desc = {
|
|
.component_type = MP_COMPONENT_TYPE_UINT,
|
|
.forced_csp = MP_CSP_RGB,
|
|
.component_size = depth > 8 ? 2 : 1,
|
|
.component_pad = depth - (depth > 8 ? 16 : 8),
|
|
.num_planes = num_planes,
|
|
.planes = { {1, {2}}, {1, {3}}, {1, {1}}, {1, {4}} },
|
|
};
|
|
return mp_find_regular_imgfmt(&desc);
|
|
}
|
|
|
|
// depth = number of LSB in use
|
|
static int find_yuv_format(int depth, int num_planes)
|
|
{
|
|
if (num_planes < 1 || num_planes > 4)
|
|
return 0;
|
|
struct mp_regular_imgfmt desc = {
|
|
.component_type = MP_COMPONENT_TYPE_UINT,
|
|
.component_size = depth > 8 ? 2 : 1,
|
|
.component_pad = depth - (depth > 8 ? 16 : 8),
|
|
.num_planes = num_planes,
|
|
.planes = { {1, {1}}, {1, {2}}, {1, {3}}, {1, {4}} },
|
|
};
|
|
if (num_planes == 2)
|
|
desc.planes[1].components[0] = 4;
|
|
return mp_find_regular_imgfmt(&desc);
|
|
}
|
|
|
|
// Copy one line on the plane p.
|
|
static void copy_plane(struct mp_image *dst, int dst_x, int dst_y,
|
|
struct mp_image *src, int src_x, int src_y,
|
|
int w, int p)
|
|
{
|
|
// Number of lines on this plane.
|
|
int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
|
|
size_t size = mp_image_plane_bytes(dst, p, dst_x, w);
|
|
|
|
assert(dst->fmt.bpp[p] == src->fmt.bpp[p]);
|
|
|
|
for (int y = 0; y < h; y++) {
|
|
void *pd = mp_image_pixel_ptr(dst, p, dst_x, dst_y + y);
|
|
void *ps = mp_image_pixel_ptr(src, p, src_x, src_y + y);
|
|
memcpy(pd, ps, size);
|
|
}
|
|
}
|
|
|
|
// Swap endian for one line.
|
|
static void swap_endian(struct mp_image *dst, int dst_x, int dst_y,
|
|
struct mp_image *src, int src_x, int src_y,
|
|
int w, int endian_size)
|
|
{
|
|
assert(src->fmt.num_planes == dst->fmt.num_planes);
|
|
|
|
for (int p = 0; p < dst->fmt.num_planes; p++) {
|
|
int xs = dst->fmt.xs[p];
|
|
int bpp = dst->fmt.bytes[p];
|
|
int words_per_pixel = bpp / endian_size;
|
|
int num_words = ((w + (1 << xs) - 1) >> xs) * words_per_pixel;
|
|
// Number of lines on this plane.
|
|
int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
|
|
|
|
assert(src->fmt.bytes[p] == bpp);
|
|
|
|
for (int y = 0; y < h; y++) {
|
|
void *s = mp_image_pixel_ptr(src, p, src_x, src_y + y);
|
|
void *d = mp_image_pixel_ptr(dst, p, dst_x, dst_y + y);
|
|
switch (endian_size) {
|
|
case 2:
|
|
for (int x = 0; x < num_words; x++)
|
|
((uint16_t *)d)[x] = av_bswap16(((uint16_t *)s)[x]);
|
|
break;
|
|
case 4:
|
|
for (int x = 0; x < num_words; x++)
|
|
((uint32_t *)d)[x] = av_bswap32(((uint32_t *)s)[x]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// PA = PAck, copy planar input to single packed array
|
|
// UN = UNpack, copy packed input to planar output
|
|
// Naming convention:
|
|
// pa_/un_ prefix to identify conversion direction.
|
|
// Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
|
|
// (This is unusual; MSB to LSB is more commonly used to describe formats,
|
|
// but our convention makes more sense for byte access in little endian.)
|
|
// "c" identifies a color component.
|
|
// "z" identifies known zero padding.
|
|
// "x" identifies uninitialized padding.
|
|
// A component is followed by its size in bits.
|
|
// Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
|
|
// Unpackers will often use "x" for padding, because they ignore it, while
|
|
// packers will use "z" because they write zero.
|
|
|
|
#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \
|
|
static void name(void *dst, void *src[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
((packed_t *)dst)[x] = \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
|
|
((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \
|
|
((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \
|
|
} \
|
|
}
|
|
|
|
#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
|
|
static void name(void *src, void *dst[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
|
|
((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
|
|
#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \
|
|
static void name(void *dst, void *src[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
((packed_t *)dst)[x] = (pad) | \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
|
|
((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu)
|
|
PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24)
|
|
// Not sure if this is a good idea; there may be no alignment guarantee.
|
|
UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu)
|
|
PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48)
|
|
|
|
#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \
|
|
static void name(void *src, void *dst[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu)
|
|
PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0)
|
|
UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu)
|
|
PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0)
|
|
UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
|
|
PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 0, 10, 20, 0)
|
|
|
|
#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \
|
|
static void name(void *dst, void *src[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
((packed_t *)dst)[x] = (pad) | \
|
|
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
|
|
((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \
|
|
} \
|
|
}
|
|
|
|
#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \
|
|
static void name(void *src, void *dst[], int w) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
|
|
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
|
|
} \
|
|
}
|
|
|
|
UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu)
|
|
PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0)
|
|
UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
|
|
PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)
|
|
|
|
#define PA_SEQ_3(name, comp_t) \
|
|
static void name(void *dst, void *src[], int w) { \
|
|
comp_t *r = dst; \
|
|
for (int x = 0; x < w; x++) { \
|
|
*r++ = ((comp_t *)src[0])[x]; \
|
|
*r++ = ((comp_t *)src[1])[x]; \
|
|
*r++ = ((comp_t *)src[2])[x]; \
|
|
} \
|
|
}
|
|
|
|
#define UN_SEQ_3(name, comp_t) \
|
|
static void name(void *src, void *dst[], int w) { \
|
|
comp_t *r = src; \
|
|
for (int x = 0; x < w; x++) { \
|
|
((comp_t *)dst[0])[x] = *r++; \
|
|
((comp_t *)dst[1])[x] = *r++; \
|
|
((comp_t *)dst[2])[x] = *r++; \
|
|
} \
|
|
}
|
|
|
|
UN_SEQ_3(un_ccc8, uint8_t)
|
|
PA_SEQ_3(pa_ccc8, uint8_t)
|
|
UN_SEQ_3(un_ccc16, uint16_t)
|
|
PA_SEQ_3(pa_ccc16, uint16_t)
|
|
|
|
// "regular": single packed plane, all components have same width (except padding)
|
|
struct regular_repacker {
|
|
int packed_width; // number of bits of the packed pixel
|
|
int component_width; // number of bits for a single component
|
|
int prepadding; // number of bits of LSB padding
|
|
int num_components; // number of components that can be accessed
|
|
void (*pa_scanline)(void *a, void *b[], int w);
|
|
void (*un_scanline)(void *a, void *b[], int w);
|
|
};
|
|
|
|
static const struct regular_repacker regular_repackers[] = {
|
|
{32, 8, 0, 3, pa_ccc8z8, un_ccc8x8},
|
|
{32, 8, 8, 3, pa_z8ccc8, un_x8ccc8},
|
|
{32, 8, 0, 4, pa_cccc8, un_cccc8},
|
|
{64, 16, 0, 4, pa_cccc16, un_cccc16},
|
|
{24, 8, 0, 3, pa_ccc8, un_ccc8},
|
|
{48, 16, 0, 3, pa_ccc16, un_ccc16},
|
|
{16, 8, 0, 2, pa_cc8, un_cc8},
|
|
{32, 16, 0, 2, pa_cc16, un_cc16},
|
|
{32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
|
|
};
|
|
|
|
static void packed_repack(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
uint32_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
|
|
|
|
void *pb[4] = {0};
|
|
for (int p = 0; p < b->num_planes; p++) {
|
|
int s = rp->components[p];
|
|
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
|
|
}
|
|
|
|
rp->packed_repack_scanline(pa, pb, w);
|
|
}
|
|
|
|
// Tries to set a packer/unpacker for component-wise byte aligned formats.
|
|
static void setup_packed_packer(struct mp_repack *rp)
|
|
{
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a))
|
|
return;
|
|
|
|
if (desc.num_planes != 1 || desc.planes[0].num_components < 2)
|
|
return;
|
|
struct mp_regular_imgfmt_plane *p = &desc.planes[0];
|
|
|
|
int num_real_components = 0;
|
|
bool has_alpha = false;
|
|
for (int n = 0; n < p->num_components; n++) {
|
|
if (p->components[n]) {
|
|
has_alpha |= p->components[n] == 4;
|
|
num_real_components += 1;
|
|
} else {
|
|
// padding must be in MSB or LSB
|
|
if (n != 0 && n != p->num_components - 1)
|
|
return;
|
|
}
|
|
}
|
|
|
|
int depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);
|
|
|
|
static const int reorder_gbrp[] = {0, 3, 1, 2, 4};
|
|
static const int reorder_yuv[] = {0, 1, 2, 3, 4};
|
|
int planar_fmt = 0;
|
|
const int *reorder = NULL;
|
|
if (desc.forced_csp) {
|
|
if (desc.forced_csp != MP_CSP_RGB && desc.forced_csp != MP_CSP_XYZ)
|
|
return;
|
|
planar_fmt = find_gbrp_format(depth, num_real_components);
|
|
reorder = reorder_gbrp;
|
|
} else {
|
|
planar_fmt = find_yuv_format(depth, num_real_components);
|
|
reorder = reorder_yuv;
|
|
}
|
|
if (!planar_fmt)
|
|
return;
|
|
|
|
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
|
|
const struct regular_repacker *pa = ®ular_repackers[i];
|
|
|
|
// The following may assume little endian (because some repack backends
|
|
// use word access, while the metadata here uses byte access).
|
|
|
|
int prepad = p->components[0] ? 0 : 8;
|
|
int first_comp = p->components[0] ? 0 : 1;
|
|
void (*repack_cb)(void *pa, void *pb[], int w) =
|
|
rp->pack ? pa->pa_scanline : pa->un_scanline;
|
|
|
|
if (pa->packed_width != desc.component_size * p->num_components * 8 ||
|
|
pa->component_width != depth ||
|
|
pa->num_components != num_real_components ||
|
|
pa->prepadding != prepad ||
|
|
!repack_cb)
|
|
continue;
|
|
|
|
rp->repack = packed_repack;
|
|
rp->packed_repack_scanline = repack_cb;
|
|
rp->imgfmt_b = planar_fmt;
|
|
for (int n = 0; n < num_real_components; n++) {
|
|
// Determine permutation that maps component order between the two
|
|
// formats, with has_alpha special case (see above).
|
|
int c = reorder[p->components[first_comp + n]];
|
|
rp->components[n] = c == 4 ? num_real_components - 1 : c - 1;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
struct fringe_rgb_repacker {
|
|
// To avoid making a mess of IMGFMT_*, we use av formats directly.
|
|
enum AVPixelFormat avfmt;
|
|
// If true, use BGR instead of RGB.
|
|
// False: LSB - R - G - B - pad - MSB
|
|
// True: LSB - B - G - R - pad - MSB
|
|
bool rev_order;
|
|
// Size in bit for each component, strictly from LSB to MSB.
|
|
int bits[3];
|
|
bool be;
|
|
};
|
|
|
|
static const struct fringe_rgb_repacker fringe_rgb_repackers[] = {
|
|
{AV_PIX_FMT_BGR4_BYTE, false, {1, 2, 1}},
|
|
{AV_PIX_FMT_RGB4_BYTE, true, {1, 2, 1}},
|
|
{AV_PIX_FMT_BGR8, false, {3, 3, 2}},
|
|
{AV_PIX_FMT_RGB8, true, {2, 3, 3}}, // pixdesc desc. and doc. bug?
|
|
{AV_PIX_FMT_RGB444LE, true, {4, 4, 4}},
|
|
{AV_PIX_FMT_RGB444BE, true, {4, 4, 4}, .be = true},
|
|
{AV_PIX_FMT_BGR444LE, false, {4, 4, 4}},
|
|
{AV_PIX_FMT_BGR444BE, false, {4, 4, 4}, .be = true},
|
|
{AV_PIX_FMT_BGR565LE, false, {5, 6, 5}},
|
|
{AV_PIX_FMT_BGR565BE, false, {5, 6, 5}, .be = true},
|
|
{AV_PIX_FMT_RGB565LE, true, {5, 6, 5}},
|
|
{AV_PIX_FMT_RGB565BE, true, {5, 6, 5}, .be = true},
|
|
{AV_PIX_FMT_BGR555LE, false, {5, 5, 5}},
|
|
{AV_PIX_FMT_BGR555BE, false, {5, 5, 5}, .be = true},
|
|
{AV_PIX_FMT_RGB555LE, true, {5, 5, 5}},
|
|
{AV_PIX_FMT_RGB555BE, true, {5, 5, 5}, .be = true},
|
|
};
|
|
|
|
#define PA_SHIFT_LUT8(name, packed_t) \
|
|
static void name(void *dst, void *src[], int w, uint8_t *lut, \
|
|
uint8_t s0, uint8_t s1, uint8_t s2) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
((packed_t *)dst)[x] = \
|
|
(lut[((uint8_t *)src[0])[x] + 256 * 0] << s0) | \
|
|
(lut[((uint8_t *)src[1])[x] + 256 * 1] << s1) | \
|
|
(lut[((uint8_t *)src[2])[x] + 256 * 2] << s2); \
|
|
} \
|
|
}
|
|
|
|
|
|
#define UN_SHIFT_LUT8(name, packed_t) \
|
|
static void name(void *src, void *dst[], int w, uint8_t *lut, \
|
|
uint8_t s0, uint8_t s1, uint8_t s2) { \
|
|
for (int x = 0; x < w; x++) { \
|
|
packed_t c = ((packed_t *)src)[x]; \
|
|
((uint8_t *)dst[0])[x] = lut[((c >> s0) & 0xFF) + 256 * 0]; \
|
|
((uint8_t *)dst[1])[x] = lut[((c >> s1) & 0xFF) + 256 * 1]; \
|
|
((uint8_t *)dst[2])[x] = lut[((c >> s2) & 0xFF) + 256 * 2]; \
|
|
} \
|
|
}
|
|
|
|
PA_SHIFT_LUT8(pa_shift_lut8_8, uint8_t)
|
|
PA_SHIFT_LUT8(pa_shift_lut8_16, uint16_t)
|
|
UN_SHIFT_LUT8(un_shift_lut8_8, uint8_t)
|
|
UN_SHIFT_LUT8(un_shift_lut8_16, uint16_t)
|
|
|
|
static void fringe_rgb_repack(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
|
|
|
|
void *pb[4] = {0};
|
|
for (int p = 0; p < b->num_planes; p++) {
|
|
int s = rp->components[p];
|
|
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
|
|
}
|
|
|
|
assert(rp->comp_size == 1 || rp->comp_size == 2);
|
|
|
|
void (*repack)(void *pa, void *pb[], int w, uint8_t *lut,
|
|
uint8_t s0, uint8_t s1, uint8_t s2) = NULL;
|
|
if (rp->pack) {
|
|
repack = rp->comp_size == 1 ? pa_shift_lut8_8 : pa_shift_lut8_16;
|
|
} else {
|
|
repack = rp->comp_size == 1 ? un_shift_lut8_8 : un_shift_lut8_16;
|
|
}
|
|
repack(pa, pb, w, rp->comp_lut,
|
|
rp->comp_shifts[0], rp->comp_shifts[1], rp->comp_shifts[2]);
|
|
}
|
|
|
|
static void setup_fringe_rgb_packer(struct mp_repack *rp)
|
|
{
|
|
enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a);
|
|
|
|
const struct fringe_rgb_repacker *fmt = NULL;
|
|
for (int n = 0; n < MP_ARRAY_SIZE(fringe_rgb_repackers); n++) {
|
|
if (fringe_rgb_repackers[n].avfmt == avfmt) {
|
|
fmt = &fringe_rgb_repackers[n];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fmt)
|
|
return;
|
|
|
|
int depth = fmt->bits[0];
|
|
for (int n = 0; n < 3; n++) {
|
|
if (rp->flags & REPACK_CREATE_ROUND_DOWN) {
|
|
depth = MPMIN(depth, fmt->bits[n]);
|
|
} else {
|
|
depth = MPMAX(depth, fmt->bits[n]);
|
|
}
|
|
}
|
|
if (rp->flags & REPACK_CREATE_EXPAND_8BIT)
|
|
depth = 8;
|
|
|
|
rp->imgfmt_b = find_gbrp_format(depth, 3);
|
|
if (!rp->imgfmt_b)
|
|
return;
|
|
rp->comp_lut = talloc_array(rp, uint8_t, 256 * 3);
|
|
rp->repack = fringe_rgb_repack;
|
|
static const int c_order_rgb[] = {3, 1, 2};
|
|
static const int c_order_bgr[] = {2, 1, 3};
|
|
for (int n = 0; n < 3; n++)
|
|
rp->components[n] = (fmt->rev_order ? c_order_bgr : c_order_rgb)[n] - 1;
|
|
|
|
int bitpos = 0;
|
|
for (int n = 0; n < 3; n++) {
|
|
int bits = fmt->bits[n];
|
|
rp->comp_shifts[n] = bitpos;
|
|
if (rp->comp_lut) {
|
|
uint8_t *lut = rp->comp_lut + 256 * n;
|
|
uint8_t zmax = (1 << depth) - 1;
|
|
uint8_t cmax = (1 << bits) - 1;
|
|
for (int v = 0; v < 256; v++) {
|
|
if (rp->pack) {
|
|
lut[v] = (v * cmax + zmax / 2) / zmax;
|
|
} else {
|
|
lut[v] = (v & cmax) * zmax / cmax;
|
|
}
|
|
}
|
|
}
|
|
bitpos += bits;
|
|
}
|
|
|
|
rp->comp_size = (bitpos + 7) / 8;
|
|
assert(rp->comp_size == 1 || rp->comp_size == 2);
|
|
|
|
if (fmt->be) {
|
|
assert(rp->comp_size == 2);
|
|
rp->endian_size = 2;
|
|
}
|
|
}
|
|
|
|
static void unpack_pal(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
uint8_t *src = mp_image_pixel_ptr(a, 0, a_x, a_y);
|
|
uint32_t *pal = (void *)a->planes[1];
|
|
|
|
uint8_t *dst[4] = {0};
|
|
for (int p = 0; p < b->num_planes; p++)
|
|
dst[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
|
|
|
|
for (int x = 0; x < w; x++) {
|
|
uint32_t c = pal[src[x]];
|
|
dst[0][x] = (c >> 8) & 0xFF; // G
|
|
dst[1][x] = (c >> 0) & 0xFF; // B
|
|
dst[2][x] = (c >> 16) & 0xFF; // R
|
|
dst[3][x] = (c >> 24) & 0xFF; // A
|
|
}
|
|
}
|
|
|
|
static void bitmap_repack(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
uint8_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
|
|
uint8_t *pb = mp_image_pixel_ptr(b, 0, b_x, b_y);
|
|
|
|
if (rp->pack) {
|
|
for (unsigned x = 0; x < w; x += 8) {
|
|
uint8_t d = 0;
|
|
int max_b = MPMIN(8, w - x);
|
|
for (int bp = 0; bp < max_b; bp++)
|
|
d |= (rp->comp_lut[pb[x + bp]]) << (7 - bp);
|
|
pa[x / 8] = d;
|
|
}
|
|
} else {
|
|
for (unsigned x = 0; x < w; x += 8) {
|
|
uint8_t d = pa[x / 8];
|
|
int max_b = MPMIN(8, w - x);
|
|
for (int bp = 0; bp < max_b; bp++)
|
|
pb[x + bp] = rp->comp_lut[d & (1 << (7 - bp))];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_misc_packer(struct mp_repack *rp)
|
|
{
|
|
// Although it's in regular_repackers[], the generic mpv imgfmt metadata
|
|
// can't handle it yet.
|
|
if (rp->imgfmt_a == IMGFMT_RGB30) {
|
|
int planar_fmt = find_gbrp_format(10, 3);
|
|
if (!planar_fmt)
|
|
return;
|
|
rp->imgfmt_b = planar_fmt;
|
|
rp->repack = packed_repack;
|
|
rp->packed_repack_scanline = rp->pack ? pa_ccc10z2 : un_ccc10x2;
|
|
static int c_order[] = {2, 1, 3};
|
|
for (int n = 0; n < 3; n++)
|
|
rp->components[n] = c_order[n] - 1;
|
|
} else if (rp->imgfmt_a == IMGFMT_PAL8 && !rp->pack) {
|
|
int grap_fmt = find_gbrp_format(8, 4);
|
|
if (!grap_fmt)
|
|
return;
|
|
rp->imgfmt_b = grap_fmt;
|
|
rp->repack = unpack_pal;
|
|
} else {
|
|
enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a);
|
|
if (avfmt == AV_PIX_FMT_MONOWHITE || avfmt == AV_PIX_FMT_MONOBLACK) {
|
|
rp->comp_lut = talloc_array(rp, uint8_t, 256);
|
|
rp->imgfmt_b = IMGFMT_Y1;
|
|
int max = 1;
|
|
if (rp->flags & REPACK_CREATE_EXPAND_8BIT) {
|
|
rp->imgfmt_b = IMGFMT_Y8;
|
|
max = 255;
|
|
}
|
|
bool inv = avfmt == AV_PIX_FMT_MONOWHITE;
|
|
for (int n = 0; n < 256; n++) {
|
|
rp->comp_lut[n] = rp->pack ? (inv ^ (n >= (max + 1) / 2))
|
|
: ((inv ^ !!n) ? max : 0);
|
|
}
|
|
rp->repack = bitmap_repack;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct fringe_yuv422_repacker {
|
|
// To avoid making a mess of IMGFMT_*, we use av formats directly.
|
|
enum AVPixelFormat avfmt;
|
|
// In bits (depth/8 rounded up gives byte size)
|
|
int8_t depth;
|
|
// Word index of each sample: {y0, y1, cb, cr}
|
|
uint8_t comp[4];
|
|
bool be;
|
|
};
|
|
|
|
static const struct fringe_yuv422_repacker fringe_yuv422_repackers[] = {
|
|
{AV_PIX_FMT_YUYV422, 8, {0, 2, 1, 3}},
|
|
{AV_PIX_FMT_UYVY422, 8, {1, 3, 0, 2}},
|
|
{AV_PIX_FMT_YVYU422, 8, {0, 2, 3, 1}},
|
|
#ifdef AV_PIX_FMT_Y210
|
|
{AV_PIX_FMT_Y210LE, 10, {0, 2, 1, 3}},
|
|
{AV_PIX_FMT_Y210BE, 10, {0, 2, 1, 3}, .be = true},
|
|
#endif
|
|
};
|
|
|
|
#define PA_P422(name, comp_t) \
|
|
static void name(void *dst, void *src[], int w, uint8_t *c) { \
|
|
for (int x = 0; x < w; x += 2) { \
|
|
((comp_t *)dst)[x * 2 + c[0]] = ((comp_t *)src[0])[x + 0]; \
|
|
((comp_t *)dst)[x * 2 + c[1]] = ((comp_t *)src[0])[x + 1]; \
|
|
((comp_t *)dst)[x * 2 + c[2]] = ((comp_t *)src[1])[x >> 1]; \
|
|
((comp_t *)dst)[x * 2 + c[3]] = ((comp_t *)src[2])[x >> 1]; \
|
|
} \
|
|
}
|
|
|
|
|
|
#define UN_P422(name, comp_t) \
|
|
static void name(void *src, void *dst[], int w, uint8_t *c) { \
|
|
for (int x = 0; x < w; x += 2) { \
|
|
((comp_t *)dst[0])[x + 0] = ((comp_t *)src)[x * 2 + c[0]]; \
|
|
((comp_t *)dst[0])[x + 1] = ((comp_t *)src)[x * 2 + c[1]]; \
|
|
((comp_t *)dst[1])[x >> 1] = ((comp_t *)src)[x * 2 + c[2]]; \
|
|
((comp_t *)dst[2])[x >> 1] = ((comp_t *)src)[x * 2 + c[3]]; \
|
|
} \
|
|
}
|
|
|
|
PA_P422(pa_p422_8, uint8_t)
|
|
PA_P422(pa_p422_16, uint16_t)
|
|
UN_P422(un_p422_8, uint8_t)
|
|
UN_P422(un_p422_16, uint16_t)
|
|
|
|
static void fringe_yuv422_repack(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
|
|
|
|
void *pb[4] = {0};
|
|
for (int p = 0; p < b->num_planes; p++)
|
|
pb[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
|
|
|
|
assert(rp->comp_size == 1 || rp->comp_size == 2);
|
|
|
|
void (*repack)(void *a, void *b[], int w, uint8_t *c) = NULL;
|
|
if (rp->pack) {
|
|
repack = rp->comp_size == 1 ? pa_p422_8 : pa_p422_16;
|
|
} else {
|
|
repack = rp->comp_size == 1 ? un_p422_8 : un_p422_16;
|
|
}
|
|
repack(pa, pb, w, rp->comp_map);
|
|
}
|
|
|
|
static void setup_fringe_yuv422_packer(struct mp_repack *rp)
|
|
{
|
|
enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a);
|
|
|
|
const struct fringe_yuv422_repacker *fmt = NULL;
|
|
for (int n = 0; n < MP_ARRAY_SIZE(fringe_yuv422_repackers); n++) {
|
|
if (fringe_yuv422_repackers[n].avfmt == avfmt) {
|
|
fmt = &fringe_yuv422_repackers[n];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fmt)
|
|
return;
|
|
|
|
rp->comp_size = (fmt->depth + 7) / 8;
|
|
assert(rp->comp_size == 1 || rp->comp_size == 2);
|
|
|
|
struct mp_regular_imgfmt yuvfmt = {
|
|
.component_type = MP_COMPONENT_TYPE_UINT,
|
|
// NB: same problem with P010 and not clearing padding.
|
|
.component_size = rp->comp_size,
|
|
.num_planes = 3,
|
|
.planes = { {1, {1}}, {1, {2}}, {1, {3}} },
|
|
.chroma_xs = 1,
|
|
.chroma_ys = 0,
|
|
};
|
|
rp->imgfmt_b = mp_find_regular_imgfmt(&yuvfmt);
|
|
rp->repack = fringe_yuv422_repack;
|
|
rp->comp_map = (uint8_t *)fmt->comp;
|
|
|
|
if (fmt->be) {
|
|
assert(rp->comp_size == 2);
|
|
rp->endian_size = 2;
|
|
}
|
|
}
|
|
|
|
static void repack_nv(struct mp_repack *rp,
|
|
struct mp_image *a, int a_x, int a_y,
|
|
struct mp_image *b, int b_x, int b_y, int w)
|
|
{
|
|
int xs = a->fmt.chroma_xs;
|
|
|
|
uint32_t *pa = mp_image_pixel_ptr(a, 1, a_x, a_y);
|
|
|
|
void *pb[2];
|
|
for (int p = 0; p < 2; p++) {
|
|
int s = rp->components[p];
|
|
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
|
|
}
|
|
|
|
rp->packed_repack_scanline(pa, pb, (w + (1 << xs) - 1) >> xs);
|
|
}
|
|
|
|
static void setup_nv_packer(struct mp_repack *rp)
|
|
{
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a))
|
|
return;
|
|
|
|
// Check for NV.
|
|
if (desc.num_planes != 2)
|
|
return;
|
|
if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
|
|
return;
|
|
if (desc.planes[1].num_components != 2)
|
|
return;
|
|
int cr0 = desc.planes[1].components[0];
|
|
int cr1 = desc.planes[1].components[1];
|
|
if (cr0 > cr1)
|
|
MPSWAP(int, cr0, cr1);
|
|
if (cr0 != 2 || cr1 != 3)
|
|
return;
|
|
|
|
// Construct equivalent planar format.
|
|
struct mp_regular_imgfmt desc2 = desc;
|
|
desc2.num_planes = 3;
|
|
desc2.planes[1].num_components = 1;
|
|
desc2.planes[1].components[0] = 2;
|
|
desc2.planes[2].num_components = 1;
|
|
desc2.planes[2].components[0] = 3;
|
|
// For P010. Strangely this concept exists only for the NV format.
|
|
if (desc2.component_pad > 0)
|
|
desc2.component_pad = 0;
|
|
|
|
int planar_fmt = mp_find_regular_imgfmt(&desc2);
|
|
if (!planar_fmt)
|
|
return;
|
|
|
|
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
|
|
const struct regular_repacker *pa = ®ular_repackers[i];
|
|
|
|
void (*repack_cb)(void *pa, void *pb[], int w) =
|
|
rp->pack ? pa->pa_scanline : pa->un_scanline;
|
|
|
|
if (pa->packed_width != desc.component_size * 2 * 8 ||
|
|
pa->component_width != desc.component_size * 8 ||
|
|
pa->num_components != 2 ||
|
|
pa->prepadding != 0 ||
|
|
!repack_cb)
|
|
continue;
|
|
|
|
rp->repack = repack_nv;
|
|
rp->passthrough_y = true;
|
|
rp->packed_repack_scanline = repack_cb;
|
|
rp->imgfmt_b = planar_fmt;
|
|
rp->components[0] = desc.planes[1].components[0] - 1;
|
|
rp->components[1] = desc.planes[1].components[1] - 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void repack_line(struct mp_repack *rp, int dst_x, int dst_y,
|
|
int src_x, int src_y, int w)
|
|
{
|
|
assert(rp->configured);
|
|
|
|
struct repack_step *first = &rp->steps[0];
|
|
struct repack_step *last = &rp->steps[rp->num_steps - 1];
|
|
|
|
assert(dst_x >= 0 && dst_y >= 0 && src_x >= 0 && src_y >= 0 && w >= 0);
|
|
assert(dst_x + w <= MP_ALIGN_UP(last->buf[1]->w, last->fmt[1].align_x));
|
|
assert(src_x + w <= MP_ALIGN_UP(first->buf[1]->w, first->fmt[0].align_x));
|
|
assert(dst_y < last->buf[1]->h);
|
|
assert(src_y < first->buf[0]->h);
|
|
assert(!(dst_x & (last->fmt[1].align_x - 1)));
|
|
assert(!(src_x & (first->fmt[0].align_x - 1)));
|
|
assert(!(w & ((1 << first->fmt[0].chroma_xs) - 1)));
|
|
assert(!(dst_y & (last->fmt[1].align_y - 1)));
|
|
assert(!(src_y & (first->fmt[0].align_y - 1)));
|
|
|
|
for (int n = 0; n < rp->num_steps; n++) {
|
|
struct repack_step *rs = &rp->steps[n];
|
|
|
|
// When writing to temporary buffers, always write to the start (maybe
|
|
// helps with locality).
|
|
int sx = rs->user_buf[0] ? src_x : 0;
|
|
int sy = rs->user_buf[0] ? src_y : 0;
|
|
int dx = rs->user_buf[1] ? dst_x : 0;
|
|
int dy = rs->user_buf[1] ? dst_y : 0;
|
|
|
|
struct mp_image *buf_a = rs->buf[rp->pack];
|
|
struct mp_image *buf_b = rs->buf[!rp->pack];
|
|
int a_x = rp->pack ? dx : sx;
|
|
int a_y = rp->pack ? dy : sy;
|
|
int b_x = rp->pack ? sx : dx;
|
|
int b_y = rp->pack ? sy : dy;
|
|
|
|
switch (rs->type) {
|
|
case REPACK_STEP_REPACK: {
|
|
if (rp->repack)
|
|
rp->repack(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w);
|
|
|
|
for (int p = 0; p < rs->fmt[0].num_planes; p++) {
|
|
if (rp->copy_buf[p])
|
|
copy_plane(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w, p);
|
|
}
|
|
break;
|
|
}
|
|
case REPACK_STEP_ENDIAN:
|
|
swap_endian(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w,
|
|
rp->endian_size);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool setup_format_ne(struct mp_repack *rp)
|
|
{
|
|
if (!rp->imgfmt_b)
|
|
setup_nv_packer(rp);
|
|
if (!rp->imgfmt_b)
|
|
setup_misc_packer(rp);
|
|
if (!rp->imgfmt_b)
|
|
setup_packed_packer(rp);
|
|
if (!rp->imgfmt_b)
|
|
setup_fringe_rgb_packer(rp);
|
|
if (!rp->imgfmt_b)
|
|
setup_fringe_yuv422_packer(rp);
|
|
if (!rp->imgfmt_b)
|
|
rp->imgfmt_b = rp->imgfmt_a; // maybe it was planar after all
|
|
|
|
struct mp_regular_imgfmt desc;
|
|
if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_b))
|
|
return false;
|
|
|
|
// no weird stuff
|
|
if (desc.num_planes > 4)
|
|
return false;
|
|
|
|
// Endian swapping.
|
|
if (rp->imgfmt_a != rp->imgfmt_user) {
|
|
struct mp_regular_imgfmt ndesc;
|
|
if (!mp_get_regular_imgfmt(&ndesc, rp->imgfmt_a) || ndesc.num_planes > 4)
|
|
return false;
|
|
rp->endian_size = ndesc.component_size;
|
|
if (rp->endian_size != 2 && rp->endian_size != 4)
|
|
return false;
|
|
}
|
|
|
|
// Accept only true planar formats (with known components and no padding).
|
|
for (int n = 0; n < desc.num_planes; n++) {
|
|
if (desc.planes[n].num_components != 1)
|
|
return false;
|
|
int c = desc.planes[n].components[0];
|
|
if (c < 1 || c > 4)
|
|
return false;
|
|
}
|
|
|
|
rp->fmt_a = mp_imgfmt_get_desc(rp->imgfmt_a);
|
|
rp->fmt_b = mp_imgfmt_get_desc(rp->imgfmt_b);
|
|
|
|
// This is if we did a pack step.
|
|
|
|
rp->steps[rp->num_steps++] = (struct repack_step) {
|
|
.type = REPACK_STEP_REPACK,
|
|
.fmt = { rp->fmt_b, rp->fmt_a },
|
|
};
|
|
|
|
if (rp->endian_size) {
|
|
rp->steps[rp->num_steps++] = (struct repack_step) {
|
|
.type = REPACK_STEP_ENDIAN,
|
|
.fmt = {
|
|
rp->fmt_a,
|
|
mp_imgfmt_get_desc(rp->imgfmt_user),
|
|
},
|
|
};
|
|
}
|
|
|
|
// Reverse if unpack (to reflect actual data flow)
|
|
if (!rp->pack) {
|
|
for (int n = 0; n < rp->num_steps / 2; n++) {
|
|
MPSWAP(struct repack_step, rp->steps[n],
|
|
rp->steps[rp->num_steps - 1 - n]);
|
|
}
|
|
for (int n = 0; n < rp->num_steps; n++) {
|
|
struct repack_step *rs = &rp->steps[n];
|
|
MPSWAP(struct mp_imgfmt_desc, rs->fmt[0], rs->fmt[1]);
|
|
}
|
|
}
|
|
|
|
for (int n = 0; n < rp->num_steps - 1; n++)
|
|
assert(rp->steps[n].fmt[1].id == rp->steps[n + 1].fmt[0].id);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void reset_params(struct mp_repack *rp)
|
|
{
|
|
rp->num_steps = 0;
|
|
rp->imgfmt_b = 0;
|
|
rp->repack = NULL;
|
|
rp->passthrough_y = false;
|
|
rp->endian_size = 0;
|
|
rp->packed_repack_scanline = NULL;
|
|
rp->comp_size = 0;
|
|
rp->comp_map = NULL;
|
|
talloc_free(rp->comp_lut);
|
|
rp->comp_lut = NULL;
|
|
}
|
|
|
|
static bool setup_format(struct mp_repack *rp)
|
|
{
|
|
reset_params(rp);
|
|
rp->imgfmt_a = rp->imgfmt_user;
|
|
if (setup_format_ne(rp))
|
|
return true;
|
|
// Try reverse endian.
|
|
reset_params(rp);
|
|
rp->imgfmt_a = mp_find_other_endian(rp->imgfmt_user);
|
|
return rp->imgfmt_a && setup_format_ne(rp);
|
|
}
|
|
|
|
struct mp_repack *mp_repack_create_planar(int imgfmt, bool pack, int flags)
|
|
{
|
|
struct mp_repack *rp = talloc_zero(NULL, struct mp_repack);
|
|
rp->imgfmt_user = imgfmt;
|
|
rp->pack = pack;
|
|
rp->flags = flags;
|
|
|
|
if (!setup_format(rp)) {
|
|
talloc_free(rp);
|
|
return NULL;
|
|
}
|
|
|
|
return rp;
|
|
}
|
|
|
|
int mp_repack_get_format_src(struct mp_repack *rp)
|
|
{
|
|
return rp->steps[0].fmt[0].id;
|
|
}
|
|
|
|
int mp_repack_get_format_dst(struct mp_repack *rp)
|
|
{
|
|
return rp->steps[rp->num_steps - 1].fmt[1].id;
|
|
}
|
|
|
|
int mp_repack_get_align_x(struct mp_repack *rp)
|
|
{
|
|
// We really want the LCM between those, but since only one of them is
|
|
// packed (or they're the same format), and the chroma subsampling is the
|
|
// same for both, only the packed one matters.
|
|
return rp->fmt_a.align_x;
|
|
}
|
|
|
|
int mp_repack_get_align_y(struct mp_repack *rp)
|
|
{
|
|
return rp->fmt_a.align_y; // should be the same for packed/planar formats
|
|
}
|
|
|
|
static void image_realloc(struct mp_image **img, int fmt, int w, int h)
|
|
{
|
|
if (*img && (*img)->imgfmt == fmt && (*img)->w == w && (*img)->h == h)
|
|
return;
|
|
talloc_free(*img);
|
|
*img = mp_image_alloc(fmt, w, h);
|
|
}
|
|
|
|
bool repack_config_buffers(struct mp_repack *rp,
|
|
int dst_flags, struct mp_image *dst,
|
|
int src_flags, struct mp_image *src,
|
|
bool *enable_passthrough)
|
|
{
|
|
struct repack_step *rs_first = &rp->steps[0];
|
|
struct repack_step *rs_last = &rp->steps[rp->num_steps - 1];
|
|
|
|
rp->configured = false;
|
|
|
|
assert(dst && src);
|
|
|
|
int buf_w = MPMAX(dst->w, src->w);
|
|
|
|
assert(dst->imgfmt == rs_last->fmt[1].id);
|
|
assert(src->imgfmt == rs_first->fmt[0].id);
|
|
|
|
// Chain/allocate buffers.
|
|
|
|
for (int n = 0; n < rp->num_steps; n++)
|
|
rp->steps[n].buf[0] = rp->steps[n].buf[1] = NULL;
|
|
|
|
rs_first->buf[0] = src;
|
|
rs_last->buf[1] = dst;
|
|
|
|
for (int n = 0; n < rp->num_steps; n++) {
|
|
struct repack_step *rs = &rp->steps[n];
|
|
|
|
if (!rs->buf[0]) {
|
|
assert(n > 0);
|
|
rs->buf[0] = rp->steps[n - 1].buf[1];
|
|
}
|
|
|
|
if (rs->buf[1])
|
|
continue;
|
|
|
|
// Note: since repack_line() can have different src/dst offsets, we
|
|
// can't do true in-place in general.
|
|
bool can_inplace = rs->type == REPACK_STEP_ENDIAN &&
|
|
rs->buf[0] != src && rs->buf[0] != dst;
|
|
if (can_inplace) {
|
|
rs->buf[1] = rs->buf[0];
|
|
continue;
|
|
}
|
|
|
|
if (rs != rs_last) {
|
|
struct repack_step *next = &rp->steps[n + 1];
|
|
if (next->buf[0]) {
|
|
rs->buf[1] = next->buf[0];
|
|
continue;
|
|
}
|
|
}
|
|
|
|
image_realloc(&rs->tmp, rs->fmt[1].id, buf_w, rs->fmt[1].align_y);
|
|
if (!rs->tmp)
|
|
return false;
|
|
talloc_steal(rp, rs->tmp);
|
|
rs->buf[1] = rs->tmp;
|
|
}
|
|
|
|
for (int n = 0; n < rp->num_steps; n++) {
|
|
struct repack_step *rs = &rp->steps[n];
|
|
rs->user_buf[0] = rs->buf[0] == src || rs->buf[0] == dst;
|
|
rs->user_buf[1] = rs->buf[1] == src || rs->buf[1] == dst;
|
|
}
|
|
|
|
// If repacking is the only operation. It's also responsible for simply
|
|
// copying src to dst if absolutely no filtering is done.
|
|
bool may_passthrough =
|
|
rp->num_steps == 1 && rp->steps[0].type == REPACK_STEP_REPACK;
|
|
|
|
for (int p = 0; p < rp->fmt_b.num_planes; p++) {
|
|
// (All repack callbacks copy, except nv12 does not copy luma.)
|
|
bool repack_copies_plane = rp->repack && !(rp->passthrough_y && p == 0);
|
|
|
|
bool can_pt = may_passthrough && !repack_copies_plane &&
|
|
enable_passthrough && enable_passthrough[p];
|
|
|
|
// Copy if needed, unless the repack callback does it anyway.
|
|
rp->copy_buf[p] = !repack_copies_plane && !can_pt;
|
|
|
|
if (enable_passthrough)
|
|
enable_passthrough[p] = can_pt && !rp->copy_buf[p];
|
|
}
|
|
|
|
if (enable_passthrough) {
|
|
for (int n = rp->fmt_b.num_planes; n < MP_MAX_PLANES; n++)
|
|
enable_passthrough[n] = false;
|
|
}
|
|
|
|
rp->configured = true;
|
|
|
|
return true;
|
|
}
|