1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-26 17:12:36 +00:00
mpv/video/mp_image.c
wm4 c613d802bc talloc: change talloc destructor signature
Change talloc destructor so that they can never signal failure, and
don't return a status code. This makes our talloc copy even more
incompatible to upstream talloc, but on the other hand this is
preparation for getting rid of talloc entirely.

(The talloc replacement in the next commit won't allow the talloc_free
equivalent to fail, and the destructor return value would be useless.
But I don't want to change any mpv code either; the idea is that the
talloc replacement commit can be reverted for some time in order to
test whether the talloc replacement introduced a regression.)
2013-10-13 01:16:30 +02:00

643 lines
21 KiB
C

/*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include <libavutil/bswap.h>
#include <libavcodec/avcodec.h>
#include "talloc.h"
#include "img_format.h"
#include "mp_image.h"
#include "sws_utils.h"
#include "memcpy_pic.h"
#include "fmt-conversion.h"
#if HAVE_PTHREADS
#include <pthread.h>
static pthread_mutex_t refcount_mutex = PTHREAD_MUTEX_INITIALIZER;
#define refcount_lock() pthread_mutex_lock(&refcount_mutex)
#define refcount_unlock() pthread_mutex_unlock(&refcount_mutex)
#else
#define refcount_lock() 0
#define refcount_unlock() 0
#endif
struct m_refcount {
void *arg;
// free() is called if refcount reaches 0.
void (*free)(void *arg);
// External refcounted object (such as libavcodec DR buffers). This assumes
// that the actual data is managed by the external object, not by
// m_refcount. The .ext_* calls use that external object's refcount
// primitives.
void (*ext_ref)(void *arg);
void (*ext_unref)(void *arg);
bool (*ext_is_unique)(void *arg);
// Native refcount (there may be additional references if .ext_* are set)
int refcount;
};
// Only for checking API usage
static void m_refcount_destructor(void *ptr)
{
struct m_refcount *ref = ptr;
assert(ref->refcount == 0);
}
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
static struct m_refcount *m_refcount_new(void)
{
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
*ref = (struct m_refcount) { .refcount = 1 };
talloc_set_destructor(ref, m_refcount_destructor);
return ref;
}
static void m_refcount_ref(struct m_refcount *ref)
{
refcount_lock();
ref->refcount++;
refcount_unlock();
if (ref->ext_ref)
ref->ext_ref(ref->arg);
}
static void m_refcount_unref(struct m_refcount *ref)
{
if (ref->ext_unref)
ref->ext_unref(ref->arg);
bool dead;
refcount_lock();
assert(ref->refcount > 0);
ref->refcount--;
dead = ref->refcount == 0;
refcount_unlock();
if (dead) {
if (ref->free)
ref->free(ref->arg);
talloc_free(ref);
}
}
static bool m_refcount_is_unique(struct m_refcount *ref)
{
bool nonunique;
refcount_lock();
nonunique = ref->refcount > 1;
refcount_unlock();
if (nonunique)
return false;
if (ref->ext_is_unique)
return ref->ext_is_unique(ref->arg); // referenced only by us
return true;
}
static void mp_image_alloc_planes(struct mp_image *mpi)
{
assert(!mpi->planes[0]);
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
// top/right border. This is needed for correct handling of such
// images in filter and VO code (e.g. vo_vdpau or vo_opengl).
size_t plane_size[MP_MAX_PLANES];
for (int n = 0; n < MP_MAX_PLANES; n++) {
int alloc_h = MP_ALIGN_UP(mpi->h, 32) >> mpi->fmt.ys[n];
int line_bytes = (mpi->plane_w[n] * mpi->fmt.bpp[n] + 7) / 8;
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
plane_size[n] = mpi->stride[n] * alloc_h;
}
if (mpi->imgfmt == IMGFMT_PAL8)
plane_size[1] = MP_PALETTE_SIZE;
size_t sum = 0;
for (int n = 0; n < MP_MAX_PLANES; n++)
sum += plane_size[n];
uint8_t *data = av_malloc(FFMAX(sum, 1));
if (!data)
abort(); //out of memory
for (int n = 0; n < MP_MAX_PLANES; n++) {
mpi->planes[n] = plane_size[n] ? data : NULL;
data += plane_size[n];
}
}
void mp_image_setfmt(struct mp_image *mpi, unsigned int out_fmt)
{
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
mpi->fmt = fmt;
mpi->flags = fmt.flags;
mpi->imgfmt = fmt.id;
mpi->chroma_x_shift = fmt.chroma_xs;
mpi->chroma_y_shift = fmt.chroma_ys;
mpi->num_planes = fmt.num_planes;
mp_image_set_size(mpi, mpi->w, mpi->h);
}
static void mp_image_destructor(void *ptr)
{
mp_image_t *mpi = ptr;
m_refcount_unref(mpi->refcount);
}
static int mp_chroma_div_up(int size, int shift)
{
return (size + (1 << shift) - 1) >> shift;
}
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
mpi->w = mpi->display_w = w;
mpi->h = mpi->display_h = h;
for (int n = 0; n < mpi->num_planes; n++) {
mpi->plane_w[n] = mp_chroma_div_up(mpi->w, mpi->fmt.xs[n]);
mpi->plane_h[n] = mp_chroma_div_up(mpi->h, mpi->fmt.ys[n]);
}
mpi->chroma_width = mpi->plane_w[1];
mpi->chroma_height = mpi->plane_h[1];
}
void mp_image_set_display_size(struct mp_image *mpi, int dw, int dh)
{
mpi->display_w = dw;
mpi->display_h = dh;
}
struct mp_image *mp_image_alloc(unsigned int imgfmt, int w, int h)
{
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
talloc_set_destructor(mpi, mp_image_destructor);
mp_image_set_size(mpi, w, h);
mp_image_setfmt(mpi, imgfmt);
mp_image_alloc_planes(mpi);
mpi->refcount = m_refcount_new();
mpi->refcount->free = av_free;
mpi->refcount->arg = mpi->planes[0];
return mpi;
}
struct mp_image *mp_image_new_copy(struct mp_image *img)
{
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
mp_image_copy(new, img);
mp_image_copy_attributes(new, img);
// Normally these are covered by the reference to the original image data
// (like the AVFrame in vd_lavc.c), but we can't manage it on our own.
new->qscale = NULL;
new->qstride = 0;
return new;
}
// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
assert(dst->refcount && src->refcount);
for (int p = 0; p < MP_MAX_PLANES; p++) {
dst->planes[p] = src->planes[p];
dst->stride[p] = src->stride[p];
}
mp_image_copy_attributes(dst, src);
m_refcount_unref(dst->refcount);
dst->refcount = src->refcount;
talloc_set_destructor(src, NULL);
talloc_free(src);
}
// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
if (!img->refcount)
return mp_image_new_copy(img);
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
m_refcount_ref(new->refcount);
return new;
}
// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
void (*free)(void *arg))
{
return mp_image_new_external_ref(img, free_arg, NULL, NULL, NULL, free);
}
// Return a reference counted reference to img. ref/unref/is_unique are used to
// connect to an external refcounting API. It is assumed that the new object
// has an initial reference to that external API. If free is given, that is
// called after the last unref. All function pointers are optional.
struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
void (*ref)(void *arg),
void (*unref)(void *arg),
bool (*is_unique)(void *arg),
void (*free)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->ext_ref = ref;
new->refcount->ext_unref = unref;
new->refcount->ext_is_unique = is_unique;
new->refcount->free = free;
new->refcount->arg = arg;
return new;
}
bool mp_image_is_writeable(struct mp_image *img)
{
if (!img->refcount)
return true; // not ref-counted => always considered writeable
return m_refcount_is_unique(img->refcount);
}
// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
void mp_image_make_writeable(struct mp_image *img)
{
if (mp_image_is_writeable(img))
return;
mp_image_steal_data(img, mp_image_new_copy(img));
assert(mp_image_is_writeable(img));
}
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
if (*p_img != new_value) {
talloc_free(*p_img);
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
}
}
// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
talloc_free(*p_img);
*p_img = NULL;
}
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt);
assert(dst->w == src->w && dst->h == src->h);
assert(mp_image_is_writeable(dst));
for (int n = 0; n < dst->num_planes; n++) {
int line_bytes = (dst->plane_w[n] * dst->fmt.bpp[n] + 7) / 8;
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, dst->plane_h[n],
dst->stride[n], src->stride[n]);
}
if (dst->imgfmt == IMGFMT_PAL8)
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
dst->pict_type = src->pict_type;
dst->fields = src->fields;
dst->qscale_type = src->qscale_type;
dst->pts = src->pts;
if (dst->w == src->w && dst->h == src->h) {
dst->display_w = src->display_w;
dst->display_h = src->display_h;
}
if ((dst->flags & MP_IMGFLAG_YUV) == (src->flags & MP_IMGFLAG_YUV)) {
dst->colorspace = src->colorspace;
dst->levels = src->levels;
dst->chroma_location = src->chroma_location;
}
if (dst->imgfmt == IMGFMT_PAL8 && src->imgfmt == IMGFMT_PAL8) {
if (dst->planes[1] && src->planes[1])
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
}
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
// x0/y0 must be naturally aligned.
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
for (int p = 0; p < img->num_planes; ++p) {
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
}
mp_image_set_size(img, x1 - x0, y1 - y0);
}
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
{
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
}
// Bottom/right border is allowed not to be aligned, but it might implicitly
// overwrite pixel data until the alignment (align_x/align_y) is reached.
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
struct mp_image area = *img;
mp_image_crop(&area, x0, y0, x1, y1);
uint32_t plane_clear[MP_MAX_PLANES] = {0};
if (area.imgfmt == IMGFMT_YUYV) {
plane_clear[0] = av_le2ne16(0x8000);
} else if (area.imgfmt == IMGFMT_UYVY) {
plane_clear[0] = av_le2ne16(0x0080);
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
plane_clear[1] = 0x8080;
} else if (area.flags & MP_IMGFLAG_YUV_P) {
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
if (!(area.flags & MP_IMGFLAG_NE))
chroma_clear = av_bswap16(chroma_clear);
if (area.num_planes > 2)
plane_clear[1] = plane_clear[2] = chroma_clear;
}
for (int p = 0; p < area.num_planes; p++) {
int bpp = area.fmt.bpp[p];
int bytes = (area.plane_w[p] * bpp + 7) / 8;
if (bpp <= 8) {
memset_pic(area.planes[p], plane_clear[p], bytes,
area.plane_h[p], area.stride[p]);
} else {
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
area.plane_h[p], area.stride[p]);
}
}
}
void mp_image_vflip(struct mp_image *img)
{
for (int p = 0; p < img->num_planes; p++) {
img->planes[p] = img->planes[p] + img->stride[p] * (img->plane_h[p] - 1);
img->stride[p] = -img->stride[p];
}
}
bool mp_image_params_equals(const struct mp_image_params *p1,
const struct mp_image_params *p2)
{
return p1->imgfmt == p2->imgfmt &&
p1->w == p2->w && p1->h == p2->h &&
p1->d_w == p2->d_w && p1->d_h == p2->d_h &&
p1->colorspace == p2->colorspace &&
p1->colorlevels == p2->colorlevels &&
p1->chroma_location == p2->chroma_location;
}
void mp_image_params_from_image(struct mp_image_params *params,
const struct mp_image *image)
{
// (Ideally mp_image should use mp_image_params directly instead)
*params = (struct mp_image_params) {
.imgfmt = image->imgfmt,
.w = image->w,
.h = image->h,
.d_w = image->display_w,
.d_h = image->display_h,
.colorspace = image->colorspace,
.colorlevels = image->levels,
.chroma_location = image->chroma_location,
};
}
void mp_image_set_params(struct mp_image *image,
const struct mp_image_params *params)
{
mp_image_setfmt(image, params->imgfmt);
mp_image_set_size(image, params->w, params->h);
mp_image_set_display_size(image, params->d_w, params->d_h);
image->colorspace = params->colorspace;
image->levels = params->colorlevels;
image->chroma_location = params->chroma_location;
}
void mp_image_set_colorspace_details(struct mp_image *image,
struct mp_csp_details *csp)
{
struct mp_image_params params;
mp_image_params_from_image(&params, image);
params.colorspace = csp->format;
params.colorlevels = csp->levels_in;
mp_image_params_guess_csp(&params);
image->colorspace = params.colorspace;
image->levels = params.colorlevels;
}
// If details like params->colorspace/colorlevels are missing, guess them from
// the other settings. Also, even if they are set, make them consistent with
// the colorspace as implied by the pixel format.
void mp_image_params_guess_csp(struct mp_image_params *params)
{
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(params->imgfmt);
if (!fmt.id)
return;
if (fmt.flags & MP_IMGFLAG_YUV) {
if (params->colorspace != MP_CSP_BT_601 &&
params->colorspace != MP_CSP_BT_709 &&
params->colorspace != MP_CSP_SMPTE_240M &&
params->colorspace != MP_CSP_YCGCO)
{
// Makes no sense, so guess instead
// YCGCO should be separate, but libavcodec disagrees
params->colorspace = MP_CSP_AUTO;
}
if (params->colorspace == MP_CSP_AUTO)
params->colorspace = mp_csp_guess_colorspace(params->w, params->h);
if (params->colorlevels == MP_CSP_LEVELS_AUTO)
params->colorlevels = MP_CSP_LEVELS_TV;
} else if (fmt.flags & MP_IMGFLAG_RGB) {
params->colorspace = MP_CSP_RGB;
params->colorlevels = MP_CSP_LEVELS_PC;
} else if (fmt.flags & MP_IMGFLAG_XYZ) {
params->colorspace = MP_CSP_XYZ;
params->colorlevels = MP_CSP_LEVELS_PC;
} else {
// We have no clue.
params->colorspace = MP_CSP_AUTO;
params->colorlevels = MP_CSP_LEVELS_AUTO;
}
}
// Copy properties and data of the AVFrame into the mp_image, without taking
// care of memory management issues.
void mp_image_copy_fields_from_av_frame(struct mp_image *dst,
struct AVFrame *src)
{
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
mp_image_set_size(dst, src->width, src->height);
for (int i = 0; i < 4; i++) {
dst->planes[i] = src->data[i];
dst->stride[i] = src->linesize[i];
}
dst->pict_type = src->pict_type;
dst->fields = MP_IMGFIELD_ORDERED;
if (src->interlaced_frame)
dst->fields |= MP_IMGFIELD_INTERLACED;
if (src->top_field_first)
dst->fields |= MP_IMGFIELD_TOP_FIRST;
if (src->repeat_pict == 1)
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
#if HAVE_AVUTIL_QP_API
dst->qscale = av_frame_get_qp_table(src, &dst->qstride, &dst->qscale_type);
#else
dst->qscale = src->qscale_table;
dst->qstride = src->qstride;
dst->qscale_type = src->qscale_type;
#endif
}
// Not strictly related, but was added in a similar timeframe.
#define HAVE_AVFRAME_COLORSPACE HAVE_AVCODEC_CHROMA_POS_API
// Copy properties and data of the mp_image into the AVFrame, without taking
// care of memory management issues.
void mp_image_copy_fields_to_av_frame(struct AVFrame *dst,
struct mp_image *src)
{
dst->format = imgfmt2pixfmt(src->imgfmt);
dst->width = src->w;
dst->height = src->h;
for (int i = 0; i < 4; i++) {
dst->data[i] = src->planes[i];
dst->linesize[i] = src->stride[i];
}
dst->extended_data = dst->data;
dst->pict_type = src->pict_type;
if (src->fields & MP_IMGFIELD_INTERLACED)
dst->interlaced_frame = 1;
if (src->fields & MP_IMGFIELD_TOP_FIRST)
dst->top_field_first = 1;
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
dst->repeat_pict = 1;
#if HAVE_AVFRAME_COLORSPACE
dst->colorspace = mp_csp_to_avcol_spc(src->colorspace);
dst->color_range = mp_csp_levels_to_avcol_range(src->levels);
#endif
}
#if HAVE_AVUTIL_REFCOUNTING
static void frame_free(void *p)
{
AVFrame *frame = p;
av_frame_free(&frame);
}
static bool frame_is_unique(void *p)
{
AVFrame *frame = p;
return av_frame_is_writable(frame);
}
// Create a new mp_image reference to av_frame.
struct mp_image *mp_image_from_av_frame(struct AVFrame *av_frame)
{
AVFrame *new_ref = av_frame_clone(av_frame);
if (!new_ref)
abort(); // OOM
struct mp_image t = {0};
mp_image_copy_fields_from_av_frame(&t, new_ref);
return mp_image_new_external_ref(&t, new_ref, NULL, NULL, frame_is_unique,
frame_free);
}
static void free_img(void *opaque, uint8_t *data)
{
struct mp_image *img = opaque;
talloc_free(img);
}
// Convert the mp_image reference to a AVFrame reference.
// Warning: img is unreferenced (i.e. free'd). This is asymmetric to
// mp_image_from_av_frame(). It's done this way to allow marking the
// resulting AVFrame as writeable if img is the only reference (in
// other words, it's an optimization).
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
{
struct mp_image *new_ref = mp_image_new_ref(img); // ensure it's refcounted
talloc_free(img);
AVFrame *frame = av_frame_alloc();
mp_image_copy_fields_to_av_frame(frame, new_ref);
// Caveat: if img has shared references, and all other references disappear
// at a later point, the AVFrame will still be read-only.
int flags = 0;
if (!mp_image_is_writeable(new_ref))
flags |= AV_BUFFER_FLAG_READONLY;
for (int n = 0; n < new_ref->num_planes; n++) {
// Make it so that the actual image data is freed only if _all_ buffers
// are unreferenced.
struct mp_image *dummy_ref = mp_image_new_ref(new_ref);
void *ptr = new_ref->planes[n];
size_t size = new_ref->stride[n] * new_ref->h;
frame->buf[n] = av_buffer_create(ptr, size, free_img, dummy_ref, flags);
}
talloc_free(new_ref);
return frame;
}
#endif /* HAVE_AVUTIL_REFCOUNTING */