mirror of
https://github.com/mpv-player/mpv
synced 2024-12-26 09:02:38 +00:00
ba4694f4bb
(including MS, DK4 and DK3 ADPCM) git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@4855 b3059339-0415-0410-9bf9-f77b7e298cf2
442 lines
11 KiB
C
442 lines
11 KiB
C
/*
|
|
Unified ADPCM Decoder for MPlayer
|
|
|
|
This file is in charge of decoding all of the various ADPCM data
|
|
formats that various entities have created. Details about the data
|
|
formats can be found here:
|
|
http://www.pcisys.net/~melanson/codecs/
|
|
|
|
(C) 2001 Mike Melanson
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "bswap.h"
|
|
#include "adpcm.h"
|
|
#include "mp_msg.h"
|
|
|
|
#define BE_16(x) (be2me_16(*(unsigned short *)(x)))
|
|
#define BE_32(x) (be2me_32(*(unsigned int *)(x)))
|
|
#define LE_16(x) (le2me_16(*(unsigned short *)(x)))
|
|
#define LE_32(x) (le2me_32(*(unsigned int *)(x)))
|
|
|
|
// pertinent tables
|
|
static int adpcm_step[89] =
|
|
{
|
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
|
|
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
|
|
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
|
|
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
|
|
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
|
|
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
|
|
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
|
|
};
|
|
|
|
static int adpcm_index[16] =
|
|
{
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
-1, -1, -1, -1, 2, 4, 6, 8
|
|
};
|
|
|
|
static int ms_adapt_table[] =
|
|
{
|
|
230, 230, 230, 230, 307, 409, 512, 614,
|
|
768, 614, 512, 409, 307, 230, 230, 230
|
|
};
|
|
|
|
static int ms_adapt_coeff1[] =
|
|
{
|
|
256, 512, 0, 192, 240, 460, 392
|
|
};
|
|
|
|
static int ms_adapt_coeff2[] =
|
|
{
|
|
0, -256, 0, 64, 0, -208, -232
|
|
};
|
|
|
|
// useful macros
|
|
// clamp a number between 0 and 88
|
|
#define CLAMP_0_TO_88(x) if (x < 0) x = 0; else if (x > 88) x = 88;
|
|
// clamp a number within a signed 16-bit range
|
|
#define CLAMP_S16(x) if (x < -32768) x = -32768; \
|
|
else if (x > 32767) x = 32767;
|
|
// clamp a number above 16
|
|
#define CLAMP_ABOVE_16(x) if (x < 16) x = 16;
|
|
// sign extend a 16-bit value
|
|
#define SE_16BIT(x) if (x & 0x8000) x -= 0x10000;
|
|
// sign extend a 4-bit value
|
|
#define SE_4BIT(x) if (x & 0x8) x -= 0x10;
|
|
|
|
void decode_nibbles(unsigned short *output,
|
|
int output_size, int channels,
|
|
int predictor_l, int index_l,
|
|
int predictor_r, int index_r)
|
|
{
|
|
int step[2];
|
|
int predictor[2];
|
|
int index[2];
|
|
int diff;
|
|
int i;
|
|
int sign;
|
|
int delta;
|
|
int channel_number = 0;
|
|
|
|
step[0] = adpcm_step[index_l];
|
|
step[1] = adpcm_step[index_r];
|
|
predictor[0] = predictor_l;
|
|
predictor[1] = predictor_r;
|
|
index[0] = index_l;
|
|
index[1] = index_r;
|
|
|
|
for (i = 0; i < output_size; i++)
|
|
{
|
|
delta = output[i];
|
|
|
|
index[channel_number] += adpcm_index[delta];
|
|
CLAMP_0_TO_88(index[channel_number]);
|
|
|
|
sign = delta & 8;
|
|
delta = delta & 7;
|
|
|
|
diff = step[channel_number] >> 3;
|
|
if (delta & 4) diff += step[channel_number];
|
|
if (delta & 2) diff += step[channel_number] >> 1;
|
|
if (delta & 1) diff += step[channel_number] >> 2;
|
|
|
|
if (sign)
|
|
predictor[channel_number] -= diff;
|
|
else
|
|
predictor[channel_number] += diff;
|
|
|
|
CLAMP_S16(predictor[channel_number]);
|
|
output[i] = predictor[channel_number];
|
|
step[channel_number] = adpcm_step[index[channel_number]];
|
|
|
|
// toggle channel
|
|
channel_number ^= channels - 1;
|
|
|
|
}
|
|
}
|
|
|
|
int ima_adpcm_decode_block(unsigned short *output, unsigned char *input,
|
|
int channels)
|
|
{
|
|
int initial_predictor_l = 0;
|
|
int initial_predictor_r = 0;
|
|
int initial_index_l = 0;
|
|
int initial_index_r = 0;
|
|
int i;
|
|
|
|
initial_predictor_l = BE_16(&input[0]);
|
|
initial_index_l = initial_predictor_l;
|
|
|
|
// mask, sign-extend, and clamp the predictor portion
|
|
initial_predictor_l &= 0xFF80;
|
|
SE_16BIT(initial_predictor_l);
|
|
CLAMP_S16(initial_predictor_l);
|
|
|
|
// mask and clamp the index portion
|
|
initial_index_l &= 0x7F;
|
|
CLAMP_0_TO_88(initial_index_l);
|
|
|
|
// handle stereo
|
|
if (channels > 1)
|
|
{
|
|
initial_predictor_r = BE_16(&input[IMA_ADPCM_BLOCK_SIZE]);
|
|
initial_index_r = initial_predictor_r;
|
|
|
|
// mask, sign-extend, and clamp the predictor portion
|
|
initial_predictor_r &= 0xFF80;
|
|
SE_16BIT(initial_predictor_r);
|
|
CLAMP_S16(initial_predictor_r);
|
|
|
|
// mask and clamp the index portion
|
|
initial_index_r &= 0x7F;
|
|
CLAMP_0_TO_88(initial_index_r);
|
|
}
|
|
|
|
// break apart all of the nibbles in the block
|
|
if (channels == 1)
|
|
for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2; i++)
|
|
{
|
|
output[i * 2 + 0] = input[2 + i] & 0x0F;
|
|
output[i * 2 + 1] = input[2 + i] >> 4;
|
|
}
|
|
else
|
|
for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2 * 2; i++)
|
|
{
|
|
output[i * 4 + 0] = input[2 + i] & 0x0F;
|
|
output[i * 4 + 1] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] & 0x0F;
|
|
output[i * 4 + 2] = input[2 + i] >> 4;
|
|
output[i * 4 + 3] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] >> 4;
|
|
}
|
|
|
|
decode_nibbles(output,
|
|
IMA_ADPCM_SAMPLES_PER_BLOCK * channels, channels,
|
|
initial_predictor_l, initial_index_l,
|
|
initial_predictor_r, initial_index_r);
|
|
|
|
return IMA_ADPCM_SAMPLES_PER_BLOCK * channels;
|
|
}
|
|
|
|
int ms_adpcm_decode_block(unsigned short *output, unsigned char *input,
|
|
int channels, int block_size)
|
|
{
|
|
int current_channel = 0;
|
|
int idelta[2];
|
|
int sample1[2];
|
|
int sample2[2];
|
|
int coeff1[2];
|
|
int coeff2[2];
|
|
int stream_ptr = 0;
|
|
int out_ptr = 0;
|
|
int upper_nibble = 1;
|
|
int nibble;
|
|
int snibble; // signed nibble
|
|
int predictor;
|
|
|
|
// fetch the header information, in stereo if both channels are present
|
|
if (input[stream_ptr] > 6)
|
|
mp_msg(MSGT_DECAUDIO, MSGL_WARN,
|
|
"MS ADPCM: coefficient (%d) out of range (should be [0..6])\n",
|
|
input[stream_ptr]);
|
|
coeff1[0] = ms_adapt_coeff1[input[stream_ptr]];
|
|
coeff2[0] = ms_adapt_coeff2[input[stream_ptr]];
|
|
stream_ptr++;
|
|
if (channels == 2)
|
|
{
|
|
if (input[stream_ptr] > 6)
|
|
mp_msg(MSGT_DECAUDIO, MSGL_WARN,
|
|
"MS ADPCM: coefficient (%d) out of range (should be [0..6])\n",
|
|
input[stream_ptr]);
|
|
coeff1[1] = ms_adapt_coeff1[input[stream_ptr]];
|
|
coeff2[1] = ms_adapt_coeff2[input[stream_ptr]];
|
|
stream_ptr++;
|
|
}
|
|
|
|
idelta[0] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(idelta[0]);
|
|
if (channels == 2)
|
|
{
|
|
idelta[1] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(idelta[1]);
|
|
}
|
|
|
|
sample1[0] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(sample1[0]);
|
|
if (channels == 2)
|
|
{
|
|
sample1[1] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(sample1[1]);
|
|
}
|
|
|
|
sample2[0] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(sample2[0]);
|
|
if (channels == 2)
|
|
{
|
|
sample2[1] = LE_16(&input[stream_ptr]);
|
|
stream_ptr += 2;
|
|
SE_16BIT(sample2[1]);
|
|
}
|
|
|
|
while (stream_ptr < block_size)
|
|
{
|
|
// get the next nibble
|
|
if (upper_nibble)
|
|
nibble = snibble = input[stream_ptr] >> 4;
|
|
else
|
|
nibble = snibble = input[stream_ptr++] & 0x0F;
|
|
upper_nibble ^= 1;
|
|
SE_4BIT(snibble);
|
|
|
|
predictor = (
|
|
((sample1[current_channel] * coeff1[current_channel]) +
|
|
(sample2[current_channel] * coeff2[current_channel])) / 256) +
|
|
(snibble * idelta[current_channel]);
|
|
CLAMP_S16(predictor);
|
|
sample2[current_channel] = sample1[current_channel];
|
|
sample1[current_channel] = predictor;
|
|
output[out_ptr++] = predictor;
|
|
|
|
// compute the next adaptive scale factor (a.k.a. the variable idelta)
|
|
idelta[current_channel] =
|
|
(ms_adapt_table[nibble] * idelta[current_channel]) / 256;
|
|
CLAMP_ABOVE_16(idelta[current_channel]);
|
|
|
|
// toggle the channel
|
|
current_channel ^= channels - 1;
|
|
}
|
|
|
|
return (block_size - (MS_ADPCM_PREAMBLE_SIZE * channels)) * 2;
|
|
}
|
|
|
|
int dk4_adpcm_decode_block(unsigned short *output, unsigned char *input,
|
|
int channels, int block_size)
|
|
{
|
|
int i;
|
|
int output_ptr;
|
|
int predictor_l = 0;
|
|
int predictor_r = 0;
|
|
int index_l = 0;
|
|
int index_r = 0;
|
|
|
|
// the first predictor value goes straight to the output
|
|
predictor_l = output[0] = LE_16(&input[0]);
|
|
SE_16BIT(predictor_l);
|
|
index_l = input[2];
|
|
if (channels == 2)
|
|
{
|
|
predictor_r = output[1] = LE_16(&input[4]);
|
|
SE_16BIT(predictor_r);
|
|
index_r = input[6];
|
|
}
|
|
|
|
output_ptr = channels;
|
|
for (i = DK4_ADPCM_PREAMBLE_SIZE * channels; i < block_size; i++)
|
|
{
|
|
output[output_ptr++] = input[i] >> 4;
|
|
output[output_ptr++] = input[i] & 0x0F;
|
|
}
|
|
|
|
decode_nibbles(&output[channels],
|
|
(block_size - DK4_ADPCM_PREAMBLE_SIZE * channels) * 2 - channels,
|
|
channels,
|
|
predictor_l, index_l,
|
|
predictor_r, index_r);
|
|
|
|
return (block_size - DK4_ADPCM_PREAMBLE_SIZE * channels) * 2 - channels;
|
|
}
|
|
|
|
#define DK3_GET_NEXT_NIBBLE() \
|
|
if (decode_top_nibble_next) \
|
|
{ \
|
|
nibble = (last_byte >> 4) & 0x0F; \
|
|
decode_top_nibble_next = 0; \
|
|
} \
|
|
else \
|
|
{ \
|
|
last_byte = input[in_ptr++]; \
|
|
nibble = last_byte & 0x0F; \
|
|
decode_top_nibble_next = 1; \
|
|
}
|
|
|
|
// note: This decoder assumes the format 0x62 data always comes in
|
|
// stereo flavor
|
|
int dk3_adpcm_decode_block(unsigned short *output, unsigned char *input)
|
|
{
|
|
int sum_pred;
|
|
int diff_pred;
|
|
int sum_index;
|
|
int diff_index;
|
|
int diff_channel;
|
|
int in_ptr = 0x10;
|
|
int out_ptr = 0;
|
|
|
|
unsigned char last_byte = 0;
|
|
unsigned char nibble;
|
|
int decode_top_nibble_next = 0;
|
|
|
|
// ADPCM work variables
|
|
int sign;
|
|
int delta;
|
|
int step;
|
|
int diff;
|
|
|
|
sum_pred = LE_16(&input[10]);
|
|
diff_pred = LE_16(&input[12]);
|
|
SE_16BIT(sum_pred);
|
|
SE_16BIT(diff_pred);
|
|
diff_channel = diff_pred;
|
|
sum_index = input[14];
|
|
diff_index = input[15];
|
|
|
|
while (in_ptr < 2048)
|
|
{
|
|
// process the first predictor of the sum channel
|
|
DK3_GET_NEXT_NIBBLE();
|
|
|
|
step = adpcm_step[sum_index];
|
|
|
|
sign = nibble & 8;
|
|
delta = nibble & 7;
|
|
|
|
diff = step >> 3;
|
|
if (delta & 4) diff += step;
|
|
if (delta & 2) diff += step >> 1;
|
|
if (delta & 1) diff += step >> 2;
|
|
|
|
if (sign)
|
|
sum_pred -= diff;
|
|
else
|
|
sum_pred += diff;
|
|
|
|
CLAMP_S16(sum_pred);
|
|
|
|
sum_index += adpcm_index[nibble];
|
|
CLAMP_0_TO_88(sum_index);
|
|
|
|
// process the diff channel predictor
|
|
DK3_GET_NEXT_NIBBLE();
|
|
|
|
step = adpcm_step[diff_index];
|
|
|
|
sign = nibble & 8;
|
|
delta = nibble & 7;
|
|
|
|
diff = step >> 3;
|
|
if (delta & 4) diff += step;
|
|
if (delta & 2) diff += step >> 1;
|
|
if (delta & 1) diff += step >> 2;
|
|
|
|
if (sign)
|
|
diff_pred -= diff;
|
|
else
|
|
diff_pred += diff;
|
|
|
|
CLAMP_S16(diff_pred);
|
|
|
|
diff_index += adpcm_index[nibble];
|
|
CLAMP_0_TO_88(diff_index);
|
|
|
|
// output the first pair of stereo PCM samples
|
|
diff_channel = (diff_channel + diff_pred) / 2;
|
|
output[out_ptr++] = sum_pred + diff_channel;
|
|
output[out_ptr++] = sum_pred - diff_channel;
|
|
|
|
// process the second predictor of the sum channel
|
|
DK3_GET_NEXT_NIBBLE();
|
|
|
|
step = adpcm_step[sum_index];
|
|
|
|
sign = nibble & 8;
|
|
delta = nibble & 7;
|
|
|
|
diff = step >> 3;
|
|
if (delta & 4) diff += step;
|
|
if (delta & 2) diff += step >> 1;
|
|
if (delta & 1) diff += step >> 2;
|
|
|
|
if (sign)
|
|
sum_pred -= diff;
|
|
else
|
|
sum_pred += diff;
|
|
|
|
CLAMP_S16(sum_pred);
|
|
|
|
sum_index += adpcm_index[nibble];
|
|
CLAMP_0_TO_88(sum_index);
|
|
|
|
// output the second pair of stereo PCM samples
|
|
output[out_ptr++] = sum_pred + diff_channel;
|
|
output[out_ptr++] = sum_pred - diff_channel;
|
|
}
|
|
|
|
return out_ptr;
|
|
}
|