1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-25 08:12:17 +00:00
mpv/mixer.c
Uoti Urpala 39aa7d9846 mixer: support native audio driver mute
Make mixer support setting the mute attribute at audio driver level,
if one exists separately from volume. As of this commit, no libao2
driver exposes such an attribute yet; that will be added in later
commits.

Since the mute status can now be set externally, it's no longer
completely obvious when the player should automatically disable mute
when uninitializing an audio output. The implemented behavior is to
turn mute off at uninitialization if we turned it on and haven't
noticed it turn off (by external means) since.
2012-04-11 03:56:28 +03:00

284 lines
9.9 KiB
C

/*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include <libavutil/common.h>
#include "config.h"
#include "libao2/audio_out.h"
#include "libaf/af.h"
#include "mp_msg.h"
#include "mixer.h"
static void checkvolume(struct mixer *mixer)
{
if (!mixer->ao)
return;
ao_control_vol_t vol;
if (mixer->softvol || CONTROL_OK != ao_control(mixer->ao,
AOCONTROL_GET_VOLUME, &vol)) {
mixer->softvol = true;
if (!mixer->afilter)
return;
float db_vals[AF_NCH];
if (!af_control_any_rev(mixer->afilter,
AF_CONTROL_VOLUME_LEVEL | AF_CONTROL_GET, db_vals))
db_vals[0] = db_vals[1] = 1.0;
else
af_from_dB(2, db_vals, db_vals, 20.0, -200.0, 60.0);
vol.left = (db_vals[0] / (mixer->softvol_max / 100.0)) * 100.0;
vol.right = (db_vals[1] / (mixer->softvol_max / 100.0)) * 100.0;
}
float l = mixer->vol_l;
float r = mixer->vol_r;
if (mixer->muted_using_volume)
l = r = 0;
/* Try to detect cases where the volume has been changed by some external
* action (such as something else changing a shared system-wide volume).
* We don't test for exact equality, as some AOs may round the value
* we last set to some nearby supported value. 3 has been the default
* volume step for increase/decrease keys, and is apparently big enough
* to step to the next possible value in most setups.
*/
if (FFABS(vol.left - l) >= 3 || FFABS(vol.right - r) >= 3) {
mixer->vol_l = vol.left;
mixer->vol_r = vol.right;
if (mixer->muted_using_volume)
mixer->muted = false;
}
if (!mixer->softvol)
// Rely on the value not changing if the query is not supported
ao_control(mixer->ao, AOCONTROL_GET_MUTE, &mixer->muted);
mixer->muted_by_us &= mixer->muted;
mixer->muted_using_volume &= mixer->muted;
}
void mixer_getvolume(mixer_t *mixer, float *l, float *r)
{
checkvolume(mixer);
*l = mixer->vol_l;
*r = mixer->vol_r;
}
static void setvolume_internal(mixer_t *mixer, float l, float r)
{
struct ao_control_vol vol = {.left = l, .right = r};
if (!mixer->softvol) {
// relies on the driver data being permanent (so ptr stays valid)
mixer->restore_volume = mixer->ao->no_persistent_volume ?
mixer->ao->driver->info->short_name : NULL;
if (ao_control(mixer->ao, AOCONTROL_SET_VOLUME, &vol) != CONTROL_OK)
mp_tmsg(MSGT_GLOBAL, MSGL_ERR,
"[Mixer] Failed to change audio output volume.\n");
return;
}
mixer->restore_volume = "softvol";
if (!mixer->afilter)
return;
// af_volume uses values in dB
float db_vals[AF_NCH];
int i;
db_vals[0] = (l / 100.0) * (mixer->softvol_max / 100.0);
db_vals[1] = (r / 100.0) * (mixer->softvol_max / 100.0);
for (i = 2; i < AF_NCH; i++)
db_vals[i] = ((l + r) / 100.0) * (mixer->softvol_max / 100.0) / 2.0;
af_to_dB(AF_NCH, db_vals, db_vals, 20.0);
if (!af_control_any_rev(mixer->afilter,
AF_CONTROL_VOLUME_LEVEL | AF_CONTROL_SET,
db_vals)) {
mp_tmsg(MSGT_GLOBAL, MSGL_INFO,
"[Mixer] No hardware mixing, inserting volume filter.\n");
if (!(af_add(mixer->afilter, "volume")
&& af_control_any_rev(mixer->afilter,
AF_CONTROL_VOLUME_LEVEL | AF_CONTROL_SET,
db_vals)))
mp_tmsg(MSGT_GLOBAL, MSGL_ERR,
"[Mixer] No volume control available.\n");
}
}
void mixer_setvolume(mixer_t *mixer, float l, float r)
{
checkvolume(mixer); // to check mute status and AO support for volume
mixer->vol_l = av_clip(l, 0, 100);
mixer->vol_r = av_clip(r, 0, 100);
if (!mixer->ao || mixer->muted)
return;
setvolume_internal(mixer, mixer->vol_l, mixer->vol_r);
}
void mixer_getbothvolume(mixer_t *mixer, float *b)
{
float mixer_l, mixer_r;
mixer_getvolume(mixer, &mixer_l, &mixer_r);
*b = (mixer_l + mixer_r) / 2;
}
void mixer_setmute(struct mixer *mixer, bool mute)
{
checkvolume(mixer);
if (mute != mixer->muted) {
if (!mixer->softvol && !mixer->muted_using_volume && ao_control(
mixer->ao, AOCONTROL_SET_MUTE, &mute) == CONTROL_OK) {
mixer->muted_using_volume = false;
} else {
setvolume_internal(mixer, mixer->vol_l*!mute, mixer->vol_r*!mute);
mixer->muted_using_volume = mute;
}
mixer->muted = mute;
mixer->muted_by_us = mute;
}
}
bool mixer_getmute(struct mixer *mixer)
{
checkvolume(mixer);
return mixer->muted;
}
static void addvolume(struct mixer *mixer, float d)
{
checkvolume(mixer);
mixer_setvolume(mixer, mixer->vol_l + d, mixer->vol_r + d);
if (d > 0)
mixer_setmute(mixer, false);
}
void mixer_incvolume(mixer_t *mixer)
{
addvolume(mixer, mixer->volstep);
}
void mixer_decvolume(mixer_t *mixer)
{
addvolume(mixer, -mixer->volstep);
}
void mixer_getbalance(mixer_t *mixer, float *val)
{
if (mixer->afilter)
af_control_any_rev(mixer->afilter,
AF_CONTROL_PAN_BALANCE | AF_CONTROL_GET,
&mixer->balance);
*val = mixer->balance;
}
/* NOTE: Currently the balance code is seriously buggy: it always changes
* the af_pan mapping between the first two input channels and first two
* output channels to particular values. These values make sense for an
* af_pan instance that was automatically inserted for balance control
* only and is otherwise an identity transform, but if the filter was
* there for another reason, then ignoring and overriding the original
* values is completely wrong. In particular, this will break
* automatically inserted downmix filters; the original coefficients that
* are significantly below 1 will be overwritten with much higher values.
*/
void mixer_setbalance(mixer_t *mixer, float val)
{
float level[AF_NCH];
int i;
af_control_ext_t arg_ext = { .arg = level };
af_instance_t *af_pan_balance;
mixer->balance = val;
if (!mixer->afilter)
return;
if (af_control_any_rev(mixer->afilter,
AF_CONTROL_PAN_BALANCE | AF_CONTROL_SET, &val))
return;
if (val == 0 || mixer->ao->channels < 2)
return;
if (!(af_pan_balance = af_add(mixer->afilter, "pan"))) {
mp_tmsg(MSGT_GLOBAL, MSGL_ERR,
"[Mixer] No balance control available.\n");
return;
}
af_init(mixer->afilter);
/* make all other channels pass thru since by default pan blocks all */
memset(level, 0, sizeof(level));
for (i = 2; i < AF_NCH; i++) {
arg_ext.ch = i;
level[i] = 1.f;
af_pan_balance->control(af_pan_balance,
AF_CONTROL_PAN_LEVEL | AF_CONTROL_SET,
&arg_ext);
level[i] = 0.f;
}
af_pan_balance->control(af_pan_balance,
AF_CONTROL_PAN_BALANCE | AF_CONTROL_SET, &val);
}
// Called after the audio filter chain is built or rebuilt.
void mixer_reinit(struct mixer *mixer, struct ao *ao)
{
mixer->ao = ao;
/* Use checkvolume() to see if softvol needs to be enabled because of
* lacking AO support, but first store values it could overwrite. */
float left = mixer->vol_l, right = mixer->vol_r;
bool muted = mixer->muted_by_us;
checkvolume(mixer);
/* Try to avoid restoring volume stored from one control method with
* another. Especially, restoring softvol volume (typically high) on
* system mixer could have very nasty effects. */
const char *restore_reason = mixer->softvol ? "softvol" :
mixer->ao->driver->info->short_name;
if (mixer->restore_volume && !strcmp(mixer->restore_volume,
restore_reason))
mixer_setvolume(mixer, left, right);
/* We turn mute off at AO uninit, so it has to be restored (unless
* we're reinitializing filter chain while keeping AO); but we only
* enable mute, not turn external mute off. */
if (muted)
mixer_setmute(mixer, true);
if (mixer->balance != 0)
mixer_setbalance(mixer, mixer->balance);
}
/* Called before uninitializing the audio output. The main purpose is to
* turn off mute, in case it's a global/persistent setting which might
* otherwise be left enabled even after this player instance exits.
*/
void mixer_uninit(struct mixer *mixer)
{
checkvolume(mixer);
if (mixer->muted_by_us) {
/* Current audio output API combines playing the remaining buffered
* audio and uninitializing the AO into one operation, even though
* ideally unmute would happen between those two steps. We can't do
* volume changes after uninitialization, but we don't want the
* remaining audio to play at full volume either. Thus this
* workaround to drop remaining audio first. */
ao_reset(mixer->ao);
mixer_setmute(mixer, false);
/* We remember mute status and re-enable it if we play more audio
* in the same process. */
mixer->muted_by_us = true;
}
mixer->ao = NULL;
}