1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-01 04:12:25 +00:00
mpv/video/out/gpu/video.c
Niklas Haas dc24a437fb vo_gpu: add better gamut clipping option
See https://code.videolan.org/videolan/libplacebo/-/commit/d63eeb1ecc204

Enabled by default because I think it looks better. YMMV.
2020-06-19 08:09:19 +02:00

4286 lines
147 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <libavutil/common.h>
#include <libavutil/lfg.h>
#include "video.h"
#include "misc/bstr.h"
#include "options/m_config.h"
#include "options/path.h"
#include "common/global.h"
#include "options/options.h"
#include "utils.h"
#include "hwdec.h"
#include "osd.h"
#include "ra.h"
#include "stream/stream.h"
#include "video_shaders.h"
#include "user_shaders.h"
#include "error_diffusion.h"
#include "video/out/filter_kernels.h"
#include "video/out/aspect.h"
#include "video/out/dither.h"
#include "video/out/vo.h"
// scale/cscale arguments that map directly to shader filter routines.
// Note that the convolution filters are not included in this list.
static const char *const fixed_scale_filters[] = {
"bilinear",
"bicubic_fast",
"oversample",
NULL
};
static const char *const fixed_tscale_filters[] = {
"oversample",
"linear",
NULL
};
// must be sorted, and terminated with 0
int filter_sizes[] =
{2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0};
int tscale_sizes[] = {2, 4, 6, 8, 0};
struct vertex_pt {
float x, y;
};
struct texplane {
struct ra_tex *tex;
int w, h;
bool flipped;
};
struct video_image {
struct texplane planes[4];
struct mp_image *mpi; // original input image
uint64_t id; // unique ID identifying mpi contents
bool hwdec_mapped;
};
enum plane_type {
PLANE_NONE = 0,
PLANE_RGB,
PLANE_LUMA,
PLANE_CHROMA,
PLANE_ALPHA,
PLANE_XYZ,
};
static const char *plane_names[] = {
[PLANE_NONE] = "unknown",
[PLANE_RGB] = "rgb",
[PLANE_LUMA] = "luma",
[PLANE_CHROMA] = "chroma",
[PLANE_ALPHA] = "alpha",
[PLANE_XYZ] = "xyz",
};
// A self-contained description of a source image which can be bound to a
// texture unit and sampled from. Contains metadata about how it's to be used
struct image {
enum plane_type type; // must be set to something non-zero
int components; // number of relevant coordinates
float multiplier; // multiplier to be used when sampling
struct ra_tex *tex;
int w, h; // logical size (after transformation)
struct gl_transform transform; // rendering transformation
int padding; // number of leading padding components (e.g. 2 = rg is padding)
};
// A named image, for user scripting purposes
struct saved_img {
const char *name;
struct image img;
};
// A texture hook. This is some operation that transforms a named texture as
// soon as it's generated
struct tex_hook {
const char *save_tex;
const char *hook_tex[SHADER_MAX_HOOKS];
const char *bind_tex[SHADER_MAX_BINDS];
int components; // how many components are relevant (0 = same as input)
bool align_offset; // whether to align hooked tex with reference.
void *priv; // this gets talloc_freed when the tex_hook is removed
void (*hook)(struct gl_video *p, struct image img, // generates GLSL
struct gl_transform *trans, void *priv);
bool (*cond)(struct gl_video *p, struct image img, void *priv);
};
struct surface {
struct ra_tex *tex;
uint64_t id;
double pts;
};
#define SURFACES_MAX 10
struct cached_file {
char *path;
struct bstr body;
};
struct pass_info {
struct bstr desc;
struct mp_pass_perf perf;
};
struct dr_buffer {
struct ra_buf *buf;
// The mpi reference will keep the data from being recycled (or from other
// references gaining write access) while the GPU is accessing the buffer.
struct mp_image *mpi;
};
struct gl_video {
struct ra *ra;
struct mpv_global *global;
struct mp_log *log;
struct gl_video_opts opts;
struct m_config_cache *opts_cache;
struct gl_lcms *cms;
int fb_depth; // actual bits available in GL main framebuffer
struct m_color clear_color;
bool force_clear_color;
struct gl_shader_cache *sc;
struct osd_state *osd_state;
struct mpgl_osd *osd;
double osd_pts;
struct ra_tex *lut_3d_texture;
bool use_lut_3d;
int lut_3d_size[3];
struct ra_tex *dither_texture;
struct mp_image_params real_image_params; // configured format
struct mp_image_params image_params; // texture format (mind hwdec case)
struct ra_imgfmt_desc ra_format; // texture format
int plane_count;
bool is_gray;
bool has_alpha;
char color_swizzle[5];
bool use_integer_conversion;
struct video_image image;
struct dr_buffer *dr_buffers;
int num_dr_buffers;
bool using_dr_path;
bool dumb_mode;
bool forced_dumb_mode;
// Cached vertex array, to avoid re-allocation per frame. For simplicity,
// our vertex format is simply a list of `vertex_pt`s, since this greatly
// simplifies offset calculation at the cost of (unneeded) flexibility.
struct vertex_pt *tmp_vertex;
struct ra_renderpass_input *vao;
int vao_len;
const struct ra_format *fbo_format;
struct ra_tex *merge_tex[4];
struct ra_tex *scale_tex[4];
struct ra_tex *integer_tex[4];
struct ra_tex *indirect_tex;
struct ra_tex *blend_subs_tex;
struct ra_tex *error_diffusion_tex[2];
struct ra_tex *screen_tex;
struct ra_tex *output_tex;
struct ra_tex **hook_textures;
int num_hook_textures;
int idx_hook_textures;
struct ra_buf *hdr_peak_ssbo;
struct surface surfaces[SURFACES_MAX];
// user pass descriptions and textures
struct tex_hook *tex_hooks;
int num_tex_hooks;
struct gl_user_shader_tex *user_textures;
int num_user_textures;
int surface_idx;
int surface_now;
int frames_drawn;
bool is_interpolated;
bool output_tex_valid;
// state for configured scalers
struct scaler scaler[SCALER_COUNT];
struct mp_csp_equalizer_state *video_eq;
struct mp_rect src_rect; // displayed part of the source video
struct mp_rect dst_rect; // video rectangle on output window
struct mp_osd_res osd_rect; // OSD size/margins
// temporary during rendering
struct compute_info pass_compute; // compute shader metadata for this pass
struct image *pass_imgs; // bound images for this pass
int num_pass_imgs;
struct saved_img *saved_imgs; // saved (named) images for this frame
int num_saved_imgs;
// effective current texture metadata - this will essentially affect the
// next render pass target, as well as implicitly tracking what needs to
// be done with the image
int texture_w, texture_h;
struct gl_transform texture_offset; // texture transform without rotation
int components;
bool use_linear;
float user_gamma;
// pass info / metrics
struct pass_info pass_fresh[VO_PASS_PERF_MAX];
struct pass_info pass_redraw[VO_PASS_PERF_MAX];
struct pass_info *pass;
int pass_idx;
struct timer_pool *upload_timer;
struct timer_pool *blit_timer;
struct timer_pool *osd_timer;
int frames_uploaded;
int frames_rendered;
AVLFG lfg;
// Cached because computing it can take relatively long
int last_dither_matrix_size;
float *last_dither_matrix;
struct cached_file *files;
int num_files;
bool hwdec_interop_loading_done;
struct ra_hwdec **hwdecs;
int num_hwdecs;
struct ra_hwdec_mapper *hwdec_mapper;
struct ra_hwdec *hwdec_overlay;
bool hwdec_active;
bool dsi_warned;
bool broken_frame; // temporary error state
bool colorspace_override_warned;
bool correct_downscaling_warned;
};
static const struct gl_video_opts gl_video_opts_def = {
.dither_algo = DITHER_FRUIT,
.dither_depth = -1,
.dither_size = 6,
.temporal_dither_period = 1,
.error_diffusion = "sierra-lite",
.fbo_format = "auto",
.sigmoid_center = 0.75,
.sigmoid_slope = 6.5,
.scaler = {
{{"bilinear", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // scale
{{NULL, .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // dscale
{{"bilinear", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // cscale
{{"mitchell", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.clamp = 1, }, // tscale
},
.scaler_resizes_only = 1,
.scaler_lut_size = 6,
.interpolation_threshold = 0.0001,
.alpha_mode = ALPHA_BLEND_TILES,
.background = {0, 0, 0, 255},
.gamma = 1.0f,
.tone_map = {
.curve = TONE_MAPPING_BT_2390,
.curve_param = NAN,
.max_boost = 1.0,
.decay_rate = 100.0,
.scene_threshold_low = 5.5,
.scene_threshold_high = 10.0,
.desat = 0.75,
.desat_exp = 1.5,
.gamut_clipping = 1,
},
.early_flush = -1,
.hwdec_interop = "auto",
};
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
static int validate_error_diffusion_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
#define OPT_BASE_STRUCT struct gl_video_opts
// Use for options which use NAN for defaults.
#define OPT_FLOATDEF(field) \
OPT_FLOAT(field), \
.flags = M_OPT_DEFAULT_NAN
#define SCALER_OPTS(n, i) \
{n, OPT_STRING_VALIDATE(scaler[i].kernel.name, validate_scaler_opt)}, \
{n"-param1", OPT_FLOATDEF(scaler[i].kernel.params[0])}, \
{n"-param2", OPT_FLOATDEF(scaler[i].kernel.params[1])}, \
{n"-blur", OPT_FLOAT(scaler[i].kernel.blur)}, \
{n"-cutoff", OPT_FLOAT(scaler[i].cutoff), M_RANGE(0.0, 1.0)}, \
{n"-taper", OPT_FLOAT(scaler[i].kernel.taper), M_RANGE(0.0, 1.0)}, \
{n"-wparam", OPT_FLOATDEF(scaler[i].window.params[0])}, \
{n"-wblur", OPT_FLOAT(scaler[i].window.blur)}, \
{n"-wtaper", OPT_FLOAT(scaler[i].window.taper), M_RANGE(0.0, 1.0)}, \
{n"-clamp", OPT_FLOAT(scaler[i].clamp), M_RANGE(0.0, 1.0)}, \
{n"-radius", OPT_FLOAT(scaler[i].radius), M_RANGE(0.5, 16.0)}, \
{n"-antiring", OPT_FLOAT(scaler[i].antiring), M_RANGE(0.0, 1.0)}, \
{n"-window", OPT_STRING_VALIDATE(scaler[i].window.name, validate_window_opt)}
const struct m_sub_options gl_video_conf = {
.opts = (const m_option_t[]) {
{"gpu-dumb-mode", OPT_CHOICE(dumb_mode,
{"auto", 0}, {"yes", 1}, {"no", -1})},
{"gamma-factor", OPT_FLOAT(gamma), M_RANGE(0.1, 2.0)},
{"gamma-auto", OPT_FLAG(gamma_auto)},
{"target-prim", OPT_CHOICE_C(target_prim, mp_csp_prim_names)},
{"target-trc", OPT_CHOICE_C(target_trc, mp_csp_trc_names)},
{"target-peak", OPT_CHOICE(target_peak, {"auto", 0}),
M_RANGE(10, 10000)},
{"tone-mapping", OPT_CHOICE(tone_map.curve,
{"clip", TONE_MAPPING_CLIP},
{"mobius", TONE_MAPPING_MOBIUS},
{"reinhard", TONE_MAPPING_REINHARD},
{"hable", TONE_MAPPING_HABLE},
{"gamma", TONE_MAPPING_GAMMA},
{"linear", TONE_MAPPING_LINEAR},
{"bt.2390", TONE_MAPPING_BT_2390})},
{"hdr-compute-peak", OPT_CHOICE(tone_map.compute_peak,
{"auto", 0},
{"yes", 1},
{"no", -1})},
{"hdr-peak-decay-rate", OPT_FLOAT(tone_map.decay_rate),
M_RANGE(1.0, 1000.0)},
{"hdr-scene-threshold-low", OPT_FLOAT(tone_map.scene_threshold_low),
M_RANGE(0, 20.0)},
{"hdr-scene-threshold-high", OPT_FLOAT(tone_map.scene_threshold_high),
M_RANGE(0, 20.0)},
{"tone-mapping-param", OPT_FLOATDEF(tone_map.curve_param)},
{"tone-mapping-max-boost", OPT_FLOAT(tone_map.max_boost),
M_RANGE(1.0, 10.0)},
{"tone-mapping-desaturate", OPT_FLOAT(tone_map.desat)},
{"tone-mapping-desaturate-exponent", OPT_FLOAT(tone_map.desat_exp),
M_RANGE(0.0, 20.0)},
{"gamut-warning", OPT_FLAG(tone_map.gamut_warning)},
{"gamut-clipping", OPT_FLAG(tone_map.gamut_clipping)},
{"opengl-pbo", OPT_FLAG(pbo)},
SCALER_OPTS("scale", SCALER_SCALE),
SCALER_OPTS("dscale", SCALER_DSCALE),
SCALER_OPTS("cscale", SCALER_CSCALE),
SCALER_OPTS("tscale", SCALER_TSCALE),
{"scaler-lut-size", OPT_INT(scaler_lut_size), M_RANGE(4, 10)},
{"scaler-resizes-only", OPT_FLAG(scaler_resizes_only)},
{"correct-downscaling", OPT_FLAG(correct_downscaling)},
{"linear-downscaling", OPT_FLAG(linear_downscaling)},
{"linear-upscaling", OPT_FLAG(linear_upscaling)},
{"sigmoid-upscaling", OPT_FLAG(sigmoid_upscaling)},
{"sigmoid-center", OPT_FLOAT(sigmoid_center), M_RANGE(0.0, 1.0)},
{"sigmoid-slope", OPT_FLOAT(sigmoid_slope), M_RANGE(1.0, 20.0)},
{"fbo-format", OPT_STRING(fbo_format)},
{"dither-depth", OPT_CHOICE(dither_depth, {"no", -1}, {"auto", 0}),
M_RANGE(-1, 16)},
{"dither", OPT_CHOICE(dither_algo,
{"fruit", DITHER_FRUIT},
{"ordered", DITHER_ORDERED},
{"error-diffusion", DITHER_ERROR_DIFFUSION},
{"no", DITHER_NONE})},
{"dither-size-fruit", OPT_INT(dither_size), M_RANGE(2, 8)},
{"temporal-dither", OPT_FLAG(temporal_dither)},
{"temporal-dither-period", OPT_INT(temporal_dither_period),
M_RANGE(1, 128)},
{"error-diffusion",
OPT_STRING_VALIDATE(error_diffusion, validate_error_diffusion_opt)},
{"alpha", OPT_CHOICE(alpha_mode,
{"no", ALPHA_NO},
{"yes", ALPHA_YES},
{"blend", ALPHA_BLEND},
{"blend-tiles", ALPHA_BLEND_TILES})},
{"opengl-rectangle-textures", OPT_FLAG(use_rectangle)},
{"background", OPT_COLOR(background)},
{"interpolation", OPT_FLAG(interpolation)},
{"interpolation-threshold", OPT_FLOAT(interpolation_threshold)},
{"blend-subtitles", OPT_CHOICE(blend_subs,
{"no", BLEND_SUBS_NO},
{"yes", BLEND_SUBS_YES},
{"video", BLEND_SUBS_VIDEO})},
{"glsl-shaders", OPT_PATHLIST(user_shaders), .flags = M_OPT_FILE},
{"glsl-shader", OPT_CLI_ALIAS("glsl-shaders-append")},
{"deband", OPT_FLAG(deband)},
{"deband", OPT_SUBSTRUCT(deband_opts, deband_conf)},
{"sharpen", OPT_FLOAT(unsharp)},
{"gpu-tex-pad-x", OPT_INT(tex_pad_x), M_RANGE(0, 4096)},
{"gpu-tex-pad-y", OPT_INT(tex_pad_y), M_RANGE(0, 4096)},
{"", OPT_SUBSTRUCT(icc_opts, mp_icc_conf)},
{"gpu-shader-cache-dir", OPT_STRING(shader_cache_dir), .flags = M_OPT_FILE},
{"gpu-hwdec-interop",
OPT_STRING_VALIDATE(hwdec_interop, ra_hwdec_validate_opt)},
{"opengl-hwdec-interop", OPT_REPLACED("gpu-hwdec-interop")},
{"hwdec-preload", OPT_REPLACED("opengl-hwdec-interop")},
{"hdr-tone-mapping", OPT_REPLACED("tone-mapping")},
{"opengl-shaders", OPT_REPLACED("glsl-shaders")},
{"opengl-shader", OPT_REPLACED("glsl-shader")},
{"opengl-shader-cache-dir", OPT_REPLACED("gpu-shader-cache-dir")},
{"opengl-tex-pad-x", OPT_REPLACED("gpu-tex-pad-x")},
{"opengl-tex-pad-y", OPT_REPLACED("gpu-tex-pad-y")},
{"opengl-fbo-format", OPT_REPLACED("fbo-format")},
{"opengl-dumb-mode", OPT_REPLACED("gpu-dumb-mode")},
{"opengl-gamma", OPT_REPLACED("gamma-factor")},
{"linear-scaling", OPT_REMOVED("Split into --linear-upscaling and "
"--linear-downscaling")},
{0}
},
.size = sizeof(struct gl_video_opts),
.defaults = &gl_video_opts_def,
};
static void uninit_rendering(struct gl_video *p);
static void uninit_scaler(struct gl_video *p, struct scaler *scaler);
static void check_gl_features(struct gl_video *p);
static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id);
static const char *handle_scaler_opt(const char *name, bool tscale);
static void reinit_from_options(struct gl_video *p);
static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2]);
static void gl_video_setup_hooks(struct gl_video *p);
static void gl_video_update_options(struct gl_video *p);
#define GLSL(x) gl_sc_add(p->sc, #x "\n");
#define GLSLF(...) gl_sc_addf(p->sc, __VA_ARGS__)
#define GLSLHF(...) gl_sc_haddf(p->sc, __VA_ARGS__)
#define PRELUDE(...) gl_sc_paddf(p->sc, __VA_ARGS__)
static struct bstr load_cached_file(struct gl_video *p, const char *path)
{
if (!path || !path[0])
return (struct bstr){0};
for (int n = 0; n < p->num_files; n++) {
if (strcmp(p->files[n].path, path) == 0)
return p->files[n].body;
}
// not found -> load it
char *fname = mp_get_user_path(NULL, p->global, path);
struct bstr s = stream_read_file(fname, p, p->global, 1000000000); // 1GB
talloc_free(fname);
if (s.len) {
struct cached_file new = {
.path = talloc_strdup(p, path),
.body = s,
};
MP_TARRAY_APPEND(p, p->files, p->num_files, new);
return new.body;
}
return (struct bstr){0};
}
static void debug_check_gl(struct gl_video *p, const char *msg)
{
if (p->ra->fns->debug_marker)
p->ra->fns->debug_marker(p->ra, msg);
}
static void gl_video_reset_surfaces(struct gl_video *p)
{
for (int i = 0; i < SURFACES_MAX; i++) {
p->surfaces[i].id = 0;
p->surfaces[i].pts = MP_NOPTS_VALUE;
}
p->surface_idx = 0;
p->surface_now = 0;
p->frames_drawn = 0;
p->output_tex_valid = false;
}
static void gl_video_reset_hooks(struct gl_video *p)
{
for (int i = 0; i < p->num_tex_hooks; i++)
talloc_free(p->tex_hooks[i].priv);
for (int i = 0; i < p->num_user_textures; i++)
ra_tex_free(p->ra, &p->user_textures[i].tex);
p->num_tex_hooks = 0;
p->num_user_textures = 0;
}
static inline int surface_wrap(int id)
{
id = id % SURFACES_MAX;
return id < 0 ? id + SURFACES_MAX : id;
}
static void reinit_osd(struct gl_video *p)
{
mpgl_osd_destroy(p->osd);
p->osd = NULL;
if (p->osd_state)
p->osd = mpgl_osd_init(p->ra, p->log, p->osd_state);
}
static void uninit_rendering(struct gl_video *p)
{
for (int n = 0; n < SCALER_COUNT; n++)
uninit_scaler(p, &p->scaler[n]);
ra_tex_free(p->ra, &p->dither_texture);
for (int n = 0; n < 4; n++) {
ra_tex_free(p->ra, &p->merge_tex[n]);
ra_tex_free(p->ra, &p->scale_tex[n]);
ra_tex_free(p->ra, &p->integer_tex[n]);
}
ra_tex_free(p->ra, &p->indirect_tex);
ra_tex_free(p->ra, &p->blend_subs_tex);
ra_tex_free(p->ra, &p->screen_tex);
ra_tex_free(p->ra, &p->output_tex);
for (int n = 0; n < 2; n++)
ra_tex_free(p->ra, &p->error_diffusion_tex[n]);
for (int n = 0; n < SURFACES_MAX; n++)
ra_tex_free(p->ra, &p->surfaces[n].tex);
for (int n = 0; n < p->num_hook_textures; n++)
ra_tex_free(p->ra, &p->hook_textures[n]);
gl_video_reset_surfaces(p);
gl_video_reset_hooks(p);
gl_sc_reset_error(p->sc);
}
bool gl_video_gamma_auto_enabled(struct gl_video *p)
{
return p->opts.gamma_auto;
}
struct mp_colorspace gl_video_get_output_colorspace(struct gl_video *p)
{
return (struct mp_colorspace) {
.primaries = p->opts.target_prim,
.gamma = p->opts.target_trc,
.sig_peak = p->opts.target_peak / MP_REF_WHITE,
};
}
// Warning: profile.start must point to a ta allocation, and the function
// takes over ownership.
void gl_video_set_icc_profile(struct gl_video *p, bstr icc_data)
{
if (gl_lcms_set_memory_profile(p->cms, icc_data))
reinit_from_options(p);
}
bool gl_video_icc_auto_enabled(struct gl_video *p)
{
return p->opts.icc_opts ? p->opts.icc_opts->profile_auto : false;
}
static bool gl_video_get_lut3d(struct gl_video *p, enum mp_csp_prim prim,
enum mp_csp_trc trc)
{
if (!p->use_lut_3d)
return false;
struct AVBufferRef *icc = NULL;
if (p->image.mpi)
icc = p->image.mpi->icc_profile;
if (p->lut_3d_texture && !gl_lcms_has_changed(p->cms, prim, trc, icc))
return true;
// GLES3 doesn't provide filtered 16 bit integer textures
// GLES2 doesn't even provide 3D textures
const struct ra_format *fmt = ra_find_unorm_format(p->ra, 2, 4);
if (!fmt || !(p->ra->caps & RA_CAP_TEX_3D)) {
p->use_lut_3d = false;
MP_WARN(p, "Disabling color management (no RGBA16 3D textures).\n");
return false;
}
struct lut3d *lut3d = NULL;
if (!fmt || !gl_lcms_get_lut3d(p->cms, &lut3d, prim, trc, icc) || !lut3d) {
p->use_lut_3d = false;
return false;
}
ra_tex_free(p->ra, &p->lut_3d_texture);
struct ra_tex_params params = {
.dimensions = 3,
.w = lut3d->size[0],
.h = lut3d->size[1],
.d = lut3d->size[2],
.format = fmt,
.render_src = true,
.src_linear = true,
.initial_data = lut3d->data,
};
p->lut_3d_texture = ra_tex_create(p->ra, &params);
debug_check_gl(p, "after 3d lut creation");
for (int i = 0; i < 3; i++)
p->lut_3d_size[i] = lut3d->size[i];
talloc_free(lut3d);
return true;
}
// Fill an image struct from a ra_tex + some metadata
static struct image image_wrap(struct ra_tex *tex, enum plane_type type,
int components)
{
assert(type != PLANE_NONE);
return (struct image){
.type = type,
.tex = tex,
.multiplier = 1.0,
.w = tex ? tex->params.w : 1,
.h = tex ? tex->params.h : 1,
.transform = identity_trans,
.components = components,
};
}
// Bind an image to a free texture unit and return its ID.
static int pass_bind(struct gl_video *p, struct image img)
{
int idx = p->num_pass_imgs;
MP_TARRAY_APPEND(p, p->pass_imgs, p->num_pass_imgs, img);
return idx;
}
// Rotation by 90° and flipping.
// w/h is used for recentering.
static void get_transform(float w, float h, int rotate, bool flip,
struct gl_transform *out_tr)
{
int a = rotate % 90 ? 0 : rotate / 90;
int sin90[4] = {0, 1, 0, -1}; // just to avoid rounding issues etc.
int cos90[4] = {1, 0, -1, 0};
struct gl_transform tr = {{{ cos90[a], sin90[a]},
{-sin90[a], cos90[a]}}};
// basically, recenter to keep the whole image in view
float b[2] = {1, 1};
gl_transform_vec(tr, &b[0], &b[1]);
tr.t[0] += b[0] < 0 ? w : 0;
tr.t[1] += b[1] < 0 ? h : 0;
if (flip) {
struct gl_transform fliptr = {{{1, 0}, {0, -1}}, {0, h}};
gl_transform_trans(fliptr, &tr);
}
*out_tr = tr;
}
// Return the chroma plane upscaled to luma size, but with additional padding
// for image sizes not aligned to subsampling.
static int chroma_upsize(int size, int pixel)
{
return (size + pixel - 1) / pixel * pixel;
}
// If a and b are on the same plane, return what plane type should be used.
// If a or b are none, the other type always wins.
// Usually: LUMA/RGB/XYZ > CHROMA > ALPHA
static enum plane_type merge_plane_types(enum plane_type a, enum plane_type b)
{
if (a == PLANE_NONE)
return b;
if (b == PLANE_LUMA || b == PLANE_RGB || b == PLANE_XYZ)
return b;
if (b != PLANE_NONE && a == PLANE_ALPHA)
return b;
return a;
}
// Places a video_image's image textures + associated metadata into img[]. The
// number of textures is equal to p->plane_count. Any necessary plane offsets
// are stored in off. (e.g. chroma position)
static void pass_get_images(struct gl_video *p, struct video_image *vimg,
struct image img[4], struct gl_transform off[4])
{
assert(vimg->mpi);
int w = p->image_params.w;
int h = p->image_params.h;
// Determine the chroma offset
float ls_w = 1.0 / p->ra_format.chroma_w;
float ls_h = 1.0 / p->ra_format.chroma_h;
struct gl_transform chroma = {{{ls_w, 0.0}, {0.0, ls_h}}};
if (p->image_params.chroma_location != MP_CHROMA_CENTER) {
int cx, cy;
mp_get_chroma_location(p->image_params.chroma_location, &cx, &cy);
// By default texture coordinates are such that chroma is centered with
// any chroma subsampling. If a specific direction is given, make it
// so that the luma and chroma sample line up exactly.
// For 4:4:4, setting chroma location should have no effect at all.
// luma sample size (in chroma coord. space)
chroma.t[0] = ls_w < 1 ? ls_w * -cx / 2 : 0;
chroma.t[1] = ls_h < 1 ? ls_h * -cy / 2 : 0;
}
memset(img, 0, 4 * sizeof(img[0]));
for (int n = 0; n < p->plane_count; n++) {
struct texplane *t = &vimg->planes[n];
enum plane_type type = PLANE_NONE;
int padding = 0;
for (int i = 0; i < 4; i++) {
int c = p->ra_format.components[n][i];
enum plane_type ctype;
if (c == 0) {
ctype = PLANE_NONE;
} else if (c == 4) {
ctype = PLANE_ALPHA;
} else if (p->image_params.color.space == MP_CSP_RGB) {
ctype = PLANE_RGB;
} else if (p->image_params.color.space == MP_CSP_XYZ) {
ctype = PLANE_XYZ;
} else {
ctype = c == 1 ? PLANE_LUMA : PLANE_CHROMA;
}
type = merge_plane_types(type, ctype);
if (!c && padding == i)
padding = i + 1;
}
int msb_valid_bits =
p->ra_format.component_bits + MPMIN(p->ra_format.component_pad, 0);
int csp = type == PLANE_ALPHA ? MP_CSP_RGB : p->image_params.color.space;
float tex_mul =
1.0 / mp_get_csp_mul(csp, msb_valid_bits, p->ra_format.component_bits);
if (p->ra_format.component_type == RA_CTYPE_FLOAT)
tex_mul = 1.0;
img[n] = (struct image){
.type = type,
.tex = t->tex,
.multiplier = tex_mul,
.w = t->w,
.h = t->h,
.padding = padding,
};
for (int i = 0; i < 4; i++)
img[n].components += !!p->ra_format.components[n][i];
get_transform(t->w, t->h, p->image_params.rotate, t->flipped,
&img[n].transform);
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, img[n].w, img[n].h);
off[n] = identity_trans;
if (type == PLANE_CHROMA) {
struct gl_transform rot;
get_transform(0, 0, p->image_params.rotate, true, &rot);
struct gl_transform tr = chroma;
gl_transform_vec(rot, &tr.t[0], &tr.t[1]);
float dx = (chroma_upsize(w, p->ra_format.chroma_w) - w) * ls_w;
float dy = (chroma_upsize(h, p->ra_format.chroma_h) - h) * ls_h;
// Adjust the chroma offset if the real chroma size is fractional
// due image sizes not aligned to chroma subsampling.
struct gl_transform rot2;
get_transform(0, 0, p->image_params.rotate, t->flipped, &rot2);
if (rot2.m[0][0] < 0)
tr.t[0] += dx;
if (rot2.m[1][0] < 0)
tr.t[0] += dy;
if (rot2.m[0][1] < 0)
tr.t[1] += dx;
if (rot2.m[1][1] < 0)
tr.t[1] += dy;
off[n] = tr;
}
}
}
// Return the index of the given component (assuming all non-padding components
// of all planes are concatenated into a linear list).
static int find_comp(struct ra_imgfmt_desc *desc, int component)
{
int cur = 0;
for (int n = 0; n < desc->num_planes; n++) {
for (int i = 0; i < 4; i++) {
if (desc->components[n][i]) {
if (desc->components[n][i] == component)
return cur;
cur++;
}
}
}
return -1;
}
static void init_video(struct gl_video *p)
{
p->use_integer_conversion = false;
struct ra_hwdec *hwdec = NULL;
for (int n = 0; n < p->num_hwdecs; n++) {
if (ra_hwdec_test_format(p->hwdecs[n], p->image_params.imgfmt)) {
hwdec = p->hwdecs[n];
break;
}
}
if (hwdec) {
if (hwdec->driver->overlay_frame) {
MP_WARN(p, "Using HW-overlay mode. No GL filtering is performed "
"on the video!\n");
p->hwdec_overlay = hwdec;
} else {
p->hwdec_mapper = ra_hwdec_mapper_create(hwdec, &p->image_params);
if (!p->hwdec_mapper)
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
}
if (p->hwdec_mapper)
p->image_params = p->hwdec_mapper->dst_params;
const char **exts = hwdec->glsl_extensions;
for (int n = 0; exts && exts[n]; n++)
gl_sc_enable_extension(p->sc, (char *)exts[n]);
p->hwdec_active = true;
}
p->ra_format = (struct ra_imgfmt_desc){0};
ra_get_imgfmt_desc(p->ra, p->image_params.imgfmt, &p->ra_format);
p->plane_count = p->ra_format.num_planes;
p->has_alpha = false;
p->is_gray = true;
for (int n = 0; n < p->ra_format.num_planes; n++) {
for (int i = 0; i < 4; i++) {
if (p->ra_format.components[n][i]) {
p->has_alpha |= p->ra_format.components[n][i] == 4;
p->is_gray &= p->ra_format.components[n][i] == 1 ||
p->ra_format.components[n][i] == 4;
}
}
}
for (int c = 0; c < 4; c++) {
int loc = find_comp(&p->ra_format, c + 1);
p->color_swizzle[c] = "rgba"[loc >= 0 && loc < 4 ? loc : 0];
}
p->color_swizzle[4] = '\0';
mp_image_params_guess_csp(&p->image_params);
av_lfg_init(&p->lfg, 1);
debug_check_gl(p, "before video texture creation");
if (!p->hwdec_active) {
struct video_image *vimg = &p->image;
struct mp_image layout = {0};
mp_image_set_params(&layout, &p->image_params);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
const struct ra_format *format = p->ra_format.planes[n];
plane->w = mp_image_plane_w(&layout, n);
plane->h = mp_image_plane_h(&layout, n);
struct ra_tex_params params = {
.dimensions = 2,
.w = plane->w + p->opts.tex_pad_x,
.h = plane->h + p->opts.tex_pad_y,
.d = 1,
.format = format,
.render_src = true,
.src_linear = format->linear_filter,
.non_normalized = p->opts.use_rectangle,
.host_mutable = true,
};
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n", n,
params.w, params.h);
plane->tex = ra_tex_create(p->ra, &params);
if (!plane->tex)
abort(); // shit happens
p->use_integer_conversion |= format->ctype == RA_CTYPE_UINT;
}
}
debug_check_gl(p, "after video texture creation");
// Format-dependent checks.
check_gl_features(p);
gl_video_setup_hooks(p);
}
static struct dr_buffer *gl_find_dr_buffer(struct gl_video *p, uint8_t *ptr)
{
for (int i = 0; i < p->num_dr_buffers; i++) {
struct dr_buffer *buffer = &p->dr_buffers[i];
uint8_t *bufptr = buffer->buf->data;
size_t size = buffer->buf->params.size;
if (ptr >= bufptr && ptr < bufptr + size)
return buffer;
}
return NULL;
}
static void gc_pending_dr_fences(struct gl_video *p, bool force)
{
again:;
for (int n = 0; n < p->num_dr_buffers; n++) {
struct dr_buffer *buffer = &p->dr_buffers[n];
if (!buffer->mpi)
continue;
bool res = p->ra->fns->buf_poll(p->ra, buffer->buf);
if (res || force) {
// Unreferencing the image could cause gl_video_dr_free_buffer()
// to be called by the talloc destructor (if it was the last
// reference). This will implicitly invalidate the buffer pointer
// and change the p->dr_buffers array. To make it worse, it could
// free multiple dr_buffers due to weird theoretical corner cases.
// This is also why we use the goto to iterate again from the
// start, because everything gets fucked up. Hail satan!
struct mp_image *ref = buffer->mpi;
buffer->mpi = NULL;
talloc_free(ref);
goto again;
}
}
}
static void unref_current_image(struct gl_video *p)
{
struct video_image *vimg = &p->image;
if (vimg->hwdec_mapped) {
assert(p->hwdec_active && p->hwdec_mapper);
ra_hwdec_mapper_unmap(p->hwdec_mapper);
memset(vimg->planes, 0, sizeof(vimg->planes));
vimg->hwdec_mapped = false;
}
vimg->id = 0;
mp_image_unrefp(&vimg->mpi);
// While we're at it, also garbage collect pending fences in here to
// get it out of the way.
gc_pending_dr_fences(p, false);
}
// If overlay mode is used, make sure to remove the overlay.
// Be careful with this. Removing the overlay and adding another one will
// lead to flickering artifacts.
static void unmap_overlay(struct gl_video *p)
{
if (p->hwdec_overlay)
p->hwdec_overlay->driver->overlay_frame(p->hwdec_overlay, NULL, NULL, NULL, true);
}
static void uninit_video(struct gl_video *p)
{
uninit_rendering(p);
struct video_image *vimg = &p->image;
unmap_overlay(p);
unref_current_image(p);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
ra_tex_free(p->ra, &plane->tex);
}
*vimg = (struct video_image){0};
// Invalidate image_params to ensure that gl_video_config() will call
// init_video() on uninitialized gl_video.
p->real_image_params = (struct mp_image_params){0};
p->image_params = p->real_image_params;
p->hwdec_active = false;
p->hwdec_overlay = NULL;
ra_hwdec_mapper_free(&p->hwdec_mapper);
}
static void pass_record(struct gl_video *p, struct mp_pass_perf perf)
{
if (!p->pass || p->pass_idx == VO_PASS_PERF_MAX)
return;
struct pass_info *pass = &p->pass[p->pass_idx];
pass->perf = perf;
if (pass->desc.len == 0)
bstr_xappend(p, &pass->desc, bstr0("(unknown)"));
p->pass_idx++;
}
PRINTF_ATTRIBUTE(2, 3)
static void pass_describe(struct gl_video *p, const char *textf, ...)
{
if (!p->pass || p->pass_idx == VO_PASS_PERF_MAX)
return;
struct pass_info *pass = &p->pass[p->pass_idx];
if (pass->desc.len > 0)
bstr_xappend(p, &pass->desc, bstr0(" + "));
va_list ap;
va_start(ap, textf);
bstr_xappend_vasprintf(p, &pass->desc, textf, ap);
va_end(ap);
}
static void pass_info_reset(struct gl_video *p, bool is_redraw)
{
p->pass = is_redraw ? p->pass_redraw : p->pass_fresh;
p->pass_idx = 0;
for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
p->pass[i].desc.len = 0;
p->pass[i].perf = (struct mp_pass_perf){0};
}
}
static void pass_report_performance(struct gl_video *p)
{
if (!p->pass)
return;
for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
struct pass_info *pass = &p->pass[i];
if (pass->desc.len) {
MP_TRACE(p, "pass '%.*s': last %dus avg %dus peak %dus\n",
BSTR_P(pass->desc),
(int)pass->perf.last/1000,
(int)pass->perf.avg/1000,
(int)pass->perf.peak/1000);
}
}
}
static void pass_prepare_src_tex(struct gl_video *p)
{
struct gl_shader_cache *sc = p->sc;
for (int n = 0; n < p->num_pass_imgs; n++) {
struct image *s = &p->pass_imgs[n];
if (!s->tex)
continue;
char *texture_name = mp_tprintf(32, "texture%d", n);
char *texture_size = mp_tprintf(32, "texture_size%d", n);
char *texture_rot = mp_tprintf(32, "texture_rot%d", n);
char *texture_off = mp_tprintf(32, "texture_off%d", n);
char *pixel_size = mp_tprintf(32, "pixel_size%d", n);
gl_sc_uniform_texture(sc, texture_name, s->tex);
float f[2] = {1, 1};
if (!s->tex->params.non_normalized) {
f[0] = s->tex->params.w;
f[1] = s->tex->params.h;
}
gl_sc_uniform_vec2(sc, texture_size, f);
gl_sc_uniform_mat2(sc, texture_rot, true, (float *)s->transform.m);
gl_sc_uniform_vec2(sc, texture_off, (float *)s->transform.t);
gl_sc_uniform_vec2(sc, pixel_size, (float[]){1.0f / f[0],
1.0f / f[1]});
}
}
static void cleanup_binds(struct gl_video *p)
{
p->num_pass_imgs = 0;
}
// Sets the appropriate compute shader metadata for an implicit compute pass
// bw/bh: block size
static void pass_is_compute(struct gl_video *p, int bw, int bh, bool flexible)
{
if (p->pass_compute.active && flexible) {
// Avoid overwriting existing block sizes when using a flexible pass
bw = p->pass_compute.block_w;
bh = p->pass_compute.block_h;
}
p->pass_compute = (struct compute_info){
.active = true,
.block_w = bw,
.block_h = bh,
};
}
// w/h: the width/height of the compute shader's operating domain (e.g. the
// target target that needs to be written, or the source texture that needs to
// be reduced)
static void dispatch_compute(struct gl_video *p, int w, int h,
struct compute_info info)
{
PRELUDE("layout (local_size_x = %d, local_size_y = %d) in;\n",
info.threads_w > 0 ? info.threads_w : info.block_w,
info.threads_h > 0 ? info.threads_h : info.block_h);
pass_prepare_src_tex(p);
// Since we don't actually have vertices, we pretend for convenience
// reasons that we do and calculate the right texture coordinates based on
// the output sample ID
gl_sc_uniform_vec2(p->sc, "out_scale", (float[2]){ 1.0 / w, 1.0 / h });
PRELUDE("#define outcoord(id) (out_scale * (vec2(id) + vec2(0.5)))\n");
for (int n = 0; n < p->num_pass_imgs; n++) {
struct image *s = &p->pass_imgs[n];
if (!s->tex)
continue;
// We need to rescale the coordinates to the true texture size
char *tex_scale = mp_tprintf(32, "tex_scale%d", n);
gl_sc_uniform_vec2(p->sc, tex_scale, (float[2]){
(float)s->w / s->tex->params.w,
(float)s->h / s->tex->params.h,
});
PRELUDE("#define texmap%d_raw(id) (tex_scale%d * outcoord(id))\n", n, n);
PRELUDE("#define texmap%d(id) (texture_rot%d * texmap%d_raw(id) + "
"pixel_size%d * texture_off%d)\n", n, n, n, n, n);
PRELUDE("#define texcoord%d texmap%d(gl_GlobalInvocationID)\n", n, n);
}
// always round up when dividing to make sure we don't leave off a part of
// the image
int num_x = info.block_w > 0 ? (w + info.block_w - 1) / info.block_w : 1,
num_y = info.block_h > 0 ? (h + info.block_h - 1) / info.block_h : 1;
if (!(p->ra->caps & RA_CAP_NUM_GROUPS))
PRELUDE("#define gl_NumWorkGroups uvec3(%d, %d, 1)\n", num_x, num_y);
pass_record(p, gl_sc_dispatch_compute(p->sc, num_x, num_y, 1));
cleanup_binds(p);
}
static struct mp_pass_perf render_pass_quad(struct gl_video *p,
struct ra_fbo fbo, bool discard,
const struct mp_rect *dst)
{
// The first element is reserved for `vec2 position`
int num_vertex_attribs = 1 + p->num_pass_imgs;
size_t vertex_stride = num_vertex_attribs * sizeof(struct vertex_pt);
// Expand the VAO if necessary
while (p->vao_len < num_vertex_attribs) {
MP_TARRAY_APPEND(p, p->vao, p->vao_len, (struct ra_renderpass_input) {
.name = talloc_asprintf(p, "texcoord%d", p->vao_len - 1),
.type = RA_VARTYPE_FLOAT,
.dim_v = 2,
.dim_m = 1,
.offset = p->vao_len * sizeof(struct vertex_pt),
});
}
int num_vertices = 6; // quad as triangle list
int num_attribs_total = num_vertices * num_vertex_attribs;
MP_TARRAY_GROW(p, p->tmp_vertex, num_attribs_total);
struct gl_transform t;
gl_transform_ortho_fbo(&t, fbo);
float x[2] = {dst->x0, dst->x1};
float y[2] = {dst->y0, dst->y1};
gl_transform_vec(t, &x[0], &y[0]);
gl_transform_vec(t, &x[1], &y[1]);
for (int n = 0; n < 4; n++) {
struct vertex_pt *vs = &p->tmp_vertex[num_vertex_attribs * n];
// vec2 position in idx 0
vs[0].x = x[n / 2];
vs[0].y = y[n % 2];
for (int i = 0; i < p->num_pass_imgs; i++) {
struct image *s = &p->pass_imgs[i];
if (!s->tex)
continue;
struct gl_transform tr = s->transform;
float tx = (n / 2) * s->w;
float ty = (n % 2) * s->h;
gl_transform_vec(tr, &tx, &ty);
bool rect = s->tex->params.non_normalized;
// vec2 texcoordN in idx N+1
vs[i + 1].x = tx / (rect ? 1 : s->tex->params.w);
vs[i + 1].y = ty / (rect ? 1 : s->tex->params.h);
}
}
memmove(&p->tmp_vertex[num_vertex_attribs * 4],
&p->tmp_vertex[num_vertex_attribs * 2],
vertex_stride);
memmove(&p->tmp_vertex[num_vertex_attribs * 5],
&p->tmp_vertex[num_vertex_attribs * 1],
vertex_stride);
return gl_sc_dispatch_draw(p->sc, fbo.tex, discard, p->vao, num_vertex_attribs,
vertex_stride, p->tmp_vertex, num_vertices);
}
static void finish_pass_fbo(struct gl_video *p, struct ra_fbo fbo,
bool discard, const struct mp_rect *dst)
{
pass_prepare_src_tex(p);
pass_record(p, render_pass_quad(p, fbo, discard, dst));
debug_check_gl(p, "after rendering");
cleanup_binds(p);
}
// dst_fbo: this will be used for rendering; possibly reallocating the whole
// FBO, if the required parameters have changed
// w, h: required FBO target dimension, and also defines the target rectangle
// used for rasterization
static void finish_pass_tex(struct gl_video *p, struct ra_tex **dst_tex,
int w, int h)
{
if (!ra_tex_resize(p->ra, p->log, dst_tex, w, h, p->fbo_format)) {
cleanup_binds(p);
gl_sc_reset(p->sc);
return;
}
// If RA_CAP_PARALLEL_COMPUTE is set, try to prefer compute shaders
// over fragment shaders wherever possible.
if (!p->pass_compute.active && (p->ra->caps & RA_CAP_PARALLEL_COMPUTE) &&
(*dst_tex)->params.storage_dst)
{
pass_is_compute(p, 16, 16, true);
}
if (p->pass_compute.active) {
gl_sc_uniform_image2D_wo(p->sc, "out_image", *dst_tex);
if (!p->pass_compute.directly_writes)
GLSL(imageStore(out_image, ivec2(gl_GlobalInvocationID), color);)
dispatch_compute(p, w, h, p->pass_compute);
p->pass_compute = (struct compute_info){0};
debug_check_gl(p, "after dispatching compute shader");
} else {
struct ra_fbo fbo = { .tex = *dst_tex, };
finish_pass_fbo(p, fbo, true, &(struct mp_rect){0, 0, w, h});
}
}
static const char *get_tex_swizzle(struct image *img)
{
if (!img->tex)
return "rgba";
return img->tex->params.format->luminance_alpha ? "raaa" : "rgba";
}
// Copy a texture to the vec4 color, while increasing offset. Also applies
// the texture multiplier to the sampled color
static void copy_image(struct gl_video *p, int *offset, struct image img)
{
int count = img.components;
assert(*offset + count <= 4);
assert(img.padding + count <= 4);
int id = pass_bind(p, img);
char src[5] = {0};
char dst[5] = {0};
const char *tex_fmt = get_tex_swizzle(&img);
const char *dst_fmt = "rgba";
for (int i = 0; i < count; i++) {
src[i] = tex_fmt[img.padding + i];
dst[i] = dst_fmt[*offset + i];
}
if (img.tex && img.tex->params.format->ctype == RA_CTYPE_UINT) {
uint64_t tex_max = 1ull << p->ra_format.component_bits;
img.multiplier *= 1.0 / (tex_max - 1);
}
GLSLF("color.%s = %f * vec4(texture(texture%d, texcoord%d)).%s;\n",
dst, img.multiplier, id, id, src);
*offset += count;
}
static void skip_unused(struct gl_video *p, int num_components)
{
for (int i = num_components; i < 4; i++)
GLSLF("color.%c = %f;\n", "rgba"[i], i < 3 ? 0.0 : 1.0);
}
static void uninit_scaler(struct gl_video *p, struct scaler *scaler)
{
ra_tex_free(p->ra, &scaler->sep_fbo);
ra_tex_free(p->ra, &scaler->lut);
scaler->kernel = NULL;
scaler->initialized = false;
}
static void hook_prelude(struct gl_video *p, const char *name, int id,
struct image img)
{
GLSLHF("#define %s_raw texture%d\n", name, id);
GLSLHF("#define %s_pos texcoord%d\n", name, id);
GLSLHF("#define %s_size texture_size%d\n", name, id);
GLSLHF("#define %s_rot texture_rot%d\n", name, id);
GLSLHF("#define %s_off texture_off%d\n", name, id);
GLSLHF("#define %s_pt pixel_size%d\n", name, id);
GLSLHF("#define %s_map texmap%d\n", name, id);
GLSLHF("#define %s_mul %f\n", name, img.multiplier);
char crap[5] = "";
snprintf(crap, sizeof(crap), "%s", get_tex_swizzle(&img));
// Remove leading padding by rotating the swizzle mask.
int len = strlen(crap);
for (int n = 0; n < img.padding; n++) {
if (len) {
char f = crap[0];
memmove(crap, crap + 1, len - 1);
crap[len - 1] = f;
}
}
// Set up the sampling functions
GLSLHF("#define %s_tex(pos) (%s_mul * vec4(texture(%s_raw, pos)).%s)\n",
name, name, name, crap);
// Since the extra matrix multiplication impacts performance,
// skip it unless the texture was actually rotated
if (gl_transform_eq(img.transform, identity_trans)) {
GLSLHF("#define %s_texOff(off) %s_tex(%s_pos + %s_pt * vec2(off))\n",
name, name, name, name);
} else {
GLSLHF("#define %s_texOff(off) "
"%s_tex(%s_pos + %s_rot * vec2(off)/%s_size)\n",
name, name, name, name, name);
}
}
static bool saved_img_find(struct gl_video *p, const char *name,
struct image *out)
{
if (!name || !out)
return false;
for (int i = 0; i < p->num_saved_imgs; i++) {
if (strcmp(p->saved_imgs[i].name, name) == 0) {
*out = p->saved_imgs[i].img;
return true;
}
}
return false;
}
static void saved_img_store(struct gl_video *p, const char *name,
struct image img)
{
assert(name);
for (int i = 0; i < p->num_saved_imgs; i++) {
if (strcmp(p->saved_imgs[i].name, name) == 0) {
p->saved_imgs[i].img = img;
return;
}
}
MP_TARRAY_APPEND(p, p->saved_imgs, p->num_saved_imgs, (struct saved_img) {
.name = name,
.img = img
});
}
static bool pass_hook_setup_binds(struct gl_video *p, const char *name,
struct image img, struct tex_hook *hook)
{
for (int t = 0; t < SHADER_MAX_BINDS; t++) {
char *bind_name = (char *)hook->bind_tex[t];
if (!bind_name)
continue;
// This is a special name that means "currently hooked texture"
if (strcmp(bind_name, "HOOKED") == 0) {
int id = pass_bind(p, img);
hook_prelude(p, "HOOKED", id, img);
hook_prelude(p, name, id, img);
continue;
}
// BIND can also be used to load user-defined textures, in which
// case we will directly load them as a uniform instead of
// generating the hook_prelude boilerplate
for (int u = 0; u < p->num_user_textures; u++) {
struct gl_user_shader_tex *utex = &p->user_textures[u];
if (bstr_equals0(utex->name, bind_name)) {
gl_sc_uniform_texture(p->sc, bind_name, utex->tex);
goto next_bind;
}
}
struct image bind_img;
if (!saved_img_find(p, bind_name, &bind_img)) {
// Clean up texture bindings and move on to the next hook
MP_TRACE(p, "Skipping hook on %s due to no texture named %s.\n",
name, bind_name);
p->num_pass_imgs -= t;
return false;
}
hook_prelude(p, bind_name, pass_bind(p, bind_img), bind_img);
next_bind: ;
}
return true;
}
static struct ra_tex **next_hook_tex(struct gl_video *p)
{
if (p->idx_hook_textures == p->num_hook_textures)
MP_TARRAY_APPEND(p, p->hook_textures, p->num_hook_textures, NULL);
return &p->hook_textures[p->idx_hook_textures++];
}
// Process hooks for a plane, saving the result and returning a new image
// If 'trans' is NULL, the shader is forbidden from transforming img
static struct image pass_hook(struct gl_video *p, const char *name,
struct image img, struct gl_transform *trans)
{
if (!name)
return img;
saved_img_store(p, name, img);
MP_TRACE(p, "Running hooks for %s\n", name);
for (int i = 0; i < p->num_tex_hooks; i++) {
struct tex_hook *hook = &p->tex_hooks[i];
// Figure out if this pass hooks this texture
for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
goto found;
}
continue;
found:
// Check the hook's condition
if (hook->cond && !hook->cond(p, img, hook->priv)) {
MP_TRACE(p, "Skipping hook on %s due to condition.\n", name);
continue;
}
const char *store_name = hook->save_tex ? hook->save_tex : name;
bool is_overwrite = strcmp(store_name, name) == 0;
// If user shader is set to align HOOKED with reference and fix its
// offset, it requires HOOKED to be resizable and overwrited.
if (is_overwrite && hook->align_offset) {
if (!trans) {
MP_ERR(p, "Hook tried to align unresizable texture %s!\n",
name);
return img;
}
struct gl_transform align_off = identity_trans;
align_off.t[0] = trans->t[0];
align_off.t[1] = trans->t[1];
gl_transform_trans(align_off, &img.transform);
}
if (!pass_hook_setup_binds(p, name, img, hook))
continue;
// Run the actual hook. This generates a series of GLSL shader
// instructions sufficient for drawing the hook's output
struct gl_transform hook_off = identity_trans;
hook->hook(p, img, &hook_off, hook->priv);
int comps = hook->components ? hook->components : img.components;
skip_unused(p, comps);
// Compute the updated FBO dimensions and store the result
struct mp_rect_f sz = {0, 0, img.w, img.h};
gl_transform_rect(hook_off, &sz);
int w = lroundf(fabs(sz.x1 - sz.x0));
int h = lroundf(fabs(sz.y1 - sz.y0));
struct ra_tex **tex = next_hook_tex(p);
finish_pass_tex(p, tex, w, h);
struct image saved_img = image_wrap(*tex, img.type, comps);
// If the texture we're saving overwrites the "current" texture, also
// update the tex parameter so that the future loop cycles will use the
// updated values, and export the offset
if (is_overwrite) {
if (!trans && !gl_transform_eq(hook_off, identity_trans)) {
MP_ERR(p, "Hook tried changing size of unscalable texture %s!\n",
name);
return img;
}
img = saved_img;
if (trans) {
gl_transform_trans(hook_off, trans);
// If user shader is set to align HOOKED, the offset it produces
// is dynamic (with static resizing factor though).
// Align it with reference manually to get offset fixed.
if (hook->align_offset) {
trans->t[0] = 0.0;
trans->t[1] = 0.0;
}
}
}
saved_img_store(p, store_name, saved_img);
}
return img;
}
// This can be used at any time in the middle of rendering to specify an
// optional hook point, which if triggered will render out to a new FBO and
// load the result back into vec4 color. Offsets applied by the hooks are
// accumulated in tex_trans, and the FBO is dimensioned according
// to p->texture_w/h
static void pass_opt_hook_point(struct gl_video *p, const char *name,
struct gl_transform *tex_trans)
{
if (!name)
return;
for (int i = 0; i < p->num_tex_hooks; i++) {
struct tex_hook *hook = &p->tex_hooks[i];
for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
goto found;
}
for (int b = 0; b < SHADER_MAX_BINDS; b++) {
if (hook->bind_tex[b] && strcmp(hook->bind_tex[b], name) == 0)
goto found;
}
}
// Nothing uses this texture, don't bother storing it
return;
found: ;
struct ra_tex **tex = next_hook_tex(p);
finish_pass_tex(p, tex, p->texture_w, p->texture_h);
struct image img = image_wrap(*tex, PLANE_RGB, p->components);
img = pass_hook(p, name, img, tex_trans);
copy_image(p, &(int){0}, img);
p->texture_w = img.w;
p->texture_h = img.h;
p->components = img.components;
pass_describe(p, "(remainder pass)");
}
static void load_shader(struct gl_video *p, struct bstr body)
{
gl_sc_hadd_bstr(p->sc, body);
gl_sc_uniform_dynamic(p->sc);
gl_sc_uniform_f(p->sc, "random", (double)av_lfg_get(&p->lfg) / UINT32_MAX);
gl_sc_uniform_dynamic(p->sc);
gl_sc_uniform_i(p->sc, "frame", p->frames_uploaded);
gl_sc_uniform_vec2(p->sc, "input_size",
(float[]){(p->src_rect.x1 - p->src_rect.x0) *
p->texture_offset.m[0][0],
(p->src_rect.y1 - p->src_rect.y0) *
p->texture_offset.m[1][1]});
gl_sc_uniform_vec2(p->sc, "target_size",
(float[]){p->dst_rect.x1 - p->dst_rect.x0,
p->dst_rect.y1 - p->dst_rect.y0});
gl_sc_uniform_vec2(p->sc, "tex_offset",
(float[]){p->src_rect.x0 * p->texture_offset.m[0][0] +
p->texture_offset.t[0],
p->src_rect.y0 * p->texture_offset.m[1][1] +
p->texture_offset.t[1]});
}
// Semantic equality
static bool double_seq(double a, double b)
{
return (isnan(a) && isnan(b)) || a == b;
}
static bool scaler_fun_eq(struct scaler_fun a, struct scaler_fun b)
{
if ((a.name && !b.name) || (b.name && !a.name))
return false;
return ((!a.name && !b.name) || strcmp(a.name, b.name) == 0) &&
double_seq(a.params[0], b.params[0]) &&
double_seq(a.params[1], b.params[1]) &&
a.blur == b.blur &&
a.taper == b.taper;
}
static bool scaler_conf_eq(struct scaler_config a, struct scaler_config b)
{
// Note: antiring isn't compared because it doesn't affect LUT
// generation
return scaler_fun_eq(a.kernel, b.kernel) &&
scaler_fun_eq(a.window, b.window) &&
a.radius == b.radius &&
a.clamp == b.clamp;
}
static void reinit_scaler(struct gl_video *p, struct scaler *scaler,
const struct scaler_config *conf,
double scale_factor,
int sizes[])
{
if (scaler_conf_eq(scaler->conf, *conf) &&
scaler->scale_factor == scale_factor &&
scaler->initialized)
return;
uninit_scaler(p, scaler);
const struct filter_kernel *t_kernel = mp_find_filter_kernel(conf->kernel.name);
const struct filter_window *t_window = mp_find_filter_window(conf->window.name);
bool is_tscale = scaler->index == SCALER_TSCALE;
scaler->conf = *conf;
scaler->conf.kernel.name = (char *)handle_scaler_opt(conf->kernel.name, is_tscale);
scaler->conf.window.name = t_window ? (char *)t_window->name : NULL;
scaler->scale_factor = scale_factor;
scaler->insufficient = false;
scaler->initialized = true;
if (!t_kernel)
return;
scaler->kernel_storage = *t_kernel;
scaler->kernel = &scaler->kernel_storage;
if (!t_window) {
// fall back to the scaler's default window if available
t_window = mp_find_filter_window(t_kernel->window);
}
if (t_window)
scaler->kernel->w = *t_window;
for (int n = 0; n < 2; n++) {
if (!isnan(conf->kernel.params[n]))
scaler->kernel->f.params[n] = conf->kernel.params[n];
if (!isnan(conf->window.params[n]))
scaler->kernel->w.params[n] = conf->window.params[n];
}
if (conf->kernel.blur > 0.0)
scaler->kernel->f.blur = conf->kernel.blur;
if (conf->window.blur > 0.0)
scaler->kernel->w.blur = conf->window.blur;
if (conf->kernel.taper > 0.0)
scaler->kernel->f.taper = conf->kernel.taper;
if (conf->window.taper > 0.0)
scaler->kernel->w.taper = conf->window.taper;
if (scaler->kernel->f.resizable && conf->radius > 0.0)
scaler->kernel->f.radius = conf->radius;
scaler->kernel->clamp = conf->clamp;
scaler->kernel->value_cutoff = conf->cutoff;
scaler->insufficient = !mp_init_filter(scaler->kernel, sizes, scale_factor);
int size = scaler->kernel->size;
int num_components = size > 2 ? 4 : size;
const struct ra_format *fmt = ra_find_float16_format(p->ra, num_components);
assert(fmt);
int width = (size + num_components - 1) / num_components; // round up
int stride = width * num_components;
assert(size <= stride);
scaler->lut_size = 1 << p->opts.scaler_lut_size;
float *weights = talloc_array(NULL, float, scaler->lut_size * stride);
mp_compute_lut(scaler->kernel, scaler->lut_size, stride, weights);
bool use_1d = scaler->kernel->polar && (p->ra->caps & RA_CAP_TEX_1D);
struct ra_tex_params lut_params = {
.dimensions = use_1d ? 1 : 2,
.w = use_1d ? scaler->lut_size : width,
.h = use_1d ? 1 : scaler->lut_size,
.d = 1,
.format = fmt,
.render_src = true,
.src_linear = true,
.initial_data = weights,
};
scaler->lut = ra_tex_create(p->ra, &lut_params);
talloc_free(weights);
debug_check_gl(p, "after initializing scaler");
}
// Special helper for sampling from two separated stages
static void pass_sample_separated(struct gl_video *p, struct image src,
struct scaler *scaler, int w, int h)
{
// Separate the transformation into x and y components, per pass
struct gl_transform t_x = {
.m = {{src.transform.m[0][0], 0.0}, {src.transform.m[1][0], 1.0}},
.t = {src.transform.t[0], 0.0},
};
struct gl_transform t_y = {
.m = {{1.0, src.transform.m[0][1]}, {0.0, src.transform.m[1][1]}},
.t = {0.0, src.transform.t[1]},
};
// First pass (scale only in the y dir)
src.transform = t_y;
sampler_prelude(p->sc, pass_bind(p, src));
GLSLF("// first pass\n");
pass_sample_separated_gen(p->sc, scaler, 0, 1);
GLSLF("color *= %f;\n", src.multiplier);
finish_pass_tex(p, &scaler->sep_fbo, src.w, h);
// Second pass (scale only in the x dir)
src = image_wrap(scaler->sep_fbo, src.type, src.components);
src.transform = t_x;
pass_describe(p, "%s second pass", scaler->conf.kernel.name);
sampler_prelude(p->sc, pass_bind(p, src));
pass_sample_separated_gen(p->sc, scaler, 1, 0);
}
// Picks either the compute shader version or the regular sampler version
// depending on hardware support
static void pass_dispatch_sample_polar(struct gl_video *p, struct scaler *scaler,
struct image img, int w, int h)
{
uint64_t reqs = RA_CAP_COMPUTE;
if ((p->ra->caps & reqs) != reqs)
goto fallback;
int bound = ceil(scaler->kernel->radius_cutoff);
int offset = bound - 1; // padding top/left
int padding = offset + bound; // total padding
float ratiox = (float)w / img.w,
ratioy = (float)h / img.h;
// For performance we want to load at least as many pixels
// horizontally as there are threads in a warp (32 for nvidia), as
// well as enough to take advantage of shmem parallelism
const int warp_size = 32, threads = 256;
int bw = warp_size;
int bh = threads / bw;
// We need to sample everything from base_min to base_max, so make sure
// we have enough room in shmem
int iw = (int)ceil(bw / ratiox) + padding + 1,
ih = (int)ceil(bh / ratioy) + padding + 1;
int shmem_req = iw * ih * img.components * sizeof(float);
if (shmem_req > p->ra->max_shmem)
goto fallback;
pass_is_compute(p, bw, bh, false);
pass_compute_polar(p->sc, scaler, img.components, bw, bh, iw, ih);
return;
fallback:
// Fall back to regular polar shader when compute shaders are unsupported
// or the kernel is too big for shmem
pass_sample_polar(p->sc, scaler, img.components,
p->ra->caps & RA_CAP_GATHER);
}
// Sample from image, with the src rectangle given by it.
// The dst rectangle is implicit by what the caller will do next, but w and h
// must still be what is going to be used (to dimension FBOs correctly).
// This will write the scaled contents to the vec4 "color".
// The scaler unit is initialized by this function; in order to avoid cache
// thrashing, the scaler unit should usually use the same parameters.
static void pass_sample(struct gl_video *p, struct image img,
struct scaler *scaler, const struct scaler_config *conf,
double scale_factor, int w, int h)
{
reinit_scaler(p, scaler, conf, scale_factor, filter_sizes);
// Describe scaler
const char *scaler_opt[] = {
[SCALER_SCALE] = "scale",
[SCALER_DSCALE] = "dscale",
[SCALER_CSCALE] = "cscale",
[SCALER_TSCALE] = "tscale",
};
pass_describe(p, "%s=%s (%s)", scaler_opt[scaler->index],
scaler->conf.kernel.name, plane_names[img.type]);
bool is_separated = scaler->kernel && !scaler->kernel->polar;
// Set up the transformation+prelude and bind the texture, for everything
// other than separated scaling (which does this in the subfunction)
if (!is_separated)
sampler_prelude(p->sc, pass_bind(p, img));
// Dispatch the scaler. They're all wildly different.
const char *name = scaler->conf.kernel.name;
if (strcmp(name, "bilinear") == 0) {
GLSL(color = texture(tex, pos);)
} else if (strcmp(name, "bicubic_fast") == 0) {
pass_sample_bicubic_fast(p->sc);
} else if (strcmp(name, "oversample") == 0) {
pass_sample_oversample(p->sc, scaler, w, h);
} else if (scaler->kernel && scaler->kernel->polar) {
pass_dispatch_sample_polar(p, scaler, img, w, h);
} else if (scaler->kernel) {
pass_sample_separated(p, img, scaler, w, h);
} else {
// Should never happen
abort();
}
// Apply any required multipliers. Separated scaling already does this in
// its first stage
if (!is_separated)
GLSLF("color *= %f;\n", img.multiplier);
// Micro-optimization: Avoid scaling unneeded channels
skip_unused(p, img.components);
}
// Returns true if two images are semantically equivalent (same metadata)
static bool image_equiv(struct image a, struct image b)
{
return a.type == b.type &&
a.components == b.components &&
a.multiplier == b.multiplier &&
a.tex->params.format == b.tex->params.format &&
a.tex->params.w == b.tex->params.w &&
a.tex->params.h == b.tex->params.h &&
a.w == b.w &&
a.h == b.h &&
gl_transform_eq(a.transform, b.transform);
}
static void deband_hook(struct gl_video *p, struct image img,
struct gl_transform *trans, void *priv)
{
pass_describe(p, "debanding (%s)", plane_names[img.type]);
pass_sample_deband(p->sc, p->opts.deband_opts, &p->lfg,
p->image_params.color.gamma);
}
static void unsharp_hook(struct gl_video *p, struct image img,
struct gl_transform *trans, void *priv)
{
pass_describe(p, "unsharp masking");
pass_sample_unsharp(p->sc, p->opts.unsharp);
}
struct szexp_ctx {
struct gl_video *p;
struct image img;
};
static bool szexp_lookup(void *priv, struct bstr var, float size[2])
{
struct szexp_ctx *ctx = priv;
struct gl_video *p = ctx->p;
if (bstr_equals0(var, "NATIVE_CROPPED")) {
size[0] = (p->src_rect.x1 - p->src_rect.x0) * p->texture_offset.m[0][0];
size[1] = (p->src_rect.y1 - p->src_rect.y0) * p->texture_offset.m[1][1];
return true;
}
// The size of OUTPUT is determined. It could be useful for certain
// user shaders to skip passes.
if (bstr_equals0(var, "OUTPUT")) {
size[0] = p->dst_rect.x1 - p->dst_rect.x0;
size[1] = p->dst_rect.y1 - p->dst_rect.y0;
return true;
}
// HOOKED is a special case
if (bstr_equals0(var, "HOOKED")) {
size[0] = ctx->img.w;
size[1] = ctx->img.h;
return true;
}
for (int o = 0; o < p->num_saved_imgs; o++) {
if (bstr_equals0(var, p->saved_imgs[o].name)) {
size[0] = p->saved_imgs[o].img.w;
size[1] = p->saved_imgs[o].img.h;
return true;
}
}
return false;
}
static bool user_hook_cond(struct gl_video *p, struct image img, void *priv)
{
struct gl_user_shader_hook *shader = priv;
assert(shader);
float res = false;
struct szexp_ctx ctx = {p, img};
eval_szexpr(p->log, &ctx, szexp_lookup, shader->cond, &res);
return res;
}
static void user_hook(struct gl_video *p, struct image img,
struct gl_transform *trans, void *priv)
{
struct gl_user_shader_hook *shader = priv;
assert(shader);
load_shader(p, shader->pass_body);
pass_describe(p, "user shader: %.*s (%s)", BSTR_P(shader->pass_desc),
plane_names[img.type]);
if (shader->compute.active) {
p->pass_compute = shader->compute;
GLSLF("hook();\n");
} else {
GLSLF("color = hook();\n");
}
// Make sure we at least create a legal FBO on failure, since it's better
// to do this and display an error message than just crash OpenGL
float w = 1.0, h = 1.0;
eval_szexpr(p->log, &(struct szexp_ctx){p, img}, szexp_lookup, shader->width, &w);
eval_szexpr(p->log, &(struct szexp_ctx){p, img}, szexp_lookup, shader->height, &h);
*trans = (struct gl_transform){{{w / img.w, 0}, {0, h / img.h}}};
gl_transform_trans(shader->offset, trans);
}
static bool add_user_hook(void *priv, struct gl_user_shader_hook hook)
{
struct gl_video *p = priv;
struct gl_user_shader_hook *copy = talloc_ptrtype(p, copy);
*copy = hook;
struct tex_hook texhook = {
.save_tex = bstrdup0(copy, hook.save_tex),
.components = hook.components,
.align_offset = hook.align_offset,
.hook = user_hook,
.cond = user_hook_cond,
.priv = copy,
};
for (int h = 0; h < SHADER_MAX_HOOKS; h++)
texhook.hook_tex[h] = bstrdup0(copy, hook.hook_tex[h]);
for (int h = 0; h < SHADER_MAX_BINDS; h++)
texhook.bind_tex[h] = bstrdup0(copy, hook.bind_tex[h]);
MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, texhook);
return true;
}
static bool add_user_tex(void *priv, struct gl_user_shader_tex tex)
{
struct gl_video *p = priv;
tex.tex = ra_tex_create(p->ra, &tex.params);
TA_FREEP(&tex.params.initial_data);
if (!tex.tex)
return false;
MP_TARRAY_APPEND(p, p->user_textures, p->num_user_textures, tex);
return true;
}
static void load_user_shaders(struct gl_video *p, char **shaders)
{
if (!shaders)
return;
for (int n = 0; shaders[n] != NULL; n++) {
struct bstr file = load_cached_file(p, shaders[n]);
parse_user_shader(p->log, p->ra, file, p, add_user_hook, add_user_tex);
}
}
static void gl_video_setup_hooks(struct gl_video *p)
{
gl_video_reset_hooks(p);
if (p->opts.deband) {
MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, (struct tex_hook) {
.hook_tex = {"LUMA", "CHROMA", "RGB", "XYZ"},
.bind_tex = {"HOOKED"},
.hook = deband_hook,
});
}
if (p->opts.unsharp != 0.0) {
MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, (struct tex_hook) {
.hook_tex = {"MAIN"},
.bind_tex = {"HOOKED"},
.hook = unsharp_hook,
});
}
load_user_shaders(p, p->opts.user_shaders);
}
// sample from video textures, set "color" variable to yuv value
static void pass_read_video(struct gl_video *p)
{
struct image img[4];
struct gl_transform offsets[4];
pass_get_images(p, &p->image, img, offsets);
// To keep the code as simple as possibly, we currently run all shader
// stages even if they would be unnecessary (e.g. no hooks for a texture).
// In the future, deferred image should optimize this away.
// Merge semantically identical textures. This loop is done from back
// to front so that merged textures end up in the right order while
// simultaneously allowing us to skip unnecessary merges
for (int n = 3; n >= 0; n--) {
if (img[n].type == PLANE_NONE)
continue;
int first = n;
int num = 0;
for (int i = 0; i < n; i++) {
if (image_equiv(img[n], img[i]) &&
gl_transform_eq(offsets[n], offsets[i]))
{
GLSLF("// merging plane %d ...\n", i);
copy_image(p, &num, img[i]);
first = MPMIN(first, i);
img[i] = (struct image){0};
}
}
if (num > 0) {
GLSLF("// merging plane %d ... into %d\n", n, first);
copy_image(p, &num, img[n]);
pass_describe(p, "merging planes");
finish_pass_tex(p, &p->merge_tex[n], img[n].w, img[n].h);
img[first] = image_wrap(p->merge_tex[n], img[n].type, num);
img[n] = (struct image){0};
}
}
// If any textures are still in integer format by this point, we need
// to introduce an explicit conversion pass to avoid breaking hooks/scaling
for (int n = 0; n < 4; n++) {
if (img[n].tex && img[n].tex->params.format->ctype == RA_CTYPE_UINT) {
GLSLF("// use_integer fix for plane %d\n", n);
copy_image(p, &(int){0}, img[n]);
pass_describe(p, "use_integer fix");
finish_pass_tex(p, &p->integer_tex[n], img[n].w, img[n].h);
img[n] = image_wrap(p->integer_tex[n], img[n].type,
img[n].components);
}
}
// The basic idea is we assume the rgb/luma texture is the "reference" and
// scale everything else to match, after all planes are finalized.
// We find the reference texture first, in order to maintain texture offset
// between hooks on different type of planes.
int reference_tex_num = 0;
for (int n = 0; n < 4; n++) {
switch (img[n].type) {
case PLANE_RGB:
case PLANE_XYZ:
case PLANE_LUMA: break;
default: continue;
}
reference_tex_num = n;
break;
}
// Dispatch the hooks for all of these textures, saving and perhaps
// modifying them in the process
for (int n = 0; n < 4; n++) {
const char *name;
switch (img[n].type) {
case PLANE_RGB: name = "RGB"; break;
case PLANE_LUMA: name = "LUMA"; break;
case PLANE_CHROMA: name = "CHROMA"; break;
case PLANE_ALPHA: name = "ALPHA"; break;
case PLANE_XYZ: name = "XYZ"; break;
default: continue;
}
img[n] = pass_hook(p, name, img[n], &offsets[n]);
if (reference_tex_num == n) {
// The reference texture is finalized now.
p->texture_w = img[n].w;
p->texture_h = img[n].h;
p->texture_offset = offsets[n];
}
}
// At this point all planes are finalized but they may not be at the
// required size yet. Furthermore, they may have texture offsets that
// require realignment.
// Compute the reference rect
struct mp_rect_f src = {0.0, 0.0, p->image_params.w, p->image_params.h};
struct mp_rect_f ref = src;
gl_transform_rect(p->texture_offset, &ref);
// Explicitly scale all of the textures that don't match
for (int n = 0; n < 4; n++) {
if (img[n].type == PLANE_NONE)
continue;
// If the planes are aligned identically, we will end up with the
// exact same source rectangle.
struct mp_rect_f rect = src;
gl_transform_rect(offsets[n], &rect);
if (mp_rect_f_seq(ref, rect))
continue;
// If the rectangles differ, then our planes have a different
// alignment and/or size. First of all, we have to compute the
// corrections required to meet the target rectangle
struct gl_transform fix = {
.m = {{(ref.x1 - ref.x0) / (rect.x1 - rect.x0), 0.0},
{0.0, (ref.y1 - ref.y0) / (rect.y1 - rect.y0)}},
.t = {ref.x0, ref.y0},
};
// Since the scale in texture space is different from the scale in
// absolute terms, we have to scale the coefficients down to be
// relative to the texture's physical dimensions and local offset
struct gl_transform scale = {
.m = {{(float)img[n].w / p->texture_w, 0.0},
{0.0, (float)img[n].h / p->texture_h}},
.t = {-rect.x0, -rect.y0},
};
if (p->image_params.rotate % 180 == 90)
MPSWAP(double, scale.m[0][0], scale.m[1][1]);
gl_transform_trans(scale, &fix);
// Since the texture transform is a function of the texture coordinates
// to texture space, rather than the other way around, we have to
// actually apply the *inverse* of this. Fortunately, calculating
// the inverse is relatively easy here.
fix.m[0][0] = 1.0 / fix.m[0][0];
fix.m[1][1] = 1.0 / fix.m[1][1];
fix.t[0] = fix.m[0][0] * -fix.t[0];
fix.t[1] = fix.m[1][1] * -fix.t[1];
gl_transform_trans(fix, &img[n].transform);
int scaler_id = -1;
const char *name = NULL;
switch (img[n].type) {
case PLANE_RGB:
case PLANE_LUMA:
case PLANE_XYZ:
scaler_id = SCALER_SCALE;
// these aren't worth hooking, fringe hypothetical cases only
break;
case PLANE_CHROMA:
scaler_id = SCALER_CSCALE;
name = "CHROMA_SCALED";
break;
case PLANE_ALPHA:
// alpha always uses bilinear
name = "ALPHA_SCALED";
}
if (scaler_id < 0)
continue;
const struct scaler_config *conf = &p->opts.scaler[scaler_id];
struct scaler *scaler = &p->scaler[scaler_id];
// bilinear scaling is a free no-op thanks to GPU sampling
if (strcmp(conf->kernel.name, "bilinear") != 0) {
GLSLF("// upscaling plane %d\n", n);
pass_sample(p, img[n], scaler, conf, 1.0, p->texture_w, p->texture_h);
finish_pass_tex(p, &p->scale_tex[n], p->texture_w, p->texture_h);
img[n] = image_wrap(p->scale_tex[n], img[n].type, img[n].components);
}
// Run any post-scaling hooks
img[n] = pass_hook(p, name, img[n], NULL);
}
// All planes are of the same size and properly aligned at this point
pass_describe(p, "combining planes");
int coord = 0;
for (int i = 0; i < 4; i++) {
if (img[i].type != PLANE_NONE)
copy_image(p, &coord, img[i]);
}
p->components = coord;
}
// Utility function that simply binds a texture and reads from it, without any
// transformations.
static void pass_read_tex(struct gl_video *p, struct ra_tex *tex)
{
struct image img = image_wrap(tex, PLANE_RGB, p->components);
copy_image(p, &(int){0}, img);
}
// yuv conversion, and any other conversions before main up/down-scaling
static void pass_convert_yuv(struct gl_video *p)
{
struct gl_shader_cache *sc = p->sc;
struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
cparams.gray = p->is_gray;
cparams.is_float = p->ra_format.component_type == RA_CTYPE_FLOAT;
mp_csp_set_image_params(&cparams, &p->image_params);
mp_csp_equalizer_state_get(p->video_eq, &cparams);
p->user_gamma = 1.0 / (cparams.gamma * p->opts.gamma);
pass_describe(p, "color conversion");
if (p->color_swizzle[0])
GLSLF("color = color.%s;\n", p->color_swizzle);
// Pre-colormatrix input gamma correction
if (cparams.color.space == MP_CSP_XYZ)
GLSL(color.rgb = pow(color.rgb, vec3(2.6));) // linear light
// We always explicitly normalize the range in pass_read_video
cparams.input_bits = cparams.texture_bits = 0;
// Conversion to RGB. For RGB itself, this still applies e.g. brightness
// and contrast controls, or expansion of e.g. LSB-packed 10 bit data.
struct mp_cmat m = {{{0}}};
mp_get_csp_matrix(&cparams, &m);
gl_sc_uniform_mat3(sc, "colormatrix", true, &m.m[0][0]);
gl_sc_uniform_vec3(sc, "colormatrix_c", m.c);
GLSL(color.rgb = mat3(colormatrix) * color.rgb + colormatrix_c;)
if (p->image_params.color.space == MP_CSP_BT_2020_C) {
// Conversion for C'rcY'cC'bc via the BT.2020 CL system:
// C'bc = (B'-Y'c) / 1.9404 | C'bc <= 0
// = (B'-Y'c) / 1.5816 | C'bc > 0
//
// C'rc = (R'-Y'c) / 1.7184 | C'rc <= 0
// = (R'-Y'c) / 0.9936 | C'rc > 0
//
// as per the BT.2020 specification, table 4. This is a non-linear
// transformation because (constant) luminance receives non-equal
// contributions from the three different channels.
GLSLF("// constant luminance conversion\n");
GLSL(color.br = color.br * mix(vec2(1.5816, 0.9936),
vec2(1.9404, 1.7184),
lessThanEqual(color.br, vec2(0)))
+ color.gg;)
// Expand channels to camera-linear light. This shader currently just
// assumes everything uses the BT.2020 12-bit gamma function, since the
// difference between 10 and 12-bit is negligible for anything other
// than 12-bit content.
GLSL(color.rgb = mix(color.rgb * vec3(1.0/4.5),
pow((color.rgb + vec3(0.0993))*vec3(1.0/1.0993),
vec3(1.0/0.45)),
lessThanEqual(vec3(0.08145), color.rgb));)
// Calculate the green channel from the expanded RYcB
// The BT.2020 specification says Yc = 0.2627*R + 0.6780*G + 0.0593*B
GLSL(color.g = (color.g - 0.2627*color.r - 0.0593*color.b)*1.0/0.6780;)
// Recompress to receive the R'G'B' result, same as other systems
GLSL(color.rgb = mix(color.rgb * vec3(4.5),
vec3(1.0993) * pow(color.rgb, vec3(0.45)) - vec3(0.0993),
lessThanEqual(vec3(0.0181), color.rgb));)
}
p->components = 3;
if (!p->has_alpha || p->opts.alpha_mode == ALPHA_NO) {
GLSL(color.a = 1.0;)
} else if (p->image_params.alpha == MP_ALPHA_PREMUL) {
p->components = 4;
} else {
p->components = 4;
GLSL(color = vec4(color.rgb * color.a, color.a);) // straight -> premul
}
}
static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2])
{
double target_w = p->src_rect.x1 - p->src_rect.x0;
double target_h = p->src_rect.y1 - p->src_rect.y0;
if (transpose_rot && p->image_params.rotate % 180 == 90)
MPSWAP(double, target_w, target_h);
xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) / target_w;
xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) / target_h;
}
// Cropping.
static void compute_src_transform(struct gl_video *p, struct gl_transform *tr)
{
float sx = (p->src_rect.x1 - p->src_rect.x0) / (float)p->texture_w,
sy = (p->src_rect.y1 - p->src_rect.y0) / (float)p->texture_h,
ox = p->src_rect.x0,
oy = p->src_rect.y0;
struct gl_transform transform = {{{sx, 0}, {0, sy}}, {ox, oy}};
gl_transform_trans(p->texture_offset, &transform);
*tr = transform;
}
// Takes care of the main scaling and pre/post-conversions
static void pass_scale_main(struct gl_video *p)
{
// Figure out the main scaler.
double xy[2];
get_scale_factors(p, true, xy);
// actual scale factor should be divided by the scale factor of prescaling.
xy[0] /= p->texture_offset.m[0][0];
xy[1] /= p->texture_offset.m[1][1];
// The calculation of scale factor involves 32-bit float(from gl_transform),
// use non-strict equality test to tolerate precision loss.
bool downscaling = xy[0] < 1.0 - FLT_EPSILON || xy[1] < 1.0 - FLT_EPSILON;
bool upscaling = !downscaling && (xy[0] > 1.0 + FLT_EPSILON ||
xy[1] > 1.0 + FLT_EPSILON);
double scale_factor = 1.0;
struct scaler *scaler = &p->scaler[SCALER_SCALE];
struct scaler_config scaler_conf = p->opts.scaler[SCALER_SCALE];
if (p->opts.scaler_resizes_only && !downscaling && !upscaling) {
scaler_conf.kernel.name = "bilinear";
// For scaler-resizes-only, we round the texture offset to
// the nearest round value in order to prevent ugly blurriness
// (in exchange for slightly shifting the image by up to half a
// subpixel)
p->texture_offset.t[0] = roundf(p->texture_offset.t[0]);
p->texture_offset.t[1] = roundf(p->texture_offset.t[1]);
}
if (downscaling && p->opts.scaler[SCALER_DSCALE].kernel.name) {
scaler_conf = p->opts.scaler[SCALER_DSCALE];
scaler = &p->scaler[SCALER_DSCALE];
}
// When requesting correct-downscaling and the clip is anamorphic, and
// because only a single scale factor is used for both axes, enable it only
// when both axes are downscaled, and use the milder of the factors to not
// end up with too much blur on one axis (even if we end up with sub-optimal
// scale factor on the other axis). This is better than not respecting
// correct scaling at all for anamorphic clips.
double f = MPMAX(xy[0], xy[1]);
if (p->opts.correct_downscaling && f < 1.0)
scale_factor = 1.0 / f;
// Pre-conversion, like linear light/sigmoidization
GLSLF("// scaler pre-conversion\n");
bool use_linear = false;
if (downscaling) {
use_linear = p->opts.linear_downscaling;
// Linear light downscaling results in nasty artifacts for HDR curves
// due to the potentially extreme brightness differences severely
// compounding any ringing. So just scale in gamma light instead.
if (mp_trc_is_hdr(p->image_params.color.gamma))
use_linear = false;
} else if (upscaling) {
use_linear = p->opts.linear_upscaling || p->opts.sigmoid_upscaling;
}
if (use_linear) {
p->use_linear = true;
pass_linearize(p->sc, p->image_params.color.gamma);
pass_opt_hook_point(p, "LINEAR", NULL);
}
bool use_sigmoid = use_linear && p->opts.sigmoid_upscaling && upscaling;
float sig_center, sig_slope, sig_offset, sig_scale;
if (use_sigmoid) {
// Coefficients for the sigmoidal transform are taken from the
// formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal
sig_center = p->opts.sigmoid_center;
sig_slope = p->opts.sigmoid_slope;
// This function needs to go through (0,0) and (1,1) so we compute the
// values at 1 and 0, and then scale/shift them, respectively.
sig_offset = 1.0/(1+expf(sig_slope * sig_center));
sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset;
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
GLSLF("color.rgb = %f - log(1.0/(color.rgb * %f + %f) - 1.0) * 1.0/%f;\n",
sig_center, sig_scale, sig_offset, sig_slope);
pass_opt_hook_point(p, "SIGMOID", NULL);
}
pass_opt_hook_point(p, "PREKERNEL", NULL);
int vp_w = p->dst_rect.x1 - p->dst_rect.x0;
int vp_h = p->dst_rect.y1 - p->dst_rect.y0;
struct gl_transform transform;
compute_src_transform(p, &transform);
GLSLF("// main scaling\n");
finish_pass_tex(p, &p->indirect_tex, p->texture_w, p->texture_h);
struct image src = image_wrap(p->indirect_tex, PLANE_RGB, p->components);
gl_transform_trans(transform, &src.transform);
pass_sample(p, src, scaler, &scaler_conf, scale_factor, vp_w, vp_h);
// Changes the texture size to display size after main scaler.
p->texture_w = vp_w;
p->texture_h = vp_h;
pass_opt_hook_point(p, "POSTKERNEL", NULL);
GLSLF("// scaler post-conversion\n");
if (use_sigmoid) {
// Inverse of the transformation above
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
GLSLF("color.rgb = (1.0/(1.0 + exp(%f * (%f - color.rgb))) - %f) * 1.0/%f;\n",
sig_slope, sig_center, sig_offset, sig_scale);
}
}
// Adapts the colors to the right output color space. (Final pass during
// rendering)
// If OSD is true, ignore any changes that may have been made to the video
// by previous passes (i.e. linear scaling)
static void pass_colormanage(struct gl_video *p, struct mp_colorspace src,
struct mp_colorspace fbo_csp, bool osd)
{
struct ra *ra = p->ra;
// Configure the destination according to the FBO color space,
// unless specific transfer function, primaries or target peak
// is set. If values are set to _AUTO, the most likely intended
// values are guesstimated later in this function.
struct mp_colorspace dst = {
.gamma = p->opts.target_trc == MP_CSP_TRC_AUTO ?
fbo_csp.gamma : p->opts.target_trc,
.primaries = p->opts.target_prim == MP_CSP_PRIM_AUTO ?
fbo_csp.primaries : p->opts.target_prim,
.light = MP_CSP_LIGHT_DISPLAY,
.sig_peak = !p->opts.target_peak ?
fbo_csp.sig_peak : p->opts.target_peak / MP_REF_WHITE,
};
if (!p->colorspace_override_warned &&
((fbo_csp.gamma && dst.gamma != fbo_csp.gamma) ||
(fbo_csp.primaries && dst.primaries != fbo_csp.primaries)))
{
MP_WARN(p, "One or more colorspace value is being overridden "
"by user while the FBO provides colorspace information: "
"transfer function: (dst: %s, fbo: %s), "
"primaries: (dst: %s, fbo: %s). "
"Rendering can lead to incorrect results!\n",
m_opt_choice_str(mp_csp_trc_names, dst.gamma),
m_opt_choice_str(mp_csp_trc_names, fbo_csp.gamma),
m_opt_choice_str(mp_csp_prim_names, dst.primaries),
m_opt_choice_str(mp_csp_prim_names, fbo_csp.primaries));
p->colorspace_override_warned = true;
}
if (dst.gamma == MP_CSP_TRC_HLG)
dst.light = MP_CSP_LIGHT_SCENE_HLG;
if (p->use_lut_3d) {
// The 3DLUT is always generated against the video's original source
// space, *not* the reference space. (To avoid having to regenerate
// the 3DLUT for the OSD on every frame)
enum mp_csp_prim prim_orig = p->image_params.color.primaries;
enum mp_csp_trc trc_orig = p->image_params.color.gamma;
// One exception: HDR is not implemented by LittleCMS for technical
// limitation reasons, so we use a gamma 2.2 input curve here instead.
// We could pick any value we want here, the difference is just coding
// efficiency.
if (mp_trc_is_hdr(trc_orig))
trc_orig = MP_CSP_TRC_GAMMA22;
if (gl_video_get_lut3d(p, prim_orig, trc_orig)) {
dst.primaries = prim_orig;
dst.gamma = trc_orig;
assert(dst.primaries && dst.gamma);
}
}
if (dst.primaries == MP_CSP_PRIM_AUTO) {
// The vast majority of people are on sRGB or BT.709 displays, so pick
// this as the default output color space.
dst.primaries = MP_CSP_PRIM_BT_709;
if (src.primaries == MP_CSP_PRIM_BT_601_525 ||
src.primaries == MP_CSP_PRIM_BT_601_625)
{
// Since we auto-pick BT.601 and BT.709 based on the dimensions,
// combined with the fact that they're very similar to begin with,
// and to avoid confusing the average user, just don't adapt BT.601
// content automatically at all.
dst.primaries = src.primaries;
}
}
if (dst.gamma == MP_CSP_TRC_AUTO) {
// Most people seem to complain when the image is darker or brighter
// than what they're "used to", so just avoid changing the gamma
// altogether by default. The only exceptions to this rule apply to
// very unusual TRCs, which even hardcode technoluddites would probably
// not enjoy viewing unaltered.
dst.gamma = src.gamma;
// Avoid outputting linear light or HDR content "by default". For these
// just pick gamma 2.2 as a default, since it's a good estimate for
// the response of typical displays
if (dst.gamma == MP_CSP_TRC_LINEAR || mp_trc_is_hdr(dst.gamma))
dst.gamma = MP_CSP_TRC_GAMMA22;
}
// If there's no specific signal peak known for the output display, infer
// it from the chosen transfer function. Also normalize the src peak, in
// case it was unknown
if (!dst.sig_peak)
dst.sig_peak = mp_trc_nom_peak(dst.gamma);
if (!src.sig_peak)
src.sig_peak = mp_trc_nom_peak(src.gamma);
struct gl_tone_map_opts tone_map = p->opts.tone_map;
bool detect_peak = tone_map.compute_peak >= 0 && mp_trc_is_hdr(src.gamma)
&& src.sig_peak > dst.sig_peak;
if (detect_peak && !p->hdr_peak_ssbo) {
struct {
float average[2];
int32_t frame_sum;
uint32_t frame_max;
uint32_t counter;
} peak_ssbo = {0};
struct ra_buf_params params = {
.type = RA_BUF_TYPE_SHADER_STORAGE,
.size = sizeof(peak_ssbo),
.initial_data = &peak_ssbo,
};
p->hdr_peak_ssbo = ra_buf_create(ra, &params);
if (!p->hdr_peak_ssbo) {
MP_WARN(p, "Failed to create HDR peak detection SSBO, disabling.\n");
tone_map.compute_peak = p->opts.tone_map.compute_peak = -1;
detect_peak = false;
}
}
if (detect_peak) {
pass_describe(p, "detect HDR peak");
pass_is_compute(p, 8, 8, true); // 8x8 is good for performance
gl_sc_ssbo(p->sc, "PeakDetect", p->hdr_peak_ssbo,
"vec2 average;"
"int frame_sum;"
"uint frame_max;"
"uint counter;"
);
} else {
tone_map.compute_peak = -1;
}
// Adapt from src to dst as necessary
pass_color_map(p->sc, p->use_linear && !osd, src, dst, &tone_map);
if (p->use_lut_3d) {
gl_sc_uniform_texture(p->sc, "lut_3d", p->lut_3d_texture);
GLSL(vec3 cpos;)
for (int i = 0; i < 3; i++)
GLSLF("cpos[%d] = LUT_POS(color[%d], %d.0);\n", i, i, p->lut_3d_size[i]);
GLSL(color.rgb = tex3D(lut_3d, cpos).rgb;)
}
}
void gl_video_set_fb_depth(struct gl_video *p, int fb_depth)
{
p->fb_depth = fb_depth;
}
static void pass_dither(struct gl_video *p)
{
// Assume 8 bits per component if unknown.
int dst_depth = p->fb_depth > 0 ? p->fb_depth : 8;
if (p->opts.dither_depth > 0)
dst_depth = p->opts.dither_depth;
if (p->opts.dither_depth < 0 || p->opts.dither_algo == DITHER_NONE)
return;
if (p->opts.dither_algo == DITHER_ERROR_DIFFUSION) {
const struct error_diffusion_kernel *kernel =
mp_find_error_diffusion_kernel(p->opts.error_diffusion);
int o_w = p->dst_rect.x1 - p->dst_rect.x0,
o_h = p->dst_rect.y1 - p->dst_rect.y0;
int shmem_req = mp_ef_compute_shared_memory_size(kernel, o_h);
if (shmem_req > p->ra->max_shmem) {
MP_WARN(p, "Fallback to dither=fruit because there is no enough "
"shared memory (%d/%d).\n",
shmem_req, (int)p->ra->max_shmem);
p->opts.dither_algo = DITHER_FRUIT;
} else {
finish_pass_tex(p, &p->error_diffusion_tex[0], o_w, o_h);
struct image img = image_wrap(p->error_diffusion_tex[0], PLANE_RGB, p->components);
// 1024 is minimal required number of invocation allowed in single
// work group in OpenGL. Use it for maximal performance.
int block_size = MPMIN(1024, o_h);
pass_describe(p, "dither=error-diffusion (kernel=%s, depth=%d)",
kernel->name, dst_depth);
p->pass_compute = (struct compute_info) {
.active = true,
.threads_w = block_size,
.threads_h = 1,
.directly_writes = true
};
int tex_id = pass_bind(p, img);
pass_error_diffusion(p->sc, kernel, tex_id, o_w, o_h,
dst_depth, block_size);
finish_pass_tex(p, &p->error_diffusion_tex[1], o_w, o_h);
img = image_wrap(p->error_diffusion_tex[1], PLANE_RGB, p->components);
copy_image(p, &(int){0}, img);
return;
}
}
if (!p->dither_texture) {
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
int tex_size = 0;
void *tex_data = NULL;
const struct ra_format *fmt = NULL;
void *temp = NULL;
if (p->opts.dither_algo == DITHER_FRUIT) {
int sizeb = p->opts.dither_size;
int size = 1 << sizeb;
if (p->last_dither_matrix_size != size) {
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
float, size * size);
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
p->last_dither_matrix_size = size;
}
// Prefer R16 texture since they provide higher precision.
fmt = ra_find_unorm_format(p->ra, 2, 1);
if (!fmt)
fmt = ra_find_float16_format(p->ra, 1);
if (fmt) {
tex_size = size;
tex_data = p->last_dither_matrix;
if (fmt->ctype == RA_CTYPE_UNORM) {
uint16_t *t = temp = talloc_array(NULL, uint16_t, size * size);
for (int n = 0; n < size * size; n++)
t[n] = p->last_dither_matrix[n] * UINT16_MAX;
tex_data = t;
}
} else {
MP_VERBOSE(p, "GL too old. Falling back to ordered dither.\n");
p->opts.dither_algo = DITHER_ORDERED;
}
}
if (p->opts.dither_algo == DITHER_ORDERED) {
temp = talloc_array(NULL, char, 8 * 8);
mp_make_ordered_dither_matrix(temp, 8);
fmt = ra_find_unorm_format(p->ra, 1, 1);
tex_size = 8;
tex_data = temp;
}
struct ra_tex_params params = {
.dimensions = 2,
.w = tex_size,
.h = tex_size,
.d = 1,
.format = fmt,
.render_src = true,
.src_repeat = true,
.initial_data = tex_data,
};
p->dither_texture = ra_tex_create(p->ra, &params);
debug_check_gl(p, "dither setup");
talloc_free(temp);
if (!p->dither_texture)
return;
}
GLSLF("// dithering\n");
// This defines how many bits are considered significant for output on
// screen. The superfluous bits will be used for rounding according to the
// dither matrix. The precision of the source implicitly decides how many
// dither patterns can be visible.
int dither_quantization = (1 << dst_depth) - 1;
int dither_size = p->dither_texture->params.w;
gl_sc_uniform_texture(p->sc, "dither", p->dither_texture);
GLSLF("vec2 dither_pos = gl_FragCoord.xy * 1.0/%d.0;\n", dither_size);
if (p->opts.temporal_dither) {
int phase = (p->frames_rendered / p->opts.temporal_dither_period) % 8u;
float r = phase * (M_PI / 2); // rotate
float m = phase < 4 ? 1 : -1; // mirror
float matrix[2][2] = {{cos(r), -sin(r) },
{sin(r) * m, cos(r) * m}};
gl_sc_uniform_dynamic(p->sc);
gl_sc_uniform_mat2(p->sc, "dither_trafo", true, &matrix[0][0]);
GLSL(dither_pos = dither_trafo * dither_pos;)
}
GLSL(float dither_value = texture(dither, dither_pos).r;)
GLSLF("color = floor(color * %d.0 + dither_value + 0.5 / %d.0) * 1.0/%d.0;\n",
dither_quantization, dither_size * dither_size, dither_quantization);
}
// Draws the OSD, in scene-referred colors.. If cms is true, subtitles are
// instead adapted to the display's gamut.
static void pass_draw_osd(struct gl_video *p, int osd_flags, int frame_flags,
double pts, struct mp_osd_res rect, struct ra_fbo fbo,
bool cms)
{
if (frame_flags & RENDER_FRAME_VF_SUBS)
osd_flags |= OSD_DRAW_SUB_FILTER;
if ((osd_flags & OSD_DRAW_SUB_ONLY) && (osd_flags & OSD_DRAW_OSD_ONLY))
return;
mpgl_osd_generate(p->osd, rect, pts, p->image_params.stereo3d, osd_flags);
timer_pool_start(p->osd_timer);
for (int n = 0; n < MAX_OSD_PARTS; n++) {
// (This returns false if this part is empty with nothing to draw.)
if (!mpgl_osd_draw_prepare(p->osd, n, p->sc))
continue;
// When subtitles need to be color managed, assume they're in sRGB
// (for lack of anything saner to do)
if (cms) {
static const struct mp_colorspace csp_srgb = {
.primaries = MP_CSP_PRIM_BT_709,
.gamma = MP_CSP_TRC_SRGB,
.light = MP_CSP_LIGHT_DISPLAY,
};
pass_colormanage(p, csp_srgb, fbo.color_space, true);
}
mpgl_osd_draw_finish(p->osd, n, p->sc, fbo);
}
timer_pool_stop(p->osd_timer);
pass_describe(p, "drawing osd");
pass_record(p, timer_pool_measure(p->osd_timer));
}
static float chroma_realign(int size, int pixel)
{
return size / (float)chroma_upsize(size, pixel);
}
// Minimal rendering code path, for GLES or OpenGL 2.1 without proper FBOs.
static void pass_render_frame_dumb(struct gl_video *p)
{
struct image img[4];
struct gl_transform off[4];
pass_get_images(p, &p->image, img, off);
struct gl_transform transform;
compute_src_transform(p, &transform);
int index = 0;
for (int i = 0; i < p->plane_count; i++) {
int cw = img[i].type == PLANE_CHROMA ? p->ra_format.chroma_w : 1;
int ch = img[i].type == PLANE_CHROMA ? p->ra_format.chroma_h : 1;
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, cw, ch);
struct gl_transform t = transform;
t.m[0][0] *= chroma_realign(p->texture_w, cw);
t.m[1][1] *= chroma_realign(p->texture_h, ch);
t.t[0] /= cw;
t.t[1] /= ch;
t.t[0] += off[i].t[0];
t.t[1] += off[i].t[1];
gl_transform_trans(img[i].transform, &t);
img[i].transform = t;
copy_image(p, &index, img[i]);
}
pass_convert_yuv(p);
}
// The main rendering function, takes care of everything up to and including
// upscaling. p->image is rendered.
// flags: bit set of RENDER_FRAME_* flags
static bool pass_render_frame(struct gl_video *p, struct mp_image *mpi,
uint64_t id, int flags)
{
// initialize the texture parameters and temporary variables
p->texture_w = p->image_params.w;
p->texture_h = p->image_params.h;
p->texture_offset = identity_trans;
p->components = 0;
p->num_saved_imgs = 0;
p->idx_hook_textures = 0;
p->use_linear = false;
// try uploading the frame
if (!pass_upload_image(p, mpi, id))
return false;
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, p->texture_w, p->texture_h);
if (p->dumb_mode)
return true;
pass_read_video(p);
pass_opt_hook_point(p, "NATIVE", &p->texture_offset);
pass_convert_yuv(p);
pass_opt_hook_point(p, "MAINPRESUB", &p->texture_offset);
// For subtitles
double vpts = p->image.mpi->pts;
if (vpts == MP_NOPTS_VALUE)
vpts = p->osd_pts;
if (p->osd && p->opts.blend_subs == BLEND_SUBS_VIDEO &&
(flags & RENDER_FRAME_SUBS))
{
double scale[2];
get_scale_factors(p, false, scale);
struct mp_osd_res rect = {
.w = p->texture_w, .h = p->texture_h,
.display_par = scale[1] / scale[0], // counter compensate scaling
};
finish_pass_tex(p, &p->blend_subs_tex, rect.w, rect.h);
struct ra_fbo fbo = { p->blend_subs_tex };
pass_draw_osd(p, OSD_DRAW_SUB_ONLY, flags, vpts, rect, fbo, false);
pass_read_tex(p, p->blend_subs_tex);
pass_describe(p, "blend subs video");
}
pass_opt_hook_point(p, "MAIN", &p->texture_offset);
pass_scale_main(p);
int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
vp_h = p->dst_rect.y1 - p->dst_rect.y0;
if (p->osd && p->opts.blend_subs == BLEND_SUBS_YES &&
(flags & RENDER_FRAME_SUBS))
{
// Recreate the real video size from the src/dst rects
struct mp_osd_res rect = {
.w = vp_w, .h = vp_h,
.ml = -p->src_rect.x0, .mr = p->src_rect.x1 - p->image_params.w,
.mt = -p->src_rect.y0, .mb = p->src_rect.y1 - p->image_params.h,
.display_par = 1.0,
};
// Adjust margins for scale
double scale[2];
get_scale_factors(p, true, scale);
rect.ml *= scale[0]; rect.mr *= scale[0];
rect.mt *= scale[1]; rect.mb *= scale[1];
// We should always blend subtitles in non-linear light
if (p->use_linear) {
pass_delinearize(p->sc, p->image_params.color.gamma);
p->use_linear = false;
}
finish_pass_tex(p, &p->blend_subs_tex, p->texture_w, p->texture_h);
struct ra_fbo fbo = { p->blend_subs_tex };
pass_draw_osd(p, OSD_DRAW_SUB_ONLY, flags, vpts, rect, fbo, false);
pass_read_tex(p, p->blend_subs_tex);
pass_describe(p, "blend subs");
}
pass_opt_hook_point(p, "SCALED", NULL);
return true;
}
static void pass_draw_to_screen(struct gl_video *p, struct ra_fbo fbo)
{
if (p->dumb_mode)
pass_render_frame_dumb(p);
// Adjust the overall gamma before drawing to screen
if (p->user_gamma != 1) {
gl_sc_uniform_f(p->sc, "user_gamma", p->user_gamma);
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
GLSL(color.rgb = pow(color.rgb, vec3(user_gamma));)
}
pass_colormanage(p, p->image_params.color, fbo.color_space, false);
// Since finish_pass_fbo doesn't work with compute shaders, and neither
// does the checkerboard/dither code, we may need an indirection via
// p->screen_tex here.
if (p->pass_compute.active) {
int o_w = p->dst_rect.x1 - p->dst_rect.x0,
o_h = p->dst_rect.y1 - p->dst_rect.y0;
finish_pass_tex(p, &p->screen_tex, o_w, o_h);
struct image tmp = image_wrap(p->screen_tex, PLANE_RGB, p->components);
copy_image(p, &(int){0}, tmp);
}
if (p->has_alpha){
if (p->opts.alpha_mode == ALPHA_BLEND_TILES) {
// Draw checkerboard pattern to indicate transparency
GLSLF("// transparency checkerboard\n");
GLSL(bvec2 tile = lessThan(fract(gl_FragCoord.xy * 1.0/32.0), vec2(0.5));)
GLSL(vec3 background = vec3(tile.x == tile.y ? 0.93 : 0.87);)
GLSL(color.rgb += background.rgb * (1.0 - color.a);)
GLSL(color.a = 1.0;)
} else if (p->opts.alpha_mode == ALPHA_BLEND) {
// Blend into background color (usually black)
struct m_color c = p->opts.background;
GLSLF("vec4 background = vec4(%f, %f, %f, %f);\n",
c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0);
GLSL(color.rgb += background.rgb * (1.0 - color.a);)
GLSL(color.a = background.a;)
}
}
pass_opt_hook_point(p, "OUTPUT", NULL);
pass_dither(p);
pass_describe(p, "output to screen");
finish_pass_fbo(p, fbo, false, &p->dst_rect);
}
// flags: bit set of RENDER_FRAME_* flags
static bool update_surface(struct gl_video *p, struct mp_image *mpi,
uint64_t id, struct surface *surf, int flags)
{
int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
vp_h = p->dst_rect.y1 - p->dst_rect.y0;
pass_info_reset(p, false);
if (!pass_render_frame(p, mpi, id, flags))
return false;
// Frame blending should always be done in linear light to preserve the
// overall brightness, otherwise this will result in flashing dark frames
// because mixing in compressed light artificially darkens the results
if (!p->use_linear) {
p->use_linear = true;
pass_linearize(p->sc, p->image_params.color.gamma);
}
finish_pass_tex(p, &surf->tex, vp_w, vp_h);
surf->id = id;
surf->pts = mpi->pts;
return true;
}
// Draws an interpolate frame to fbo, based on the frame timing in t
// flags: bit set of RENDER_FRAME_* flags
static void gl_video_interpolate_frame(struct gl_video *p, struct vo_frame *t,
struct ra_fbo fbo, int flags)
{
bool is_new = false;
// Reset the queue completely if this is a still image, to avoid any
// interpolation artifacts from surrounding frames when unpausing or
// framestepping
if (t->still)
gl_video_reset_surfaces(p);
// First of all, figure out if we have a frame available at all, and draw
// it manually + reset the queue if not
if (p->surfaces[p->surface_now].id == 0) {
struct surface *now = &p->surfaces[p->surface_now];
if (!update_surface(p, t->current, t->frame_id, now, flags))
return;
p->surface_idx = p->surface_now;
is_new = true;
}
// Find the right frame for this instant
if (t->current) {
int next = surface_wrap(p->surface_now + 1);
while (p->surfaces[next].id &&
p->surfaces[next].id > p->surfaces[p->surface_now].id &&
p->surfaces[p->surface_now].id < t->frame_id)
{
p->surface_now = next;
next = surface_wrap(next + 1);
}
}
// Figure out the queue size. For illustration, a filter radius of 2 would
// look like this: _ A [B] C D _
// A is surface_bse, B is surface_now, C is surface_now+1 and D is
// surface_end.
struct scaler *tscale = &p->scaler[SCALER_TSCALE];
reinit_scaler(p, tscale, &p->opts.scaler[SCALER_TSCALE], 1, tscale_sizes);
bool oversample = strcmp(tscale->conf.kernel.name, "oversample") == 0;
bool linear = strcmp(tscale->conf.kernel.name, "linear") == 0;
int size;
if (oversample || linear) {
size = 2;
} else {
assert(tscale->kernel && !tscale->kernel->polar);
size = ceil(tscale->kernel->size);
}
int radius = size/2;
int surface_now = p->surface_now;
int surface_bse = surface_wrap(surface_now - (radius-1));
int surface_end = surface_wrap(surface_now + radius);
assert(surface_wrap(surface_bse + size-1) == surface_end);
// Render new frames while there's room in the queue. Note that technically,
// this should be done before the step where we find the right frame, but
// it only barely matters at the very beginning of playback, and this way
// makes the code much more linear.
int surface_dst = surface_wrap(p->surface_idx + 1);
for (int i = 0; i < t->num_frames; i++) {
// Avoid overwriting data we might still need
if (surface_dst == surface_bse - 1)
break;
struct mp_image *f = t->frames[i];
uint64_t f_id = t->frame_id + i;
if (!mp_image_params_equal(&f->params, &p->real_image_params))
continue;
if (f_id > p->surfaces[p->surface_idx].id) {
struct surface *dst = &p->surfaces[surface_dst];
if (!update_surface(p, f, f_id, dst, flags))
return;
p->surface_idx = surface_dst;
surface_dst = surface_wrap(surface_dst + 1);
is_new = true;
}
}
// Figure out whether the queue is "valid". A queue is invalid if the
// frames' PTS is not monotonically increasing. Anything else is invalid,
// so avoid blending incorrect data and just draw the latest frame as-is.
// Possible causes for failure of this condition include seeks, pausing,
// end of playback or start of playback.
bool valid = true;
for (int i = surface_bse, ii; valid && i != surface_end; i = ii) {
ii = surface_wrap(i + 1);
if (p->surfaces[i].id == 0 || p->surfaces[ii].id == 0) {
valid = false;
} else if (p->surfaces[ii].id < p->surfaces[i].id) {
valid = false;
MP_DBG(p, "interpolation queue underrun\n");
}
}
// Update OSD PTS to synchronize subtitles with the displayed frame
p->osd_pts = p->surfaces[surface_now].pts;
// Finally, draw the right mix of frames to the screen.
if (!is_new)
pass_info_reset(p, true);
pass_describe(p, "interpolation");
if (!valid || t->still) {
// surface_now is guaranteed to be valid, so we can safely use it.
pass_read_tex(p, p->surfaces[surface_now].tex);
p->is_interpolated = false;
} else {
double mix = t->vsync_offset / t->ideal_frame_duration;
// The scaler code always wants the fcoord to be between 0 and 1,
// so we try to adjust by using the previous set of N frames instead
// (which requires some extra checking to make sure it's valid)
if (mix < 0.0) {
int prev = surface_wrap(surface_bse - 1);
if (p->surfaces[prev].id != 0 &&
p->surfaces[prev].id < p->surfaces[surface_bse].id)
{
mix += 1.0;
surface_bse = prev;
} else {
mix = 0.0; // at least don't blow up, this should only
// ever happen at the start of playback
}
}
if (oversample) {
// Oversample uses the frame area as mix ratio, not the the vsync
// position itself
double vsync_dist = t->vsync_interval / t->ideal_frame_duration,
threshold = tscale->conf.kernel.params[0];
threshold = isnan(threshold) ? 0.0 : threshold;
mix = (1 - mix) / vsync_dist;
mix = mix <= 0 + threshold ? 0 : mix;
mix = mix >= 1 - threshold ? 1 : mix;
mix = 1 - mix;
}
// Blend the frames together
if (oversample || linear) {
gl_sc_uniform_dynamic(p->sc);
gl_sc_uniform_f(p->sc, "inter_coeff", mix);
GLSL(color = mix(texture(texture0, texcoord0),
texture(texture1, texcoord1),
inter_coeff);)
} else {
gl_sc_uniform_dynamic(p->sc);
gl_sc_uniform_f(p->sc, "fcoord", mix);
pass_sample_separated_gen(p->sc, tscale, 0, 0);
}
// Load all the required frames
for (int i = 0; i < size; i++) {
struct image img =
image_wrap(p->surfaces[surface_wrap(surface_bse+i)].tex,
PLANE_RGB, p->components);
// Since the code in pass_sample_separated currently assumes
// the textures are bound in-order and starting at 0, we just
// assert to make sure this is the case (which it should always be)
int id = pass_bind(p, img);
assert(id == i);
}
MP_TRACE(p, "inter frame dur: %f vsync: %f, mix: %f\n",
t->ideal_frame_duration, t->vsync_interval, mix);
p->is_interpolated = true;
}
pass_draw_to_screen(p, fbo);
p->frames_drawn += 1;
}
void gl_video_render_frame(struct gl_video *p, struct vo_frame *frame,
struct ra_fbo fbo, int flags)
{
gl_video_update_options(p);
struct mp_rect target_rc = {0, 0, fbo.tex->params.w, fbo.tex->params.h};
p->broken_frame = false;
bool has_frame = !!frame->current;
struct m_color c = p->clear_color;
float clear_color[4] = {c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0};
p->ra->fns->clear(p->ra, fbo.tex, clear_color, &target_rc);
if (p->hwdec_overlay) {
if (has_frame) {
float *color = p->hwdec_overlay->overlay_colorkey;
p->ra->fns->clear(p->ra, fbo.tex, color, &p->dst_rect);
}
p->hwdec_overlay->driver->overlay_frame(p->hwdec_overlay, frame->current,
&p->src_rect, &p->dst_rect,
frame->frame_id != p->image.id);
if (frame->current)
p->osd_pts = frame->current->pts;
// Disable GL rendering
has_frame = false;
}
if (has_frame) {
bool interpolate = p->opts.interpolation && frame->display_synced &&
(p->frames_drawn || !frame->still);
if (interpolate) {
double ratio = frame->ideal_frame_duration / frame->vsync_interval;
if (fabs(ratio - 1.0) < p->opts.interpolation_threshold)
interpolate = false;
}
if (interpolate) {
gl_video_interpolate_frame(p, frame, fbo, flags);
} else {
bool is_new = frame->frame_id != p->image.id;
// Redrawing a frame might update subtitles.
if (frame->still && p->opts.blend_subs)
is_new = true;
if (is_new || !p->output_tex_valid) {
p->output_tex_valid = false;
pass_info_reset(p, !is_new);
if (!pass_render_frame(p, frame->current, frame->frame_id, flags))
goto done;
// For the non-interpolation case, we draw to a single "cache"
// texture to speed up subsequent re-draws (if any exist)
struct ra_fbo dest_fbo = fbo;
bool repeats = frame->num_vsyncs > 1 && frame->display_synced;
if ((repeats || frame->still) && !p->dumb_mode &&
(p->ra->caps & RA_CAP_BLIT) && fbo.tex->params.blit_dst)
{
// Attempt to use the same format as the destination FBO
// if possible. Some RAs use a wrapped dummy format here,
// so fall back to the fbo_format in that case.
const struct ra_format *fmt = fbo.tex->params.format;
if (fmt->dummy_format)
fmt = p->fbo_format;
bool r = ra_tex_resize(p->ra, p->log, &p->output_tex,
fbo.tex->params.w, fbo.tex->params.h,
fmt);
if (r) {
dest_fbo = (struct ra_fbo) { p->output_tex };
p->output_tex_valid = true;
}
}
pass_draw_to_screen(p, dest_fbo);
}
// "output tex valid" and "output tex needed" are equivalent
if (p->output_tex_valid && fbo.tex->params.blit_dst) {
pass_info_reset(p, true);
pass_describe(p, "redraw cached frame");
struct mp_rect src = p->dst_rect;
struct mp_rect dst = src;
if (fbo.flip) {
dst.y0 = fbo.tex->params.h - src.y0;
dst.y1 = fbo.tex->params.h - src.y1;
}
timer_pool_start(p->blit_timer);
p->ra->fns->blit(p->ra, fbo.tex, p->output_tex, &dst, &src);
timer_pool_stop(p->blit_timer);
pass_record(p, timer_pool_measure(p->blit_timer));
}
}
}
done:
debug_check_gl(p, "after video rendering");
if (p->osd && (flags & (RENDER_FRAME_SUBS | RENDER_FRAME_OSD))) {
// If we haven't actually drawn anything so far, then we technically
// need to consider this the start of a new pass. Let's call it a
// redraw just because, since it's basically a blank frame anyway
if (!has_frame)
pass_info_reset(p, true);
int osd_flags = p->opts.blend_subs ? OSD_DRAW_OSD_ONLY : 0;
if (!(flags & RENDER_FRAME_SUBS))
osd_flags |= OSD_DRAW_OSD_ONLY;
if (!(flags & RENDER_FRAME_OSD))
osd_flags |= OSD_DRAW_SUB_ONLY;
pass_draw_osd(p, osd_flags, flags, p->osd_pts, p->osd_rect, fbo, true);
debug_check_gl(p, "after OSD rendering");
}
p->broken_frame |= gl_sc_error_state(p->sc);
if (p->broken_frame) {
// Make the screen solid blue to make it visually clear that an
// error has occurred
float color[4] = {0.0, 0.05, 0.5, 1.0};
p->ra->fns->clear(p->ra, fbo.tex, color, &target_rc);
}
p->frames_rendered++;
pass_report_performance(p);
}
void gl_video_screenshot(struct gl_video *p, struct vo_frame *frame,
struct voctrl_screenshot *args)
{
if (!p->ra->fns->tex_download)
return;
bool ok = false;
struct mp_image *res = NULL;
struct ra_tex *target = NULL;
struct mp_rect old_src = p->src_rect;
struct mp_rect old_dst = p->dst_rect;
struct mp_osd_res old_osd = p->osd_rect;
struct vo_frame *nframe = vo_frame_ref(frame);
// Disable interpolation and such.
nframe->redraw = true;
nframe->repeat = false;
nframe->still = true;
nframe->pts = 0;
nframe->duration = -1;
if (!args->scaled) {
int w, h;
mp_image_params_get_dsize(&p->image_params, &w, &h);
if (w < 1 || h < 1)
return;
int src_w = p->image_params.w;
int src_h = p->image_params.h;
if (p->image_params.rotate % 180 == 90) {
MPSWAP(int, w, h);
MPSWAP(int, src_w, src_h);
}
struct mp_rect src = {0, 0, src_w, src_h};
struct mp_rect dst = {0, 0, w, h};
struct mp_osd_res osd = {.w = w, .h = h, .display_par = 1.0};
gl_video_resize(p, &src, &dst, &osd);
}
gl_video_reset_surfaces(p);
struct ra_tex_params params = {
.dimensions = 2,
.downloadable = true,
.w = p->osd_rect.w,
.h = p->osd_rect.h,
.render_dst = true,
};
params.format = ra_find_unorm_format(p->ra, 1, 4);
int mpfmt = IMGFMT_RGB0;
if (args->high_bit_depth && p->ra_format.component_bits > 8) {
const struct ra_format *fmt = ra_find_unorm_format(p->ra, 2, 4);
if (fmt && fmt->renderable) {
params.format = fmt;
mpfmt = IMGFMT_RGBA64;
}
}
if (!params.format || !params.format->renderable)
goto done;
target = ra_tex_create(p->ra, &params);
if (!target)
goto done;
int flags = 0;
if (args->subs)
flags |= RENDER_FRAME_SUBS;
if (args->osd)
flags |= RENDER_FRAME_OSD;
gl_video_render_frame(p, nframe, (struct ra_fbo){target}, flags);
res = mp_image_alloc(mpfmt, params.w, params.h);
if (!res)
goto done;
struct ra_tex_download_params download_params = {
.tex = target,
.dst = res->planes[0],
.stride = res->stride[0],
};
if (!p->ra->fns->tex_download(p->ra, &download_params))
goto done;
if (p->broken_frame)
goto done;
ok = true;
done:
talloc_free(nframe);
ra_tex_free(p->ra, &target);
gl_video_resize(p, &old_src, &old_dst, &old_osd);
gl_video_reset_surfaces(p);
if (!ok)
TA_FREEP(&res);
args->res = res;
}
// Use this color instead of the global option.
void gl_video_set_clear_color(struct gl_video *p, struct m_color c)
{
p->force_clear_color = true;
p->clear_color = c;
}
void gl_video_set_osd_pts(struct gl_video *p, double pts)
{
p->osd_pts = pts;
}
bool gl_video_check_osd_change(struct gl_video *p, struct mp_osd_res *res,
double pts)
{
return p->osd ? mpgl_osd_check_change(p->osd, res, pts) : false;
}
void gl_video_resize(struct gl_video *p,
struct mp_rect *src, struct mp_rect *dst,
struct mp_osd_res *osd)
{
if (mp_rect_equals(&p->src_rect, src) &&
mp_rect_equals(&p->dst_rect, dst) &&
osd_res_equals(p->osd_rect, *osd))
return;
p->src_rect = *src;
p->dst_rect = *dst;
p->osd_rect = *osd;
gl_video_reset_surfaces(p);
if (p->osd)
mpgl_osd_resize(p->osd, p->osd_rect, p->image_params.stereo3d);
}
static void frame_perf_data(struct pass_info pass[], struct mp_frame_perf *out)
{
for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
if (!pass[i].desc.len)
break;
out->perf[out->count] = pass[i].perf;
out->desc[out->count] = pass[i].desc.start;
out->count++;
}
}
void gl_video_perfdata(struct gl_video *p, struct voctrl_performance_data *out)
{
*out = (struct voctrl_performance_data){0};
frame_perf_data(p->pass_fresh, &out->fresh);
frame_perf_data(p->pass_redraw, &out->redraw);
}
// Returns false on failure.
static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id)
{
struct video_image *vimg = &p->image;
if (vimg->id == id)
return true;
unref_current_image(p);
mpi = mp_image_new_ref(mpi);
if (!mpi)
goto error;
vimg->mpi = mpi;
vimg->id = id;
p->osd_pts = mpi->pts;
p->frames_uploaded++;
if (p->hwdec_active) {
// Hardware decoding
if (!p->hwdec_mapper)
goto error;
pass_describe(p, "map frame (hwdec)");
timer_pool_start(p->upload_timer);
bool ok = ra_hwdec_mapper_map(p->hwdec_mapper, vimg->mpi) >= 0;
timer_pool_stop(p->upload_timer);
pass_record(p, timer_pool_measure(p->upload_timer));
vimg->hwdec_mapped = true;
if (ok) {
struct mp_image layout = {0};
mp_image_set_params(&layout, &p->image_params);
struct ra_tex **tex = p->hwdec_mapper->tex;
for (int n = 0; n < p->plane_count; n++) {
vimg->planes[n] = (struct texplane){
.w = mp_image_plane_w(&layout, n),
.h = mp_image_plane_h(&layout, n),
.tex = tex[n],
};
}
} else {
MP_FATAL(p, "Mapping hardware decoded surface failed.\n");
goto error;
}
return true;
}
// Software decoding
assert(mpi->num_planes == p->plane_count);
timer_pool_start(p->upload_timer);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
struct ra_tex_upload_params params = {
.tex = plane->tex,
.src = mpi->planes[n],
.invalidate = true,
.stride = mpi->stride[n],
};
plane->flipped = params.stride < 0;
if (plane->flipped) {
int h = mp_image_plane_h(mpi, n);
params.src = (char *)params.src + (h - 1) * params.stride;
params.stride = -params.stride;
}
struct dr_buffer *mapped = gl_find_dr_buffer(p, mpi->planes[n]);
if (mapped) {
params.buf = mapped->buf;
params.buf_offset = (uintptr_t)params.src -
(uintptr_t)mapped->buf->data;
params.src = NULL;
}
if (p->using_dr_path != !!mapped) {
p->using_dr_path = !!mapped;
MP_VERBOSE(p, "DR enabled: %s\n", p->using_dr_path ? "yes" : "no");
}
if (!p->ra->fns->tex_upload(p->ra, &params)) {
timer_pool_stop(p->upload_timer);
goto error;
}
if (mapped && !mapped->mpi)
mapped->mpi = mp_image_new_ref(mpi);
}
timer_pool_stop(p->upload_timer);
bool using_pbo = p->ra->use_pbo || !(p->ra->caps & RA_CAP_DIRECT_UPLOAD);
const char *mode = p->using_dr_path ? "DR" : using_pbo ? "PBO" : "naive";
pass_describe(p, "upload frame (%s)", mode);
pass_record(p, timer_pool_measure(p->upload_timer));
return true;
error:
unref_current_image(p);
p->broken_frame = true;
return false;
}
static bool test_fbo(struct gl_video *p, const struct ra_format *fmt)
{
MP_VERBOSE(p, "Testing FBO format %s\n", fmt->name);
struct ra_tex *tex = NULL;
bool success = ra_tex_resize(p->ra, p->log, &tex, 16, 16, fmt);
ra_tex_free(p->ra, &tex);
return success;
}
// Return whether dumb-mode can be used without disabling any features.
// Essentially, vo_gpu with mostly default settings will return true.
static bool check_dumb_mode(struct gl_video *p)
{
struct gl_video_opts *o = &p->opts;
if (p->use_integer_conversion)
return false;
if (o->dumb_mode > 0) // requested by user
return true;
if (o->dumb_mode < 0) // disabled by user
return false;
// otherwise, use auto-detection
if (o->correct_downscaling || o->linear_downscaling ||
o->linear_upscaling || o->sigmoid_upscaling || o->interpolation ||
o->blend_subs || o->deband || o->unsharp)
return false;
// check remaining scalers (tscale is already implicitly excluded above)
for (int i = 0; i < SCALER_COUNT; i++) {
if (i != SCALER_TSCALE) {
const char *name = o->scaler[i].kernel.name;
if (name && strcmp(name, "bilinear") != 0)
return false;
}
}
if (o->user_shaders && o->user_shaders[0])
return false;
return true;
}
// Disable features that are not supported with the current OpenGL version.
static void check_gl_features(struct gl_video *p)
{
struct ra *ra = p->ra;
bool have_float_tex = !!ra_find_float16_format(ra, 1);
bool have_mglsl = ra->glsl_version >= 130; // modern GLSL
const struct ra_format *rg_tex = ra_find_unorm_format(p->ra, 1, 2);
bool have_texrg = rg_tex && !rg_tex->luminance_alpha;
bool have_compute = ra->caps & RA_CAP_COMPUTE;
bool have_ssbo = ra->caps & RA_CAP_BUF_RW;
bool have_fragcoord = ra->caps & RA_CAP_FRAGCOORD;
const char *auto_fbo_fmts[] = {"rgba16f", "rgba16hf", "rgba16",
"rgb10_a2", "rgba8", 0};
const char *user_fbo_fmts[] = {p->opts.fbo_format, 0};
const char **fbo_fmts = user_fbo_fmts[0] && strcmp(user_fbo_fmts[0], "auto")
? user_fbo_fmts : auto_fbo_fmts;
bool user_specified_fbo_fmt = fbo_fmts == user_fbo_fmts;
bool fbo_test_result = false;
bool have_fbo = false;
p->fbo_format = NULL;
for (int n = 0; fbo_fmts[n]; n++) {
const char *fmt = fbo_fmts[n];
const struct ra_format *f = ra_find_named_format(p->ra, fmt);
if (!f && user_specified_fbo_fmt)
MP_WARN(p, "FBO format '%s' not found!\n", fmt);
if (f && f->renderable && f->linear_filter &&
(fbo_test_result = test_fbo(p, f))) {
MP_VERBOSE(p, "Using FBO format %s.\n", f->name);
have_fbo = true;
p->fbo_format = f;
break;
}
if (user_specified_fbo_fmt) {
MP_WARN(p, "User-specified FBO format '%s' failed to initialize! "
"(exists=%d, renderable=%d, linear_filter=%d, "
"fbo_test_result=%d)\n",
fmt, !!f, f ? f->renderable : 0, f ? f->linear_filter : 0,
fbo_test_result);
}
}
if (!have_fragcoord && p->opts.dither_depth >= 0 &&
p->opts.dither_algo != DITHER_NONE)
{
p->opts.dither_algo = DITHER_NONE;
MP_WARN(p, "Disabling dithering (no gl_FragCoord).\n");
}
if (!have_fragcoord && p->opts.alpha_mode == ALPHA_BLEND_TILES) {
p->opts.alpha_mode = ALPHA_BLEND;
// Verbose, since this is the default setting
MP_VERBOSE(p, "Disabling alpha checkerboard (no gl_FragCoord).\n");
}
if (!have_fbo && have_compute) {
have_compute = false;
MP_WARN(p, "Force-disabling compute shaders as an FBO format was not "
"available! See your FBO format configuration!\n");
}
if (have_compute && have_fbo && !p->fbo_format->storable) {
have_compute = false;
MP_WARN(p, "Force-disabling compute shaders as the chosen FBO format "
"is not storable! See your FBO format configuration!\n");
}
if (!have_compute && p->opts.dither_algo == DITHER_ERROR_DIFFUSION) {
MP_WARN(p, "Disabling error diffusion dithering because compute shader "
"was not supported. Fallback to dither=fruit instead.\n");
p->opts.dither_algo = DITHER_FRUIT;
}
bool have_compute_peak = have_compute && have_ssbo;
if (!have_compute_peak && p->opts.tone_map.compute_peak >= 0) {
int msgl = p->opts.tone_map.compute_peak == 1 ? MSGL_WARN : MSGL_V;
MP_MSG(p, msgl, "Disabling HDR peak computation (one or more of the "
"following is not supported: compute shaders=%d, "
"SSBO=%d).\n", have_compute, have_ssbo);
p->opts.tone_map.compute_peak = -1;
}
p->forced_dumb_mode = p->opts.dumb_mode > 0 || !have_fbo || !have_texrg;
bool voluntarily_dumb = check_dumb_mode(p);
if (p->forced_dumb_mode || voluntarily_dumb) {
if (voluntarily_dumb) {
MP_VERBOSE(p, "No advanced processing required. Enabling dumb mode.\n");
} else if (p->opts.dumb_mode <= 0) {
MP_WARN(p, "High bit depth FBOs unsupported. Enabling dumb mode.\n"
"Most extended features will be disabled.\n");
}
p->dumb_mode = true;
// Most things don't work, so whitelist all options that still work.
p->opts = (struct gl_video_opts){
.gamma = p->opts.gamma,
.gamma_auto = p->opts.gamma_auto,
.pbo = p->opts.pbo,
.fbo_format = p->opts.fbo_format,
.alpha_mode = p->opts.alpha_mode,
.use_rectangle = p->opts.use_rectangle,
.background = p->opts.background,
.dither_algo = p->opts.dither_algo,
.dither_depth = p->opts.dither_depth,
.dither_size = p->opts.dither_size,
.error_diffusion = p->opts.error_diffusion,
.temporal_dither = p->opts.temporal_dither,
.temporal_dither_period = p->opts.temporal_dither_period,
.tex_pad_x = p->opts.tex_pad_x,
.tex_pad_y = p->opts.tex_pad_y,
.tone_map = p->opts.tone_map,
.early_flush = p->opts.early_flush,
.icc_opts = p->opts.icc_opts,
.hwdec_interop = p->opts.hwdec_interop,
.target_trc = p->opts.target_trc,
.target_prim = p->opts.target_prim,
.target_peak = p->opts.target_peak,
};
for (int n = 0; n < SCALER_COUNT; n++)
p->opts.scaler[n] = gl_video_opts_def.scaler[n];
if (!have_fbo)
p->use_lut_3d = false;
return;
}
p->dumb_mode = false;
// Normally, we want to disable them by default if FBOs are unavailable,
// because they will be slow (not critically slow, but still slower).
// Without FP textures, we must always disable them.
// I don't know if luminance alpha float textures exist, so disregard them.
for (int n = 0; n < SCALER_COUNT; n++) {
const struct filter_kernel *kernel =
mp_find_filter_kernel(p->opts.scaler[n].kernel.name);
if (kernel) {
char *reason = NULL;
if (!have_float_tex)
reason = "(float tex. missing)";
if (!have_mglsl)
reason = "(GLSL version too old)";
if (reason) {
MP_WARN(p, "Disabling scaler #%d %s %s.\n", n,
p->opts.scaler[n].kernel.name, reason);
// p->opts is a copy => we can just mess with it.
p->opts.scaler[n].kernel.name = "bilinear";
if (n == SCALER_TSCALE)
p->opts.interpolation = 0;
}
}
}
int use_cms = p->opts.target_prim != MP_CSP_PRIM_AUTO ||
p->opts.target_trc != MP_CSP_TRC_AUTO || p->use_lut_3d;
// mix() is needed for some gamma functions
if (!have_mglsl && (p->opts.linear_downscaling ||
p->opts.linear_upscaling || p->opts.sigmoid_upscaling))
{
p->opts.linear_downscaling = false;
p->opts.linear_upscaling = false;
p->opts.sigmoid_upscaling = false;
MP_WARN(p, "Disabling linear/sigmoid scaling (GLSL version too old).\n");
}
if (!have_mglsl && use_cms) {
p->opts.target_prim = MP_CSP_PRIM_AUTO;
p->opts.target_trc = MP_CSP_TRC_AUTO;
p->use_lut_3d = false;
MP_WARN(p, "Disabling color management (GLSL version too old).\n");
}
if (!have_mglsl && p->opts.deband) {
p->opts.deband = 0;
MP_WARN(p, "Disabling debanding (GLSL version too old).\n");
}
}
static void init_gl(struct gl_video *p)
{
debug_check_gl(p, "before init_gl");
p->upload_timer = timer_pool_create(p->ra);
p->blit_timer = timer_pool_create(p->ra);
p->osd_timer = timer_pool_create(p->ra);
debug_check_gl(p, "after init_gl");
ra_dump_tex_formats(p->ra, MSGL_DEBUG);
ra_dump_img_formats(p->ra, MSGL_DEBUG);
}
void gl_video_uninit(struct gl_video *p)
{
if (!p)
return;
uninit_video(p);
for (int n = 0; n < p->num_hwdecs; n++)
ra_hwdec_uninit(p->hwdecs[n]);
p->num_hwdecs = 0;
gl_sc_destroy(p->sc);
ra_tex_free(p->ra, &p->lut_3d_texture);
ra_buf_free(p->ra, &p->hdr_peak_ssbo);
timer_pool_destroy(p->upload_timer);
timer_pool_destroy(p->blit_timer);
timer_pool_destroy(p->osd_timer);
for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
talloc_free(p->pass_fresh[i].desc.start);
talloc_free(p->pass_redraw[i].desc.start);
}
mpgl_osd_destroy(p->osd);
// Forcibly destroy possibly remaining image references. This should also
// cause gl_video_dr_free_buffer() to be called for the remaining buffers.
gc_pending_dr_fences(p, true);
// Should all have been unreffed already.
assert(!p->num_dr_buffers);
talloc_free(p);
}
void gl_video_reset(struct gl_video *p)
{
gl_video_reset_surfaces(p);
}
bool gl_video_showing_interpolated_frame(struct gl_video *p)
{
return p->is_interpolated;
}
static bool is_imgfmt_desc_supported(struct gl_video *p,
const struct ra_imgfmt_desc *desc)
{
if (!desc->num_planes)
return false;
if (desc->planes[0]->ctype == RA_CTYPE_UINT && p->forced_dumb_mode)
return false;
return true;
}
bool gl_video_check_format(struct gl_video *p, int mp_format)
{
struct ra_imgfmt_desc desc;
if (ra_get_imgfmt_desc(p->ra, mp_format, &desc) &&
is_imgfmt_desc_supported(p, &desc))
return true;
for (int n = 0; n < p->num_hwdecs; n++) {
if (ra_hwdec_test_format(p->hwdecs[n], mp_format))
return true;
}
return false;
}
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
{
unmap_overlay(p);
unref_current_image(p);
if (!mp_image_params_equal(&p->real_image_params, params)) {
uninit_video(p);
p->real_image_params = *params;
p->image_params = *params;
if (params->imgfmt)
init_video(p);
}
gl_video_reset_surfaces(p);
}
void gl_video_set_osd_source(struct gl_video *p, struct osd_state *osd)
{
mpgl_osd_destroy(p->osd);
p->osd = NULL;
p->osd_state = osd;
reinit_osd(p);
}
struct gl_video *gl_video_init(struct ra *ra, struct mp_log *log,
struct mpv_global *g)
{
struct gl_video *p = talloc_ptrtype(NULL, p);
*p = (struct gl_video) {
.ra = ra,
.global = g,
.log = log,
.sc = gl_sc_create(ra, g, log),
.video_eq = mp_csp_equalizer_create(p, g),
.opts_cache = m_config_cache_alloc(p, g, &gl_video_conf),
};
// make sure this variable is initialized to *something*
p->pass = p->pass_fresh;
struct gl_video_opts *opts = p->opts_cache->opts;
p->cms = gl_lcms_init(p, log, g, opts->icc_opts),
p->opts = *opts;
for (int n = 0; n < SCALER_COUNT; n++)
p->scaler[n] = (struct scaler){.index = n};
// our VAO always has the vec2 position as the first element
MP_TARRAY_APPEND(p, p->vao, p->vao_len, (struct ra_renderpass_input) {
.name = "position",
.type = RA_VARTYPE_FLOAT,
.dim_v = 2,
.dim_m = 1,
.offset = 0,
});
init_gl(p);
reinit_from_options(p);
return p;
}
// Get static string for scaler shader. If "tscale" is set to true, the
// scaler must be a separable convolution filter.
static const char *handle_scaler_opt(const char *name, bool tscale)
{
if (name && name[0]) {
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
if (kernel && (!tscale || !kernel->polar))
return kernel->f.name;
for (const char *const *filter = tscale ? fixed_tscale_filters
: fixed_scale_filters;
*filter; filter++) {
if (strcmp(*filter, name) == 0)
return *filter;
}
}
return NULL;
}
static void gl_video_update_options(struct gl_video *p)
{
if (m_config_cache_update(p->opts_cache)) {
gl_lcms_update_options(p->cms);
reinit_from_options(p);
}
if (mp_csp_equalizer_state_changed(p->video_eq))
p->output_tex_valid = false;
}
static void reinit_from_options(struct gl_video *p)
{
p->use_lut_3d = gl_lcms_has_profile(p->cms);
// Copy the option fields, so that check_gl_features() can mutate them.
// This works only for the fields themselves of course, not for any memory
// referenced by them.
p->opts = *(struct gl_video_opts *)p->opts_cache->opts;
if (!p->force_clear_color)
p->clear_color = p->opts.background;
check_gl_features(p);
uninit_rendering(p);
gl_sc_set_cache_dir(p->sc, p->opts.shader_cache_dir);
p->ra->use_pbo = p->opts.pbo;
gl_video_setup_hooks(p);
reinit_osd(p);
int vs;
mp_read_option_raw(p->global, "video-sync", &m_option_type_choice, &vs);
if (p->opts.interpolation && !vs && !p->dsi_warned) {
MP_WARN(p, "Interpolation now requires enabling display-sync mode.\n"
"E.g.: --video-sync=display-resample\n");
p->dsi_warned = true;
}
if (p->opts.correct_downscaling && !p->correct_downscaling_warned) {
const char *name = p->opts.scaler[SCALER_DSCALE].kernel.name;
if (!name)
name = p->opts.scaler[SCALER_SCALE].kernel.name;
if (!name || !strcmp(name, "bilinear")) {
MP_WARN(p, "correct-downscaling requires non-bilinear scaler.\n");
p->correct_downscaling_warned = true;
}
}
}
void gl_video_configure_queue(struct gl_video *p, struct vo *vo)
{
gl_video_update_options(p);
int queue_size = 1;
// Figure out an adequate size for the interpolation queue. The larger
// the radius, the earlier we need to queue frames.
if (p->opts.interpolation) {
const struct filter_kernel *kernel =
mp_find_filter_kernel(p->opts.scaler[SCALER_TSCALE].kernel.name);
if (kernel) {
// filter_scale wouldn't be correctly initialized were we to use it here.
// This is fine since we're always upsampling, but beware if downsampling
// is added!
double radius = kernel->f.radius;
radius = radius > 0 ? radius : p->opts.scaler[SCALER_TSCALE].radius;
queue_size += 1 + ceil(radius);
} else {
// Oversample/linear case
queue_size += 2;
}
}
vo_set_queue_params(vo, 0, queue_size);
}
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
bool tscale = bstr_equals0(name, "tscale");
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT;
} else if (bstr_equals0(name, "dscale") && !param.len) {
return r; // empty dscale means "use same as upscaler"
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
if (!handle_scaler_opt(s, tscale))
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available scalers:\n");
for (const char *const *filter = tscale ? fixed_tscale_filters
: fixed_scale_filters;
*filter; filter++) {
mp_info(log, " %s\n", *filter);
}
for (int n = 0; mp_filter_kernels[n].f.name; n++) {
if (!tscale || !mp_filter_kernels[n].polar)
mp_info(log, " %s\n", mp_filter_kernels[n].f.name);
}
if (s[0])
mp_fatal(log, "No scaler named '%s' found!\n", s);
}
return r;
}
static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT;
} else if (!param.len) {
return r; // empty string means "use preferred window"
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
const struct filter_window *window = mp_find_filter_window(s);
if (!window)
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available windows:\n");
for (int n = 0; mp_filter_windows[n].name; n++)
mp_info(log, " %s\n", mp_filter_windows[n].name);
if (s[0])
mp_fatal(log, "No window named '%s' found!\n", s);
}
return r;
}
static int validate_error_diffusion_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT;
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
const struct error_diffusion_kernel *k = mp_find_error_diffusion_kernel(s);
if (!k)
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available error diffusion kernels:\n");
for (int n = 0; mp_error_diffusion_kernels[n].name; n++)
mp_info(log, " %s\n", mp_error_diffusion_kernels[n].name);
if (s[0])
mp_fatal(log, "No error diffusion kernel named '%s' found!\n", s);
}
return r;
}
float gl_video_scale_ambient_lux(float lmin, float lmax,
float rmin, float rmax, float lux)
{
assert(lmax > lmin);
float num = (rmax - rmin) * (log10(lux) - log10(lmin));
float den = log10(lmax) - log10(lmin);
float result = num / den + rmin;
// clamp the result
float max = MPMAX(rmax, rmin);
float min = MPMIN(rmax, rmin);
return MPMAX(MPMIN(result, max), min);
}
void gl_video_set_ambient_lux(struct gl_video *p, int lux)
{
if (p->opts.gamma_auto) {
p->opts.gamma = gl_video_scale_ambient_lux(16.0, 256.0, 1.0, 1.2, lux);
MP_TRACE(p, "ambient light changed: %d lux (gamma: %f)\n", lux,
p->opts.gamma);
}
}
static void *gl_video_dr_alloc_buffer(struct gl_video *p, size_t size)
{
struct ra_buf_params params = {
.type = RA_BUF_TYPE_TEX_UPLOAD,
.host_mapped = true,
.size = size,
};
struct ra_buf *buf = ra_buf_create(p->ra, &params);
if (!buf)
return NULL;
MP_TARRAY_GROW(p, p->dr_buffers, p->num_dr_buffers);
p->dr_buffers[p->num_dr_buffers++] = (struct dr_buffer){ .buf = buf };
return buf->data;
}
static void gl_video_dr_free_buffer(void *opaque, uint8_t *data)
{
struct gl_video *p = opaque;
for (int n = 0; n < p->num_dr_buffers; n++) {
struct dr_buffer *buffer = &p->dr_buffers[n];
if (buffer->buf->data == data) {
assert(!buffer->mpi); // can't be freed while it has a ref
ra_buf_free(p->ra, &buffer->buf);
MP_TARRAY_REMOVE_AT(p->dr_buffers, p->num_dr_buffers, n);
return;
}
}
// not found - must not happen
assert(0);
}
struct mp_image *gl_video_get_image(struct gl_video *p, int imgfmt, int w, int h,
int stride_align)
{
if (!gl_video_check_format(p, imgfmt))
return NULL;
int size = mp_image_get_alloc_size(imgfmt, w, h, stride_align);
if (size < 0)
return NULL;
int alloc_size = size + stride_align;
void *ptr = gl_video_dr_alloc_buffer(p, alloc_size);
if (!ptr)
return NULL;
// (we expect vo.c to proxy the free callback, so it happens in the same
// thread it was allocated in, removing the need for synchronization)
struct mp_image *res = mp_image_from_buffer(imgfmt, w, h, stride_align,
ptr, alloc_size, p,
gl_video_dr_free_buffer);
if (!res)
gl_video_dr_free_buffer(p, ptr);
return res;
}
static void load_add_hwdec(struct gl_video *p, struct mp_hwdec_devices *devs,
const struct ra_hwdec_driver *drv, bool is_auto)
{
struct ra_hwdec *hwdec =
ra_hwdec_load_driver(p->ra, p->log, p->global, devs, drv, is_auto);
if (hwdec)
MP_TARRAY_APPEND(p, p->hwdecs, p->num_hwdecs, hwdec);
}
void gl_video_load_hwdecs(struct gl_video *p, struct mp_hwdec_devices *devs,
bool load_all_by_default)
{
char *type = p->opts.hwdec_interop;
if (!type || !type[0] || strcmp(type, "auto") == 0) {
if (!load_all_by_default)
return;
type = "all";
}
if (strcmp(type, "no") == 0) {
// do nothing, just block further loading
} else if (strcmp(type, "all") == 0) {
gl_video_load_hwdecs_all(p, devs);
} else {
for (int n = 0; ra_hwdec_drivers[n]; n++) {
const struct ra_hwdec_driver *drv = ra_hwdec_drivers[n];
if (strcmp(type, drv->name) == 0) {
load_add_hwdec(p, devs, drv, false);
break;
}
}
}
p->hwdec_interop_loading_done = true;
}
void gl_video_load_hwdecs_all(struct gl_video *p, struct mp_hwdec_devices *devs)
{
if (!p->hwdec_interop_loading_done) {
for (int n = 0; ra_hwdec_drivers[n]; n++)
load_add_hwdec(p, devs, ra_hwdec_drivers[n], true);
p->hwdec_interop_loading_done = true;
}
}