mirror of
https://github.com/mpv-player/mpv
synced 2025-01-10 00:49:32 +00:00
36489bf66e
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@8072 b3059339-0415-0410-9bf9-f77b7e298cf2
359 lines
9.3 KiB
C
359 lines
9.3 KiB
C
/*=============================================================================
|
|
//
|
|
// This software has been released under the terms of the GNU Public
|
|
// license. See http://www.gnu.org/copyleft/gpl.html for details.
|
|
//
|
|
// Copyright 2002 Anders Johansson ajh@atri.curtin.edu.au
|
|
//
|
|
//=============================================================================
|
|
*/
|
|
|
|
/* This audio filter changes the sample rate. */
|
|
|
|
#define PLUGIN
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "../config.h"
|
|
#include "../mp_msg.h"
|
|
#include "../libao2/afmt.h"
|
|
|
|
#include "af.h"
|
|
#include "dsp.h"
|
|
|
|
/* Below definition selects the length of each poly phase component.
|
|
Valid definitions are L8 and L16, where the number denotes the
|
|
length of the filter. This definition affects the computational
|
|
complexity (see play()), the performance (see filter.h) and the
|
|
memory usage. The filterlenght is choosen to 8 if the machine is
|
|
slow and to 16 if the machine is fast and has MMX.
|
|
*/
|
|
|
|
#if !defined(HAVE_SSE) && !defined(HAVE_3DNOW) // This machine is slow
|
|
|
|
#define L 8 // Filter length
|
|
// Unrolled loop to speed up execution
|
|
#define FIR(x,w,y) \
|
|
(y[0]) = ( w[0]*x[0]+w[1]*x[1]+w[2]*x[2]+w[3]*x[3] \
|
|
+ w[4]*x[4]+w[5]*x[5]+w[6]*x[6]+w[7]*x[7] ) >> 16
|
|
|
|
#else /* Fast machine */
|
|
|
|
#define L 16
|
|
// Unrolled loop to speed up execution
|
|
#define FIR(x,w,y) \
|
|
y[0] = ( w[0] *x[0] +w[1] *x[1] +w[2] *x[2] +w[3] *x[3] \
|
|
+ w[4] *x[4] +w[5] *x[5] +w[6] *x[6] +w[7] *x[7] \
|
|
+ w[8] *x[8] +w[9] *x[9] +w[10]*x[10]+w[11]*x[11] \
|
|
+ w[12]*x[12]+w[13]*x[13]+w[14]*x[14]+w[15]*x[15] ) >> 16
|
|
|
|
#endif /* Fast machine */
|
|
|
|
// Macro to add data to circular que
|
|
#define ADDQUE(xi,xq,in)\
|
|
xq[xi]=xq[xi+L]=(*in);\
|
|
xi=(--xi)&(L-1);
|
|
|
|
|
|
|
|
// local data
|
|
typedef struct af_resample_s
|
|
{
|
|
int16_t* w; // Current filter weights
|
|
int16_t** xq; // Circular buffers
|
|
uint32_t xi; // Index for circular buffers
|
|
uint32_t wi; // Index for w
|
|
uint32_t i; // Number of new samples to put in x queue
|
|
uint32_t dn; // Down sampling factor
|
|
uint32_t up; // Up sampling factor
|
|
int sloppy; // Enable sloppy resampling to reduce memory usage
|
|
int fast; // Enable linear interpolation instead of filtering
|
|
} af_resample_t;
|
|
|
|
// Euclids algorithm for calculating Greatest Common Divisor GCD(a,b)
|
|
static inline int gcd(register int a, register int b)
|
|
{
|
|
register int r = min(a,b);
|
|
a=max(a,b);
|
|
b=r;
|
|
|
|
r=a%b;
|
|
while(r!=0){
|
|
a=b;
|
|
b=r;
|
|
r=a%b;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
static int upsample(af_data_t* c,af_data_t* l, af_resample_t* s)
|
|
{
|
|
uint32_t ci = l->nch; // Index for channels
|
|
uint32_t len = 0; // Number of input samples
|
|
uint32_t nch = l->nch; // Number of channels
|
|
uint32_t inc = s->up/s->dn;
|
|
uint32_t level = s->up%s->dn;
|
|
uint32_t up = s->up;
|
|
uint32_t dn = s->dn;
|
|
|
|
register int16_t* w = s->w;
|
|
register uint32_t wi = 0;
|
|
register uint32_t xi = 0;
|
|
|
|
// Index current channel
|
|
while(ci--){
|
|
// Temporary pointers
|
|
register int16_t* x = s->xq[ci];
|
|
register int16_t* in = ((int16_t*)c->audio)+ci;
|
|
register int16_t* out = ((int16_t*)l->audio)+ci;
|
|
int16_t* end = in+c->len/2; // Block loop end
|
|
wi = s->wi; xi = s->xi;
|
|
|
|
while(in < end){
|
|
register uint32_t i = inc;
|
|
if(wi<level) i++;
|
|
|
|
ADDQUE(xi,x,in);
|
|
in+=nch;
|
|
while(i--){
|
|
// Run the FIR filter
|
|
FIR((&x[xi]),(&w[wi*L]),out);
|
|
len++; out+=nch;
|
|
// Update wi to point at the correct polyphase component
|
|
wi=(wi+dn)%up;
|
|
}
|
|
}
|
|
}
|
|
// Save values that needs to be kept for next time
|
|
s->wi = wi;
|
|
s->xi = xi;
|
|
return len;
|
|
}
|
|
|
|
static int downsample(af_data_t* c,af_data_t* l, af_resample_t* s)
|
|
{
|
|
uint32_t ci = l->nch; // Index for channels
|
|
uint32_t len = 0; // Number of output samples
|
|
uint32_t nch = l->nch; // Number of channels
|
|
uint32_t inc = s->dn/s->up;
|
|
uint32_t level = s->dn%s->up;
|
|
uint32_t up = s->up;
|
|
uint32_t dn = s->dn;
|
|
|
|
register int32_t i = 0;
|
|
register uint32_t wi = 0;
|
|
register uint32_t xi = 0;
|
|
|
|
// Index current channel
|
|
while(ci--){
|
|
// Temporary pointers
|
|
register int16_t* x = s->xq[ci];
|
|
register int16_t* in = ((int16_t*)c->audio)+ci;
|
|
register int16_t* out = ((int16_t*)l->audio)+ci;
|
|
register int16_t* end = in+c->len/2; // Block loop end
|
|
i = s->i; wi = s->wi; xi = s->xi;
|
|
|
|
while(in < end){
|
|
|
|
ADDQUE(xi,x,in);
|
|
in+=nch;
|
|
if((--i)<=0){
|
|
// Run the FIR filter
|
|
FIR((&x[xi]),(&s->w[wi*L]),out);
|
|
len++; out+=nch;
|
|
|
|
// Update wi to point at the correct polyphase component
|
|
wi=(wi+dn)%up;
|
|
|
|
// Insert i number of new samples in queue
|
|
i = inc;
|
|
if(wi<level) i++;
|
|
}
|
|
}
|
|
}
|
|
// Save values that needs to be kept for next time
|
|
s->wi = wi;
|
|
s->xi = xi;
|
|
s->i = i;
|
|
|
|
return len;
|
|
}
|
|
|
|
// Initialization and runtime control
|
|
static int control(struct af_instance_s* af, int cmd, void* arg)
|
|
{
|
|
switch(cmd){
|
|
case AF_CONTROL_REINIT:{
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
af_data_t* n = (af_data_t*)arg; // New configureation
|
|
int i,d = 0;
|
|
int rv = AF_OK;
|
|
|
|
// Make sure this filter isn't redundant
|
|
if(af->data->rate == n->rate)
|
|
return AF_DETACH;
|
|
|
|
// Create space for circular bufers (if nesessary)
|
|
if(af->data->nch != n->nch){
|
|
// First free the old ones
|
|
if(s->xq){
|
|
for(i=1;i<af->data->nch;i++)
|
|
if(s->xq[i])
|
|
free(s->xq[i]);
|
|
free(s->xq);
|
|
}
|
|
// ... then create new
|
|
s->xq = malloc(n->nch*sizeof(int16_t*));
|
|
for(i=0;i<n->nch;i++)
|
|
s->xq[i] = malloc(2*L*sizeof(int16_t));
|
|
s->xi = 0;
|
|
}
|
|
|
|
// Set parameters
|
|
af->data->nch = n->nch;
|
|
af->data->format = AFMT_S16_NE;
|
|
af->data->bps = 2;
|
|
if(af->data->format != n->format || af->data->bps != n->bps)
|
|
rv = AF_FALSE;
|
|
n->format = AFMT_S16_NE;
|
|
n->bps = 2;
|
|
|
|
// Calculate up and down sampling factors
|
|
d=gcd(af->data->rate,n->rate);
|
|
|
|
// If sloppy resampling is enabled limit the upsampling factor
|
|
if(s->sloppy && (af->data->rate/d > 5000)){
|
|
int up=af->data->rate/2;
|
|
int dn=n->rate/2;
|
|
int m=2;
|
|
while(af->data->rate/(d*m) > 5000){
|
|
d=gcd(up,dn);
|
|
up/=2; dn/=2; m*=2;
|
|
}
|
|
d*=m;
|
|
}
|
|
|
|
// Check if the the design needs to be redone
|
|
if(s->up != af->data->rate/d || s->dn != n->rate/d){
|
|
float* w;
|
|
float* wt;
|
|
float fc;
|
|
int j;
|
|
s->up = af->data->rate/d;
|
|
s->dn = n->rate/d;
|
|
|
|
// Calculate cuttof frequency for filter
|
|
fc = 1/(float)(max(s->up,s->dn));
|
|
// Allocate space for polyphase filter bank and protptype filter
|
|
w = malloc(sizeof(float) * s->up *L);
|
|
if(NULL != s->w)
|
|
free(s->w);
|
|
s->w = malloc(L*s->up*sizeof(int16_t));
|
|
|
|
// Design prototype filter type using Kaiser window with beta = 10
|
|
if(NULL == w || NULL == s->w ||
|
|
-1 == design_fir(s->up*L, w, &fc, LP|KAISER , 10.0)){
|
|
mp_msg(MSGT_AFILTER,MSGL_ERR,"[resample] Unable to design prototype filter.\n");
|
|
return AF_ERROR;
|
|
}
|
|
// Copy data from prototype to polyphase filter
|
|
wt=w;
|
|
for(j=0;j<L;j++){//Columns
|
|
for(i=0;i<s->up;i++){//Rows
|
|
float t=(float)s->up*32767.0*(*wt);
|
|
s->w[i*L+j] = (int16_t)((t>=0.0)?(t+0.5):(t-0.5));
|
|
wt++;
|
|
}
|
|
}
|
|
free(w);
|
|
mp_msg(MSGT_AFILTER,MSGL_V,"[resample] New filter designed up: %i down: %i\n", s->up, s->dn);
|
|
}
|
|
|
|
// Set multiplier and delay
|
|
af->delay = (double)(1000*L/2)/((double)n->rate);
|
|
af->mul.n = s->up;
|
|
af->mul.d = s->dn;
|
|
return rv;
|
|
}
|
|
case AF_CONTROL_COMMAND_LINE:{
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
int rate=0;
|
|
sscanf((char*)arg,"%i:%i:%i",&rate,&(s->sloppy), &(s->fast));
|
|
return af->control(af,AF_CONTROL_RESAMPLE,&rate);
|
|
}
|
|
case AF_CONTROL_RESAMPLE:
|
|
// Reinit must be called after this function has been called
|
|
|
|
// Sanity check
|
|
if(((int*)arg)[0] < 8000 || ((int*)arg)[0] > 192000){
|
|
mp_msg(MSGT_AFILTER,MSGL_ERR,"[resample] The output sample frequency must be between 8kHz and 192kHz. Current value is %i \n",((int*)arg)[0]);
|
|
return AF_ERROR;
|
|
}
|
|
|
|
af->data->rate=((int*)arg)[0];
|
|
mp_msg(MSGT_AFILTER,MSGL_V,"[resample] Changing sample rate to %iHz\n",af->data->rate);
|
|
return AF_OK;
|
|
}
|
|
return AF_UNKNOWN;
|
|
}
|
|
|
|
// Deallocate memory
|
|
static void uninit(struct af_instance_s* af)
|
|
{
|
|
if(af->data)
|
|
free(af->data);
|
|
}
|
|
|
|
// Filter data through filter
|
|
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
|
|
{
|
|
int len = 0; // Length of output data
|
|
af_data_t* c = data; // Current working data
|
|
af_data_t* l = af->data; // Local data
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
|
|
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
|
|
return NULL;
|
|
|
|
// Run resampling
|
|
if(s->up>s->dn)
|
|
len = upsample(c,l,s);
|
|
else
|
|
len = downsample(c,l,s);
|
|
|
|
// Set output data
|
|
c->audio = l->audio;
|
|
c->len = len*2;
|
|
c->rate = l->rate;
|
|
|
|
return c;
|
|
}
|
|
|
|
// Allocate memory and set function pointers
|
|
static int open(af_instance_t* af){
|
|
af->control=control;
|
|
af->uninit=uninit;
|
|
af->play=play;
|
|
af->mul.n=1;
|
|
af->mul.d=1;
|
|
af->data=calloc(1,sizeof(af_data_t));
|
|
af->setup=calloc(1,sizeof(af_resample_t));
|
|
if(af->data == NULL || af->setup == NULL)
|
|
return AF_ERROR;
|
|
return AF_OK;
|
|
}
|
|
|
|
// Description of this plugin
|
|
af_info_t af_info_resample = {
|
|
"Sample frequency conversion",
|
|
"resample",
|
|
"Anders",
|
|
"",
|
|
AF_FLAGS_REENTRANT,
|
|
open
|
|
};
|
|
|