1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-27 18:13:15 +00:00
mpv/libfaad2/syntax.c
alex e24087509a synced with current cvs
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10990 b3059339-0415-0410-9bf9-f77b7e298cf2
2003-10-03 22:23:26 +00:00

1946 lines
62 KiB
C
Raw Blame History

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: syntax.c,v 1.56 2003/09/30 12:43:05 menno Exp $
**/
/*
Reads the AAC bitstream as defined in 14496-3 (MPEG-4 Audio)
*/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#include <string.h>
#include "decoder.h"
#include "syntax.h"
#include "specrec.h"
#include "huffman.h"
#include "bits.h"
#include "pulse.h"
#include "analysis.h"
#include "drc.h"
#ifdef ERROR_RESILIENCE
#include "rvlc.h"
#endif
#ifdef SBR_DEC
#include "sbr_syntax.h"
#endif
/* Table 4.4.1 */
int8_t GASpecificConfig(bitfile *ld, mp4AudioSpecificConfig *mp4ASC,
program_config *pce_out)
{
program_config pce;
/* 1024 or 960 */
mp4ASC->frameLengthFlag = faad_get1bit(ld
DEBUGVAR(1,138,"GASpecificConfig(): FrameLengthFlag"));
mp4ASC->dependsOnCoreCoder = faad_get1bit(ld
DEBUGVAR(1,139,"GASpecificConfig(): DependsOnCoreCoder"));
if (mp4ASC->dependsOnCoreCoder == 1)
{
mp4ASC->coreCoderDelay = (uint16_t)faad_getbits(ld, 14
DEBUGVAR(1,140,"GASpecificConfig(): CoreCoderDelay"));
}
mp4ASC->extensionFlag = faad_get1bit(ld DEBUGVAR(1,141,"GASpecificConfig(): ExtensionFlag"));
if (mp4ASC->channelsConfiguration == 0)
{
program_config_element(&pce, ld);
//mp4ASC->channelsConfiguration = pce.channels;
if (pce_out != NULL)
memcpy(pce_out, &pce, sizeof(program_config));
/*
if (pce.num_valid_cc_elements)
return -3;
*/
}
#ifdef ERROR_RESILIENCE
if (mp4ASC->extensionFlag == 1)
{
/* Error resilience not supported yet */
if (mp4ASC->objectTypeIndex >= ER_OBJECT_START)
{
mp4ASC->aacSectionDataResilienceFlag = faad_get1bit(ld
DEBUGVAR(1,144,"GASpecificConfig(): aacSectionDataResilienceFlag"));
mp4ASC->aacScalefactorDataResilienceFlag = faad_get1bit(ld
DEBUGVAR(1,145,"GASpecificConfig(): aacScalefactorDataResilienceFlag"));
mp4ASC->aacSpectralDataResilienceFlag = faad_get1bit(ld
DEBUGVAR(1,146,"GASpecificConfig(): aacSpectralDataResilienceFlag"));
/* 1 bit: extensionFlag3 */
}
}
#endif
return 0;
}
/* Table 4.4.2 */
/* An MPEG-4 Audio decoder is only required to follow the Program
Configuration Element in GASpecificConfig(). The decoder shall ignore
any Program Configuration Elements that may occur in raw data blocks.
PCEs transmitted in raw data blocks cannot be used to convey decoder
configuration information.
*/
uint8_t program_config_element(program_config *pce, bitfile *ld)
{
uint8_t i;
memset(pce, 0, sizeof(program_config));
pce->channels = 0;
pce->element_instance_tag = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,10,"program_config_element(): element_instance_tag"));
pce->object_type = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,11,"program_config_element(): object_type"));
pce->sf_index = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,12,"program_config_element(): sf_index"));
pce->num_front_channel_elements = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,13,"program_config_element(): num_front_channel_elements"));
pce->num_side_channel_elements = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,14,"program_config_element(): num_side_channel_elements"));
pce->num_back_channel_elements = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,15,"program_config_element(): num_back_channel_elements"));
pce->num_lfe_channel_elements = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,16,"program_config_element(): num_lfe_channel_elements"));
pce->num_assoc_data_elements = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,17,"program_config_element(): num_assoc_data_elements"));
pce->num_valid_cc_elements = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,18,"program_config_element(): num_valid_cc_elements"));
pce->mono_mixdown_present = faad_get1bit(ld
DEBUGVAR(1,19,"program_config_element(): mono_mixdown_present"));
if (pce->mono_mixdown_present == 1)
{
pce->mono_mixdown_element_number = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,20,"program_config_element(): mono_mixdown_element_number"));
}
pce->stereo_mixdown_present = faad_get1bit(ld
DEBUGVAR(1,21,"program_config_element(): stereo_mixdown_present"));
if (pce->stereo_mixdown_present == 1)
{
pce->stereo_mixdown_element_number = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,22,"program_config_element(): stereo_mixdown_element_number"));
}
pce->matrix_mixdown_idx_present = faad_get1bit(ld
DEBUGVAR(1,23,"program_config_element(): matrix_mixdown_idx_present"));
if (pce->matrix_mixdown_idx_present == 1)
{
pce->matrix_mixdown_idx = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,24,"program_config_element(): matrix_mixdown_idx"));
pce->pseudo_surround_enable = faad_get1bit(ld
DEBUGVAR(1,25,"program_config_element(): pseudo_surround_enable"));
}
for (i = 0; i < pce->num_front_channel_elements; i++)
{
pce->front_element_is_cpe[i] = faad_get1bit(ld
DEBUGVAR(1,26,"program_config_element(): front_element_is_cpe"));
pce->front_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,27,"program_config_element(): front_element_tag_select"));
if (pce->front_element_is_cpe[i] & 1)
{
pce->cpe_channel[pce->front_element_tag_select[i]] = pce->channels;
pce->num_front_channels += 2;
pce->channels += 2;
} else {
pce->sce_channel[pce->front_element_tag_select[i]] = pce->channels;
pce->num_front_channels++;
pce->channels++;
}
}
for (i = 0; i < pce->num_side_channel_elements; i++)
{
pce->side_element_is_cpe[i] = faad_get1bit(ld
DEBUGVAR(1,28,"program_config_element(): side_element_is_cpe"));
pce->side_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,29,"program_config_element(): side_element_tag_select"));
if (pce->side_element_is_cpe[i] & 1)
{
pce->cpe_channel[pce->side_element_tag_select[i]] = pce->channels;
pce->num_side_channels += 2;
pce->channels += 2;
} else {
pce->sce_channel[pce->side_element_tag_select[i]] = pce->channels;
pce->num_side_channels++;
pce->channels++;
}
}
for (i = 0; i < pce->num_back_channel_elements; i++)
{
pce->back_element_is_cpe[i] = faad_get1bit(ld
DEBUGVAR(1,30,"program_config_element(): back_element_is_cpe"));
pce->back_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,31,"program_config_element(): back_element_tag_select"));
if (pce->back_element_is_cpe[i] & 1)
{
pce->cpe_channel[pce->back_element_tag_select[i]] = pce->channels;
pce->channels += 2;
pce->num_back_channels += 2;
} else {
pce->sce_channel[pce->back_element_tag_select[i]] = pce->channels;
pce->num_back_channels++;
pce->channels++;
}
}
for (i = 0; i < pce->num_lfe_channel_elements; i++)
{
pce->lfe_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,32,"program_config_element(): lfe_element_tag_select"));
pce->sce_channel[pce->lfe_element_tag_select[i]] = pce->channels;
pce->num_lfe_channels++;
pce->channels++;
}
for (i = 0; i < pce->num_assoc_data_elements; i++)
pce->assoc_data_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,33,"program_config_element(): assoc_data_element_tag_select"));
for (i = 0; i < pce->num_valid_cc_elements; i++)
{
pce->cc_element_is_ind_sw[i] = faad_get1bit(ld
DEBUGVAR(1,34,"program_config_element(): cc_element_is_ind_sw"));
pce->valid_cc_element_tag_select[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,35,"program_config_element(): valid_cc_element_tag_select"));
}
faad_byte_align(ld);
pce->comment_field_bytes = (uint8_t)faad_getbits(ld, 8
DEBUGVAR(1,36,"program_config_element(): comment_field_bytes"));
for (i = 0; i < pce->comment_field_bytes; i++)
{
pce->comment_field_data[i] = (uint8_t)faad_getbits(ld, 8
DEBUGVAR(1,37,"program_config_element(): comment_field_data"));
}
pce->comment_field_data[i] = 0;
return 0;
}
element *decode_sce_lfe(faacDecHandle hDecoder,
faacDecFrameInfo *hInfo, bitfile *ld,
real_t **spec_coef, uint8_t id_syn_ele)
{
element *ele;
uint8_t channels = hDecoder->fr_channels;
if (channels+1 > MAX_CHANNELS)
{
hInfo->error = 12;
return NULL;
}
if (hDecoder->fr_ch_ele+1 > MAX_SYNTAX_ELEMENTS)
{
hInfo->error = 13;
return NULL;
}
spec_coef[channels] = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));
ele = (element*)malloc(sizeof(element));
memset(ele, 0, sizeof(element));
ele->ele_id = id_syn_ele;
ele->channel = channels;
ele->paired_channel = -1;
hInfo->error = single_lfe_channel_element(hDecoder, ele,
ld, spec_coef[channels]);
if (hDecoder->pce_set)
hDecoder->internal_channel[hDecoder->pce.sce_channel[ele->element_instance_tag]] = channels;
else
hDecoder->internal_channel[channels] = channels;
if (id_syn_ele == ID_SCE)
hDecoder->channel_element[channels] = hDecoder->fr_ch_ele;
else /* LFE */
hDecoder->channel_element[channels] = hDecoder->fr_ch_ele;
hDecoder->fr_channels++;
hDecoder->fr_ch_ele++;
return ele;
}
element *decode_cpe(faacDecHandle hDecoder,
faacDecFrameInfo *hInfo, bitfile *ld,
real_t **spec_coef, uint8_t id_syn_ele)
{
element *ele;
uint8_t channels = hDecoder->fr_channels;
if (channels+2 > MAX_CHANNELS)
{
hInfo->error = 12;
return NULL;
}
if (hDecoder->fr_ch_ele+1 > MAX_SYNTAX_ELEMENTS)
{
hInfo->error = 13;
return NULL;
}
spec_coef[channels] = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));
spec_coef[channels+1] = (real_t*)malloc(hDecoder->frameLength*sizeof(real_t));
ele = (element*)malloc(sizeof(element));
memset(ele, 0, sizeof(element));
ele->ele_id = id_syn_ele;
ele->channel = channels;
ele->paired_channel = channels+1;
hInfo->error = channel_pair_element(hDecoder, ele,
ld, spec_coef[channels], spec_coef[channels+1]);
if (hDecoder->pce_set)
{
hDecoder->internal_channel[hDecoder->pce.cpe_channel[ele->element_instance_tag]] = channels;
hDecoder->internal_channel[hDecoder->pce.cpe_channel[ele->element_instance_tag]+1] = channels+1;
} else {
hDecoder->internal_channel[channels] = channels;
hDecoder->internal_channel[channels+1] = channels+1;
}
hDecoder->channel_element[channels] = hDecoder->fr_ch_ele;
hDecoder->channel_element[channels+1] = hDecoder->fr_ch_ele;
hDecoder->fr_channels += 2;
hDecoder->fr_ch_ele++;
return ele;
}
element **raw_data_block(faacDecHandle hDecoder, faacDecFrameInfo *hInfo,
bitfile *ld, element **elements,
real_t **spec_coef, program_config *pce, drc_info *drc)
{
uint8_t id_syn_ele;
uint8_t ch_ele = 0;
hDecoder->fr_channels = 0;
hDecoder->fr_ch_ele = 0;
hDecoder->first_syn_ele = 25;
hDecoder->has_lfe = 0;
#ifdef ERROR_RESILIENCE
if (hDecoder->object_type < ER_OBJECT_START)
{
#endif
/* Table 4.4.3: raw_data_block() */
while ((id_syn_ele = (uint8_t)faad_getbits(ld, LEN_SE_ID
DEBUGVAR(1,4,"faacDecDecode(): id_syn_ele"))) != ID_END)
{
switch (id_syn_ele) {
case ID_SCE:
if (hDecoder->first_syn_ele == 25) hDecoder->first_syn_ele = id_syn_ele;
hDecoder->last_syn_ele = id_syn_ele;
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, id_syn_ele);
if (hInfo->error > 0)
return elements;
break;
case ID_CPE:
if (hDecoder->first_syn_ele == 25) hDecoder->first_syn_ele = id_syn_ele;
hDecoder->last_syn_ele = id_syn_ele;
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, id_syn_ele);
if (hInfo->error > 0)
return elements;
break;
case ID_LFE:
hDecoder->has_lfe++;
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, id_syn_ele);
if (hInfo->error > 0)
return elements;
break;
case ID_CCE: /* not implemented yet, but skip the bits */
hInfo->error = coupling_channel_element(hDecoder, ld);
if (hInfo->error > 0)
return elements;
break;
case ID_DSE:
data_stream_element(hDecoder, ld);
break;
case ID_PCE:
if ((hInfo->error = program_config_element(pce, ld)) > 0)
return elements;
hDecoder->pce_set = 1;
break;
case ID_FIL:
/* one sbr_info describes a channel_element not a channel! */
if ((hInfo->error = fill_element(hDecoder, ld, drc
#ifdef SBR_DEC
, (ch_ele-1)
#endif
)) > 0)
return elements;
#ifdef SBR_DEC
if (hDecoder->sbr_used[ch_ele-1])
{
hDecoder->sbr_present_flag = 1;
hDecoder->sbr[ch_ele-1]->sample_rate = get_sample_rate(hDecoder->sf_index);
hDecoder->sbr[ch_ele-1]->sample_rate *= 2;
}
#endif
break;
}
}
#ifdef ERROR_RESILIENCE
} else {
/* Table 262: er_raw_data_block() */
switch (hDecoder->channelConfiguration)
{
case 1:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
if (hInfo->error > 0)
return elements;
break;
case 2:
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
if (hInfo->error > 0)
return elements;
break;
case 3:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
if (hInfo->error > 0)
return elements;
break;
case 4:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
if (hInfo->error > 0)
return elements;
break;
case 5:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
if (hInfo->error > 0)
return elements;
break;
case 6:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_LFE);
if (hInfo->error > 0)
return elements;
break;
case 7:
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_SCE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_cpe(hDecoder,
hInfo, ld, spec_coef, ID_CPE);
elements[ch_ele++] = decode_sce_lfe(hDecoder,
hInfo, ld, spec_coef, ID_LFE);
if (hInfo->error > 0)
return elements;
break;
default:
hInfo->error = 7;
return elements;
}
#if 0
cnt = bits_to_decode() / 8;
while (cnt >= 1)
{
cnt -= extension_payload(cnt);
}
#endif
}
#endif
/* new in corrigendum 14496-3:2002 */
#ifdef DRM
if (hDecoder->object_type != DRM_ER_LC)
#endif
{
faad_byte_align(ld);
}
return elements;
}
/* Table 4.4.4 and */
/* Table 4.4.9 */
static uint8_t single_lfe_channel_element(faacDecHandle hDecoder,
element *sce, bitfile *ld,
real_t *spec_coef)
{
uint8_t retval = 0;
ic_stream *ics = &(sce->ics1);
int16_t spec_data[1024];
#ifdef DRM
uint8_t result;
if (hDecoder->object_type != DRM_ER_LC)
#endif
sce->element_instance_tag = (uint8_t)faad_getbits(ld, LEN_TAG
DEBUGVAR(1,38,"single_lfe_channel_element(): element_instance_tag"));
#ifdef DRM
if (hDecoder->object_type == DRM_ER_LC)
{
individual_channel_stream(hDecoder, sce, ld, ics, 0, spec_data);
if (ics->tns_data_present)
tns_data(ics, &(ics->tns), ld);
if ((result = faad_check_CRC( ld, faad_get_processed_bits(ld) - 8 )) > 0)
return result;
/* error resilient spectral data decoding */
if ((result = reordered_spectral_data(hDecoder, ics, ld, spec_data)) > 0)
return result;
/* pulse coding reconstruction */
if (ics->pulse_data_present)
{
if (ics->window_sequence != EIGHT_SHORT_SEQUENCE)
{
if ((result = pulse_decode(ics, spec_data, hDecoder->frameLength)) > 0)
return result;
} else {
return 2; /* pulse coding not allowed for short blocks */
}
}
} else
#endif
{
retval = individual_channel_stream(hDecoder, sce, ld, ics, 0, spec_data);
if (retval > 0)
return retval;
}
/* noiseless coding is done, spectral reconstruction is done now */
/* inverse quantization */
inverse_quantization(spec_coef, spec_data, hDecoder->frameLength);
/* apply scalefactors */
apply_scalefactors(hDecoder, ics, spec_coef, hDecoder->frameLength);
/* deinterleave short block grouping */
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics, spec_coef, hDecoder->frameLength);
return 0;
}
/* Table 4.4.5 */
static uint8_t channel_pair_element(faacDecHandle hDecoder, element *cpe,
bitfile *ld,
real_t *spec_coef1, real_t *spec_coef2)
{
uint8_t result;
ic_stream *ics1 = &(cpe->ics1);
ic_stream *ics2 = &(cpe->ics2);
int16_t spec_data1[1024];
int16_t spec_data2[1024];
#ifdef DRM
if (hDecoder->object_type != DRM_ER_LC)
#endif
cpe->element_instance_tag = (uint8_t)faad_getbits(ld, LEN_TAG
DEBUGVAR(1,39,"channel_pair_element(): element_instance_tag"));
if ((cpe->common_window = faad_get1bit(ld
DEBUGVAR(1,40,"channel_pair_element(): common_window"))) & 1)
{
/* both channels have common ics information */
if ((result = ics_info(hDecoder, ics1, ld, cpe->common_window)) > 0)
return result;
ics1->ms_mask_present = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,41,"channel_pair_element(): ms_mask_present"));
if (ics1->ms_mask_present == 1)
{
uint8_t g, sfb;
for (g = 0; g < ics1->num_window_groups; g++)
{
for (sfb = 0; sfb < ics1->max_sfb; sfb++)
{
ics1->ms_used[g][sfb] = faad_get1bit(ld
DEBUGVAR(1,42,"channel_pair_element(): faad_get1bit"));
}
}
}
#ifdef ERROR_RESILIENCE
if ((hDecoder->object_type >= ER_OBJECT_START) && (ics1->predictor_data_present))
{
if ((ics1->ltp.data_present = faad_get1bit(ld
DEBUGVAR(1,50,"channel_pair_element(): ltp.data_present"))) & 1)
{
ltp_data(hDecoder, ics1, &(ics1->ltp), ld);
}
}
#endif
memcpy(ics2, ics1, sizeof(ic_stream));
} else {
ics1->ms_mask_present = 0;
}
if ((result = individual_channel_stream(hDecoder, cpe, ld, ics1,
0, spec_data1)) > 0)
{
return result;
}
#ifdef ERROR_RESILIENCE
if (cpe->common_window && (hDecoder->object_type >= ER_OBJECT_START) &&
(ics1->predictor_data_present))
{
if ((ics1->ltp2.data_present = faad_get1bit(ld
DEBUGVAR(1,50,"channel_pair_element(): ltp.data_present"))) & 1)
{
ltp_data(hDecoder, ics1, &(ics1->ltp2), ld);
}
}
#endif
if ((result = individual_channel_stream(hDecoder, cpe, ld, ics2,
0, spec_data2)) > 0)
{
return result;
}
#ifdef DRM
if (hDecoder->object_type == DRM_ER_LC)
{
if (ics1->tns_data_present)
tns_data(ics1, &(ics1->tns), ld);
if (ics1->tns_data_present)
tns_data(ics2, &(ics2->tns), ld);
if ((result = faad_check_CRC( ld, faad_get_processed_bits(ld) - 8 )) > 0)
return result;
/* error resilient spectral data decoding */
if ((result = reordered_spectral_data(hDecoder, ics1, ld, spec_data1)) > 0)
return result;
if ((result = reordered_spectral_data(hDecoder, ics2, ld, spec_data2)) > 0)
return result;
/* pulse coding reconstruction */
if (ics1->pulse_data_present)
{
if (ics1->window_sequence != EIGHT_SHORT_SEQUENCE)
{
if ((result = pulse_decode(ics1, spec_data1, hDecoder->frameLength)) > 0)
return result;
} else {
return 2; /* pulse coding not allowed for short blocks */
}
}
if (ics2->pulse_data_present)
{
if (ics2->window_sequence != EIGHT_SHORT_SEQUENCE)
{
if ((result = pulse_decode(ics2, spec_data2, hDecoder->frameLength)) > 0)
return result;
} else {
return 2; /* pulse coding not allowed for short blocks */
}
}
}
#endif
/* noiseless coding is done, spectral reconstruction is done now */
/* inverse quantization */
inverse_quantization(spec_coef1, spec_data1, hDecoder->frameLength);
inverse_quantization(spec_coef2, spec_data2, hDecoder->frameLength);
/* apply scalefactors */
apply_scalefactors(hDecoder, ics1, spec_coef1, hDecoder->frameLength);
apply_scalefactors(hDecoder, ics2, spec_coef2, hDecoder->frameLength);
/* deinterleave short block grouping */
if (ics1->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics1, spec_coef1, hDecoder->frameLength);
if (ics2->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics2, spec_coef2, hDecoder->frameLength);
return 0;
}
static uint8_t pred_sfb_max[] =
{
33, /* 96000 */
33, /* 88200 */
38, /* 64000 */
40, /* 48000 */
40, /* 44100 */
40, /* 32000 */
41, /* 24000 */
41, /* 22050 */
37, /* 16000 */
37, /* 12000 */
37, /* 11025 */
34 /* 8000 */
};
/* Table 4.4.6 */
static uint8_t ics_info(faacDecHandle hDecoder, ic_stream *ics, bitfile *ld,
uint8_t common_window)
{
uint8_t retval = 0;
/* ics->ics_reserved_bit = */ faad_get1bit(ld
DEBUGVAR(1,43,"ics_info(): ics_reserved_bit"));
ics->window_sequence = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,44,"ics_info(): window_sequence"));
ics->window_shape = faad_get1bit(ld
DEBUGVAR(1,45,"ics_info(): window_shape"));
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
{
ics->max_sfb = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,46,"ics_info(): max_sfb (short)"));
ics->scale_factor_grouping = (uint8_t)faad_getbits(ld, 7
DEBUGVAR(1,47,"ics_info(): scale_factor_grouping"));
} else {
ics->max_sfb = (uint8_t)faad_getbits(ld, 6
DEBUGVAR(1,48,"ics_info(): max_sfb (long)"));
}
/* get the grouping information */
if ((retval = window_grouping_info(hDecoder, ics)) > 0)
return retval;
/* should be an error */
/* check the range of max_sfb */
if (ics->max_sfb > ics->num_swb)
return 16;
if (ics->window_sequence != EIGHT_SHORT_SEQUENCE)
{
if ((ics->predictor_data_present = faad_get1bit(ld
DEBUGVAR(1,49,"ics_info(): predictor_data_present"))) & 1)
{
if (hDecoder->object_type == MAIN) /* MPEG2 style AAC predictor */
{
uint8_t sfb;
ics->pred.limit = min(ics->max_sfb, pred_sfb_max[hDecoder->sf_index]);
if ((ics->pred.predictor_reset = faad_get1bit(ld
DEBUGVAR(1,53,"ics_info(): pred.predictor_reset"))) & 1)
{
ics->pred.predictor_reset_group_number = (uint8_t)faad_getbits(ld, 5
DEBUGVAR(1,54,"ics_info(): pred.predictor_reset_group_number"));
}
for (sfb = 0; sfb < ics->pred.limit; sfb++)
{
ics->pred.prediction_used[sfb] = faad_get1bit(ld
DEBUGVAR(1,55,"ics_info(): pred.prediction_used"));
}
}
#ifdef LTP_DEC
else { /* Long Term Prediction */
if (hDecoder->object_type < ER_OBJECT_START)
{
if ((ics->ltp.data_present = faad_get1bit(ld
DEBUGVAR(1,50,"ics_info(): ltp.data_present"))) & 1)
{
ltp_data(hDecoder, ics, &(ics->ltp), ld);
}
if (common_window)
{
if ((ics->ltp2.data_present = faad_get1bit(ld
DEBUGVAR(1,51,"ics_info(): ltp2.data_present"))) & 1)
{
ltp_data(hDecoder, ics, &(ics->ltp2), ld);
}
}
}
#ifdef ERROR_RESILIENCE
if (!common_window && (hDecoder->object_type >= ER_OBJECT_START))
{
if ((ics->ltp.data_present = faad_get1bit(ld
DEBUGVAR(1,50,"ics_info(): ltp.data_present"))) & 1)
{
ltp_data(hDecoder, ics, &(ics->ltp), ld);
}
}
#endif
}
#endif
}
}
return retval;
}
/* Table 4.4.7 */
static uint8_t pulse_data(ic_stream *ics, pulse_info *pul, bitfile *ld)
{
uint8_t i;
pul->number_pulse = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,56,"pulse_data(): number_pulse"));
pul->pulse_start_sfb = (uint8_t)faad_getbits(ld, 6
DEBUGVAR(1,57,"pulse_data(): pulse_start_sfb"));
/* check the range of pulse_start_sfb */
if (pul->pulse_start_sfb > ics->num_swb)
return 16;
for (i = 0; i < pul->number_pulse+1; i++)
{
pul->pulse_offset[i] = (uint8_t)faad_getbits(ld, 5
DEBUGVAR(1,58,"pulse_data(): pulse_offset"));
pul->pulse_amp[i] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,59,"pulse_data(): pulse_amp"));
}
return 0;
}
/* Table 4.4.8: Currently just for skipping the bits... */
static uint8_t coupling_channel_element(faacDecHandle hDecoder, bitfile *ld)
{
uint8_t c, result = 0;
uint8_t ind_sw_cce_flag = 0;
uint8_t num_gain_element_lists = 0;
uint8_t num_coupled_elements = 0;
element el_empty;
ic_stream ics_empty;
int16_t sh_data[1024];
memset(&el_empty, 0, sizeof(element));
memset(&ics_empty, 0, sizeof(ic_stream));
c = faad_getbits(ld, LEN_TAG
DEBUGVAR(1,900,"coupling_channel_element(): element_instance_tag"));
ind_sw_cce_flag = faad_get1bit(ld
DEBUGVAR(1,901,"coupling_channel_element(): ind_sw_cce_flag"));
num_coupled_elements = faad_getbits(ld, 3
DEBUGVAR(1,902,"coupling_channel_element(): num_coupled_elements"));
for (c = 0; c < num_coupled_elements + 1; c++)
{
uint8_t cc_target_is_cpe, cc_target_tag_select;
num_gain_element_lists++;
cc_target_is_cpe = faad_get1bit(ld
DEBUGVAR(1,903,"coupling_channel_element(): cc_target_is_cpe"));
cc_target_tag_select = faad_getbits(ld, 4
DEBUGVAR(1,904,"coupling_channel_element(): cc_target_tag_select"));
if (cc_target_is_cpe)
{
uint8_t cc_l = faad_get1bit(ld
DEBUGVAR(1,905,"coupling_channel_element(): cc_l"));
uint8_t cc_r = faad_get1bit(ld
DEBUGVAR(1,906,"coupling_channel_element(): cc_r"));
if (cc_l && cc_r)
num_gain_element_lists++;
}
}
faad_get1bit(ld
DEBUGVAR(1,907,"coupling_channel_element(): cc_domain"));
faad_get1bit(ld
DEBUGVAR(1,908,"coupling_channel_element(): gain_element_sign"));
faad_getbits(ld, 2
DEBUGVAR(1,909,"coupling_channel_element(): gain_element_scale"));
if ((result = individual_channel_stream(hDecoder, &el_empty, ld, &ics_empty,
0, sh_data)) > 0)
{
return result;
}
for (c = 1; c < num_gain_element_lists; c++)
{
uint8_t cge;
if (ind_sw_cce_flag)
{
cge = 1;
} else {
cge = faad_get1bit(ld
DEBUGVAR(1,910,"coupling_channel_element(): common_gain_element_present"));
}
if (cge)
{
huffman_scale_factor(ld);
} else {
uint8_t g, sfb;
for (g = 0; g < ics_empty.num_window_groups; g++)
{
for (sfb = 0; sfb < ics_empty.max_sfb; sfb++)
{
if (ics_empty.sfb_cb[g][sfb] != ZERO_HCB)
huffman_scale_factor(ld);
}
}
}
}
return 0;
}
/* Table 4.4.10 */
static uint16_t data_stream_element(faacDecHandle hDecoder, bitfile *ld)
{
uint8_t byte_aligned;
uint16_t i, count;
/* element_instance_tag = */ faad_getbits(ld, LEN_TAG
DEBUGVAR(1,60,"data_stream_element(): element_instance_tag"));
byte_aligned = faad_get1bit(ld
DEBUGVAR(1,61,"data_stream_element(): byte_aligned"));
count = (uint16_t)faad_getbits(ld, 8
DEBUGVAR(1,62,"data_stream_element(): count"));
if (count == 255)
{
count += (uint16_t)faad_getbits(ld, 8
DEBUGVAR(1,63,"data_stream_element(): extra count"));
}
if (byte_aligned)
faad_byte_align(ld);
for (i = 0; i < count; i++)
{
uint8_t data = faad_getbits(ld, LEN_BYTE
DEBUGVAR(1,64,"data_stream_element(): data_stream_byte"));
}
return count;
}
/* Table 4.4.11 */
static uint8_t fill_element(faacDecHandle hDecoder, bitfile *ld, drc_info *drc
#ifdef SBR_DEC
,uint8_t sbr_ele
#endif
)
{
uint16_t count;
#ifdef SBR_DEC
uint8_t bs_extension_type;
#endif
count = (uint16_t)faad_getbits(ld, 4
DEBUGVAR(1,65,"fill_element(): count"));
if (count == 15)
{
count += (uint16_t)faad_getbits(ld, 8
DEBUGVAR(1,66,"fill_element(): extra count")) - 1;
}
if (count > 0)
{
#ifdef SBR_DEC
hDecoder->sbr_used[sbr_ele] = 0;
bs_extension_type = (uint8_t)faad_showbits(ld, 4);
if ((bs_extension_type == EXT_SBR_DATA) ||
(bs_extension_type == EXT_SBR_DATA_CRC))
{
hDecoder->sbr_used[sbr_ele] = 1;
if (!hDecoder->sbr[sbr_ele])
{
hDecoder->sbr[sbr_ele] = sbrDecodeInit(hDecoder->frameLength
#ifdef DRM
, 0
#endif
);
}
/* read in all the SBR data for processing later on */
hDecoder->sbr[sbr_ele]->data = (uint8_t*)faad_getbitbuffer(ld, count*8);
hDecoder->sbr[sbr_ele]->data_size = count;
} else {
hDecoder->sbr_used[sbr_ele] = 0;
#endif
while (count > 0)
{
count -= extension_payload(ld, drc, count);
}
#ifdef SBR_DEC
}
#endif
}
return 0;
}
/* Table 4.4.12 */
#ifdef SSR_DEC
static void gain_control_data(bitfile *ld, ic_stream *ics)
{
uint8_t bd, wd, ad;
ssr_info *ssr = &(ics->ssr);
ssr->max_band = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,1000,"gain_control_data(): max_band"));
if (ics->window_sequence == ONLY_LONG_SEQUENCE)
{
for (bd = 1; bd <= ssr->max_band; bd++)
{
for (wd = 0; wd < 1; wd++)
{
ssr->adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));
for (ad = 0; ad < ssr->adjust_num[bd][wd]; ad++)
{
ssr->alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 5
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
}
}
}
} else if (ics->window_sequence == LONG_START_SEQUENCE) {
for (bd = 1; bd <= ssr->max_band; bd++)
{
for (wd = 0; wd < 2; wd++)
{
ssr->adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));
for (ad = 0; ad < ssr->adjust_num[bd][wd]; ad++)
{
ssr->alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
if (wd == 0)
{
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
} else {
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
}
}
}
}
} else if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) {
for (bd = 1; bd <= ssr->max_band; bd++)
{
for (wd = 0; wd < 8; wd++)
{
ssr->adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));
for (ad = 0; ad < ssr->adjust_num[bd][wd]; ad++)
{
ssr->alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
}
}
}
} else if (ics->window_sequence == LONG_STOP_SEQUENCE) {
for (bd = 1; bd <= ssr->max_band; bd++)
{
for (wd = 0; wd < 2; wd++)
{
ssr->adjust_num[bd][wd] = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,1001,"gain_control_data(): adjust_num"));
for (ad = 0; ad < ssr->adjust_num[bd][wd]; ad++)
{
ssr->alevcode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1002,"gain_control_data(): alevcode"));
if (wd == 0)
{
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
} else {
ssr->aloccode[bd][wd][ad] = (uint8_t)faad_getbits(ld, 5
DEBUGVAR(1,1003,"gain_control_data(): aloccode"));
}
}
}
}
}
}
#endif
/* Table 4.4.24 */
static uint8_t individual_channel_stream(faacDecHandle hDecoder, element *ele,
bitfile *ld, ic_stream *ics, uint8_t scal_flag,
int16_t *spec_data)
{
uint8_t result;
ics->global_gain = (uint8_t)faad_getbits(ld, 8
DEBUGVAR(1,67,"individual_channel_stream(): global_gain"));
if (!ele->common_window && !scal_flag)
{
if ((result = ics_info(hDecoder, ics, ld, ele->common_window)) > 0)
return result;
}
if ((result = section_data(hDecoder, ics, ld)) > 0)
return result;
if ((result = scale_factor_data(hDecoder, ics, ld)) > 0)
return result;
if (!scal_flag)
{
/**
** NOTE: It could be that pulse data is available in scalable AAC too,
** as said in Amendment 1, this could be only the case for ER AAC,
** though. (have to check this out later)
**/
/* get pulse data */
if ((ics->pulse_data_present = faad_get1bit(ld
DEBUGVAR(1,68,"individual_channel_stream(): pulse_data_present"))) & 1)
{
if ((result = pulse_data(ics, &(ics->pul), ld)) > 0)
return result;
}
/* get tns data */
if ((ics->tns_data_present = faad_get1bit(ld
DEBUGVAR(1,69,"individual_channel_stream(): tns_data_present"))) & 1)
{
#ifdef ERROR_RESILIENCE
if (hDecoder->object_type < ER_OBJECT_START)
#endif
tns_data(ics, &(ics->tns), ld);
}
/* get gain control data */
if ((ics->gain_control_data_present = faad_get1bit(ld
DEBUGVAR(1,70,"individual_channel_stream(): gain_control_data_present"))) & 1)
{
#ifdef SSR_DEC
if (hDecoder->object_type != SSR)
return 1;
else
gain_control_data(ld, ics);
#else
return 1;
#endif
}
}
#ifdef ERROR_RESILIENCE
if (hDecoder->aacSpectralDataResilienceFlag)
{
ics->length_of_reordered_spectral_data = (uint16_t)faad_getbits(ld, 14
DEBUGVAR(1,147,"individual_channel_stream(): length_of_reordered_spectral_data"));
if (hDecoder->channelConfiguration == 2)
{
if (ics->length_of_reordered_spectral_data > 6144)
ics->length_of_reordered_spectral_data = 6144;
} else {
if (ics->length_of_reordered_spectral_data > 12288)
ics->length_of_reordered_spectral_data = 12288;
}
ics->length_of_longest_codeword = (uint8_t)faad_getbits(ld, 6
DEBUGVAR(1,148,"individual_channel_stream(): length_of_longest_codeword"));
if (ics->length_of_longest_codeword >= 49)
ics->length_of_longest_codeword = 49;
}
/* RVLC spectral data is put here */
if (hDecoder->aacScalefactorDataResilienceFlag)
{
if ((result = rvlc_decode_scale_factors(ics, ld)) > 0)
return result;
}
#ifdef DRM
if (hDecoder->object_type == DRM_ER_LC)
return 0;
#endif
if (hDecoder->object_type >= ER_OBJECT_START)
{
if (ics->tns_data_present)
tns_data(ics, &(ics->tns), ld);
}
if (hDecoder->aacSpectralDataResilienceFlag)
{
/* error resilient spectral data decoding */
if ((result = reordered_spectral_data(hDecoder, ics, ld, spec_data)) > 0)
{
return result;
}
} else {
#endif
/* decode the spectral data */
if ((result = spectral_data(hDecoder, ics, ld, spec_data)) > 0)
{
return result;
}
#ifdef ERROR_RESILIENCE
}
#endif
/* pulse coding reconstruction */
if (ics->pulse_data_present)
{
if (ics->window_sequence != EIGHT_SHORT_SEQUENCE)
{
if ((result = pulse_decode(ics, spec_data, hDecoder->frameLength)) > 0)
return result;
} else {
return 2; /* pulse coding not allowed for short blocks */
}
}
return 0;
}
/* Table 4.4.25 */
static uint8_t section_data(faacDecHandle hDecoder, ic_stream *ics, bitfile *ld)
{
uint8_t g;
uint8_t sect_esc_val, sect_bits;
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
sect_bits = 3;
else
sect_bits = 5;
sect_esc_val = (1<<sect_bits) - 1;
#if 0
printf("\ntotal sfb %d\n", ics->max_sfb);
printf(" sect top cb\n");
#endif
for (g = 0; g < ics->num_window_groups; g++)
{
uint8_t k = 0;
uint8_t i = 0;
while (k < ics->max_sfb)
{
#ifdef ERROR_RESILIENCE
uint8_t vcb11 = 0;
#endif
uint8_t sfb;
uint8_t sect_len_incr;
uint16_t sect_len = 0;
uint8_t sect_cb_bits = 4;
/* if "faad_getbits" detects error and returns "0", "k" is never
incremented and we cannot leave the while loop */
if ((ld->error != 0) || (ld->no_more_reading))
return 14;
#ifdef ERROR_RESILIENCE
if (hDecoder->aacSectionDataResilienceFlag)
sect_cb_bits = 5;
#endif
ics->sect_cb[g][i] = (uint8_t)faad_getbits(ld, sect_cb_bits
DEBUGVAR(1,71,"section_data(): sect_cb"));
if (ics->sect_cb[g][i] == NOISE_HCB)
ics->noise_used = 1;
#ifdef ERROR_RESILIENCE
if (hDecoder->aacSectionDataResilienceFlag)
{
if ((ics->sect_cb[g][i] == 11) ||
((ics->sect_cb[g][i] >= 16) && (ics->sect_cb[g][i] <= 32)))
{
vcb11 = 1;
}
}
if (vcb11)
{
sect_len_incr = 1;
} else {
#endif
sect_len_incr = (uint8_t)faad_getbits(ld, sect_bits
DEBUGVAR(1,72,"section_data(): sect_len_incr"));
#ifdef ERROR_RESILIENCE
}
#endif
while ((sect_len_incr == sect_esc_val) /* &&
(k+sect_len < ics->max_sfb)*/)
{
sect_len += sect_len_incr;
sect_len_incr = (uint8_t)faad_getbits(ld, sect_bits
DEBUGVAR(1,72,"section_data(): sect_len_incr"));
}
sect_len += sect_len_incr;
ics->sect_start[g][i] = k;
ics->sect_end[g][i] = k + sect_len;
if (k + sect_len >= 8*15)
return 15;
if (i >= 8*15)
return 15;
for (sfb = k; sfb < k + sect_len; sfb++)
ics->sfb_cb[g][sfb] = ics->sect_cb[g][i];
#if 0
printf(" %6d %6d %6d\n",
i,
ics->sect_end[g][i],
ics->sect_cb[g][i]);
#endif
k += sect_len;
i++;
}
ics->num_sec[g] = i;
}
#if 0
printf("\n");
#endif
return 0;
}
/*
* decode_scale_factors()
* decodes the scalefactors from the bitstream
*/
/*
* All scalefactors (and also the stereo positions and pns energies) are
* transmitted using Huffman coded DPCM relative to the previous active
* scalefactor (respectively previous stereo position or previous pns energy,
* see subclause 4.6.2 and 4.6.3). The first active scalefactor is
* differentially coded relative to the global gain.
*/
static uint8_t decode_scale_factors(ic_stream *ics, bitfile *ld)
{
uint8_t g, sfb;
int16_t t;
int8_t noise_pcm_flag = 1;
int16_t scale_factor = ics->global_gain;
int16_t is_position = 0;
int16_t noise_energy = ics->global_gain - 90;
for (g = 0; g < ics->num_window_groups; g++)
{
for (sfb = 0; sfb < ics->max_sfb; sfb++)
{
switch (ics->sfb_cb[g][sfb])
{
case ZERO_HCB: /* zero book */
ics->scale_factors[g][sfb] = 0;
break;
case INTENSITY_HCB: /* intensity books */
case INTENSITY_HCB2:
/* decode intensity position */
t = huffman_scale_factor(ld);
if (t < 0)
return 9;
is_position += (t - 60);
ics->scale_factors[g][sfb] = is_position;
break;
case NOISE_HCB: /* noise books */
/* decode noise energy */
if (noise_pcm_flag)
{
noise_pcm_flag = 0;
t = (int16_t)faad_getbits(ld, 9
DEBUGVAR(1,73,"scale_factor_data(): first noise")) - 256;
} else {
t = huffman_scale_factor(ld);
if (t < 0)
return 9;
t -= 60;
}
noise_energy += t;
ics->scale_factors[g][sfb] = noise_energy;
break;
default: /* spectral books */
/* decode scale factor */
t = huffman_scale_factor(ld);
if (t < 0)
return 9;
scale_factor += (t - 60);
if (scale_factor < 0)
return 4;
ics->scale_factors[g][sfb] = scale_factor;
break;
}
}
}
return 0;
}
/* Table 4.4.26 */
static uint8_t scale_factor_data(faacDecHandle hDecoder, ic_stream *ics, bitfile *ld)
{
#ifdef ERROR_RESILIENCE
if (!hDecoder->aacScalefactorDataResilienceFlag)
{
#endif
return decode_scale_factors(ics, ld);
#ifdef ERROR_RESILIENCE
} else {
/* In ER AAC the parameters for RVLC are seperated from the actual
data that holds the scale_factors.
Strangely enough, 2 parameters for HCR are put inbetween them.
*/
return rvlc_scale_factor_data(ics, ld);
}
#endif
}
/* Table 4.4.27 */
static void tns_data(ic_stream *ics, tns_info *tns, bitfile *ld)
{
uint8_t w, filt, i, start_coef_bits, coef_bits;
uint8_t n_filt_bits = 2;
uint8_t length_bits = 6;
uint8_t order_bits = 5;
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
{
n_filt_bits = 1;
length_bits = 4;
order_bits = 3;
}
for (w = 0; w < ics->num_windows; w++)
{
tns->n_filt[w] = (uint8_t)faad_getbits(ld, n_filt_bits
DEBUGVAR(1,74,"tns_data(): n_filt"));
if (tns->n_filt[w])
{
if ((tns->coef_res[w] = faad_get1bit(ld
DEBUGVAR(1,75,"tns_data(): coef_res"))) & 1)
{
start_coef_bits = 4;
} else {
start_coef_bits = 3;
}
}
for (filt = 0; filt < tns->n_filt[w]; filt++)
{
tns->length[w][filt] = (uint8_t)faad_getbits(ld, length_bits
DEBUGVAR(1,76,"tns_data(): length"));
tns->order[w][filt] = (uint8_t)faad_getbits(ld, order_bits
DEBUGVAR(1,77,"tns_data(): order"));
if (tns->order[w][filt])
{
tns->direction[w][filt] = faad_get1bit(ld
DEBUGVAR(1,78,"tns_data(): direction"));
tns->coef_compress[w][filt] = faad_get1bit(ld
DEBUGVAR(1,79,"tns_data(): coef_compress"));
coef_bits = start_coef_bits - tns->coef_compress[w][filt];
for (i = 0; i < tns->order[w][filt]; i++)
{
tns->coef[w][filt][i] = (uint8_t)faad_getbits(ld, coef_bits
DEBUGVAR(1,80,"tns_data(): coef"));
}
}
}
}
}
#ifdef LTP_DEC
/* Table 4.4.28 */
static void ltp_data(faacDecHandle hDecoder, ic_stream *ics, ltp_info *ltp, bitfile *ld)
{
uint8_t sfb, w;
#ifdef LD_DEC
if (hDecoder->object_type == LD)
{
ltp->lag_update = (uint8_t)faad_getbits(ld, 1
DEBUGVAR(1,142,"ltp_data(): lag_update"));
if (ltp->lag_update)
{
ltp->lag = (uint16_t)faad_getbits(ld, 10
DEBUGVAR(1,81,"ltp_data(): lag"));
}
} else {
#endif
ltp->lag = (uint16_t)faad_getbits(ld, 11
DEBUGVAR(1,81,"ltp_data(): lag"));
#ifdef LD_DEC
}
#endif
ltp->coef = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,82,"ltp_data(): coef"));
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
{
for (w = 0; w < ics->num_windows; w++)
{
if ((ltp->short_used[w] = faad_get1bit(ld
DEBUGVAR(1,83,"ltp_data(): short_used"))) & 1)
{
ltp->short_lag_present[w] = faad_get1bit(ld
DEBUGVAR(1,84,"ltp_data(): short_lag_present"));
if (ltp->short_lag_present[w])
{
ltp->short_lag[w] = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,85,"ltp_data(): short_lag"));
}
}
}
} else {
ltp->last_band = (ics->max_sfb < MAX_LTP_SFB ? ics->max_sfb : MAX_LTP_SFB);
for (sfb = 0; sfb < ltp->last_band; sfb++)
{
ltp->long_used[sfb] = faad_get1bit(ld
DEBUGVAR(1,86,"ltp_data(): long_used"));
}
}
}
#endif
/* Table 4.4.29 */
static uint8_t spectral_data(faacDecHandle hDecoder, ic_stream *ics, bitfile *ld,
int16_t *spectral_data)
{
int8_t i;
uint8_t g;
int16_t *sp;
uint16_t k, p = 0;
uint8_t groups = 0;
uint8_t sect_cb;
uint8_t result;
uint16_t nshort = hDecoder->frameLength/8;
sp = spectral_data;
memset(sp, 0, hDecoder->frameLength*sizeof(int16_t));
for(g = 0; g < ics->num_window_groups; g++)
{
p = groups*nshort;
for (i = 0; i < ics->num_sec[g]; i++)
{
sect_cb = ics->sect_cb[g][i];
switch (sect_cb)
{
case ZERO_HCB:
case NOISE_HCB:
case INTENSITY_HCB:
case INTENSITY_HCB2:
p += (ics->sect_sfb_offset[g][ics->sect_end[g][i]] -
ics->sect_sfb_offset[g][ics->sect_start[g][i]]);
break;
default:
for (k = ics->sect_sfb_offset[g][ics->sect_start[g][i]];
k < ics->sect_sfb_offset[g][ics->sect_end[g][i]]; k += 4)
{
sp = spectral_data + p;
if ((result = huffman_spectral_data(sect_cb, ld, sp)) > 0)
return result;
if (sect_cb >= FIRST_PAIR_HCB)
{
if ((result = huffman_spectral_data(sect_cb, ld, sp+2)) > 0)
return result;
}
p += 4;
}
break;
}
}
groups += ics->window_group_length[g];
}
return 0;
}
/* Table 4.4.30 */
static uint16_t extension_payload(bitfile *ld, drc_info *drc, uint16_t count)
{
uint16_t i, n, dataElementLength;
uint8_t dataElementLengthPart;
uint8_t align = 4, data_element_version, loopCounter;
uint8_t extension_type = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,87,"extension_payload(): extension_type"));
switch (extension_type)
{
case EXT_DYNAMIC_RANGE:
drc->present = 1;
n = dynamic_range_info(ld, drc);
return n;
case EXT_FILL_DATA:
/* fill_nibble = */ faad_getbits(ld, 4
DEBUGVAR(1,136,"extension_payload(): fill_nibble")); /* must be <20>0000<30> */
for (i = 0; i < count-1; i++)
{
/* fill_byte[i] = */ faad_getbits(ld, 8
DEBUGVAR(1,88,"extension_payload(): fill_byte")); /* must be <20>10100101<30> */
}
return count;
case EXT_DATA_ELEMENT:
data_element_version = faad_getbits(ld, 4
DEBUGVAR(1,400,"extension_payload(): data_element_version"));
switch (data_element_version)
{
case ANC_DATA:
loopCounter = 0;
dataElementLength = 0;
do {
dataElementLengthPart = faad_getbits(ld, 8
DEBUGVAR(1,401,"extension_payload(): dataElementLengthPart"));
dataElementLength += dataElementLengthPart;
loopCounter++;
} while (dataElementLengthPart == 255);
for (i = 0; i < dataElementLength; i++)
{
/* data_element_byte[i] = */ faad_getbits(ld, 8
DEBUGVAR(1,402,"extension_payload(): data_element_byte"));
return (dataElementLength+loopCounter+1);
}
default:
align = 0;
}
case EXT_FIL:
default:
faad_getbits(ld, align
DEBUGVAR(1,88,"extension_payload(): fill_nibble"));
for (i = 0; i < count-1; i++)
{
/* other_bits[i] = */ faad_getbits(ld, 8
DEBUGVAR(1,89,"extension_payload(): fill_bit"));
}
return count;
}
}
/* Table 4.4.31 */
static uint8_t dynamic_range_info(bitfile *ld, drc_info *drc)
{
uint8_t i, n = 1;
uint8_t band_incr;
drc->num_bands = 1;
if (faad_get1bit(ld
DEBUGVAR(1,90,"dynamic_range_info(): has instance_tag")) & 1)
{
drc->pce_instance_tag = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,91,"dynamic_range_info(): pce_instance_tag"));
/* drc->drc_tag_reserved_bits = */ faad_getbits(ld, 4
DEBUGVAR(1,92,"dynamic_range_info(): drc_tag_reserved_bits"));
n++;
}
drc->excluded_chns_present = faad_get1bit(ld
DEBUGVAR(1,93,"dynamic_range_info(): excluded_chns_present"));
if (drc->excluded_chns_present == 1)
{
n += excluded_channels(ld, drc);
}
if (faad_get1bit(ld
DEBUGVAR(1,94,"dynamic_range_info(): has bands data")) & 1)
{
band_incr = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,95,"dynamic_range_info(): band_incr"));
/* drc->drc_bands_reserved_bits = */ faad_getbits(ld, 4
DEBUGVAR(1,96,"dynamic_range_info(): drc_bands_reserved_bits"));
n++;
drc->num_bands += band_incr;
for (i = 0; i < drc->num_bands; i++);
{
drc->band_top[i] = (uint8_t)faad_getbits(ld, 8
DEBUGVAR(1,97,"dynamic_range_info(): band_top"));
n++;
}
}
if (faad_get1bit(ld
DEBUGVAR(1,98,"dynamic_range_info(): has prog_ref_level")) & 1)
{
drc->prog_ref_level = (uint8_t)faad_getbits(ld, 7
DEBUGVAR(1,99,"dynamic_range_info(): prog_ref_level"));
/* drc->prog_ref_level_reserved_bits = */ faad_get1bit(ld
DEBUGVAR(1,100,"dynamic_range_info(): prog_ref_level_reserved_bits"));
n++;
}
for (i = 0; i < drc->num_bands; i++)
{
drc->dyn_rng_sgn[i] = faad_get1bit(ld
DEBUGVAR(1,101,"dynamic_range_info(): dyn_rng_sgn"));
drc->dyn_rng_ctl[i] = (uint8_t)faad_getbits(ld, 7
DEBUGVAR(1,102,"dynamic_range_info(): dyn_rng_ctl"));
n++;
}
return n;
}
/* Table 4.4.32 */
static uint8_t excluded_channels(bitfile *ld, drc_info *drc)
{
uint8_t i, n = 0;
uint8_t num_excl_chan = 7;
for (i = 0; i < 7; i++)
{
drc->exclude_mask[i] = faad_get1bit(ld
DEBUGVAR(1,103,"excluded_channels(): exclude_mask"));
}
n++;
while ((drc->additional_excluded_chns[n-1] = faad_get1bit(ld
DEBUGVAR(1,104,"excluded_channels(): additional_excluded_chns"))) == 1)
{
for (i = num_excl_chan; i < num_excl_chan+7; i++)
{
drc->exclude_mask[i] = faad_get1bit(ld
DEBUGVAR(1,105,"excluded_channels(): exclude_mask"));
}
n++;
num_excl_chan += 7;
}
return n;
}
/* Annex A: Audio Interchange Formats */
/* Table 1.A.2 */
void get_adif_header(adif_header *adif, bitfile *ld)
{
uint8_t i;
/* adif_id[0] = */ faad_getbits(ld, 8
DEBUGVAR(1,106,"get_adif_header(): adif_id[0]"));
/* adif_id[1] = */ faad_getbits(ld, 8
DEBUGVAR(1,107,"get_adif_header(): adif_id[1]"));
/* adif_id[2] = */ faad_getbits(ld, 8
DEBUGVAR(1,108,"get_adif_header(): adif_id[2]"));
/* adif_id[3] = */ faad_getbits(ld, 8
DEBUGVAR(1,109,"get_adif_header(): adif_id[3]"));
adif->copyright_id_present = faad_get1bit(ld
DEBUGVAR(1,110,"get_adif_header(): copyright_id_present"));
if(adif->copyright_id_present)
{
for (i = 0; i < 72/8; i++)
{
adif->copyright_id[i] = (int8_t)faad_getbits(ld, 8
DEBUGVAR(1,111,"get_adif_header(): copyright_id"));
}
adif->copyright_id[i] = 0;
}
adif->original_copy = faad_get1bit(ld
DEBUGVAR(1,112,"get_adif_header(): original_copy"));
adif->home = faad_get1bit(ld
DEBUGVAR(1,113,"get_adif_header(): home"));
adif->bitstream_type = faad_get1bit(ld
DEBUGVAR(1,114,"get_adif_header(): bitstream_type"));
adif->bitrate = faad_getbits(ld, 23
DEBUGVAR(1,115,"get_adif_header(): bitrate"));
adif->num_program_config_elements = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,116,"get_adif_header(): num_program_config_elements"));
for (i = 0; i < adif->num_program_config_elements + 1; i++)
{
if(adif->bitstream_type == 0)
{
adif->adif_buffer_fullness = faad_getbits(ld, 20
DEBUGVAR(1,117,"get_adif_header(): adif_buffer_fullness"));
} else {
adif->adif_buffer_fullness = 0;
}
program_config_element(&adif->pce[i], ld);
}
}
/* Table 1.A.5 */
uint8_t adts_frame(adts_header *adts, bitfile *ld)
{
/* faad_byte_align(ld); */
if (adts_fixed_header(adts, ld))
return 5;
adts_variable_header(adts, ld);
adts_error_check(adts, ld);
return 0;
}
/* Table 1.A.6 */
static uint8_t adts_fixed_header(adts_header *adts, bitfile *ld)
{
uint16_t i;
uint8_t sync_err = 1;
/* try to recover from sync errors */
for (i = 0; i < 768; i++)
{
adts->syncword = (uint16_t)faad_showbits(ld, 12);
if (adts->syncword != 0xFFF)
{
faad_getbits(ld, 8
DEBUGVAR(0,0,""));
} else {
sync_err = 0;
faad_getbits(ld, 12
DEBUGVAR(1,118,"adts_fixed_header(): syncword"));
break;
}
}
if (sync_err)
return 5;
adts->id = faad_get1bit(ld
DEBUGVAR(1,119,"adts_fixed_header(): id"));
adts->layer = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,120,"adts_fixed_header(): layer"));
adts->protection_absent = faad_get1bit(ld
DEBUGVAR(1,121,"adts_fixed_header(): protection_absent"));
adts->profile = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,122,"adts_fixed_header(): profile"));
adts->sf_index = (uint8_t)faad_getbits(ld, 4
DEBUGVAR(1,123,"adts_fixed_header(): sf_index"));
adts->private_bit = faad_get1bit(ld
DEBUGVAR(1,124,"adts_fixed_header(): private_bit"));
adts->channel_configuration = (uint8_t)faad_getbits(ld, 3
DEBUGVAR(1,125,"adts_fixed_header(): channel_configuration"));
adts->original = faad_get1bit(ld
DEBUGVAR(1,126,"adts_fixed_header(): original"));
adts->home = faad_get1bit(ld
DEBUGVAR(1,127,"adts_fixed_header(): home"));
if (adts->old_format == 1)
{
/* Removed in corrigendum 14496-3:2002 */
if (adts->id == 0)
{
adts->emphasis = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,128,"adts_fixed_header(): emphasis"));
}
}
return 0;
}
/* Table 1.A.7 */
static void adts_variable_header(adts_header *adts, bitfile *ld)
{
adts->copyright_identification_bit = faad_get1bit(ld
DEBUGVAR(1,129,"adts_variable_header(): copyright_identification_bit"));
adts->copyright_identification_start = faad_get1bit(ld
DEBUGVAR(1,130,"adts_variable_header(): copyright_identification_start"));
adts->aac_frame_length = (uint16_t)faad_getbits(ld, 13
DEBUGVAR(1,131,"adts_variable_header(): aac_frame_length"));
adts->adts_buffer_fullness = (uint16_t)faad_getbits(ld, 11
DEBUGVAR(1,132,"adts_variable_header(): adts_buffer_fullness"));
adts->no_raw_data_blocks_in_frame = (uint8_t)faad_getbits(ld, 2
DEBUGVAR(1,133,"adts_variable_header(): no_raw_data_blocks_in_frame"));
}
/* Table 1.A.8 */
static void adts_error_check(adts_header *adts, bitfile *ld)
{
if (adts->protection_absent == 0)
{
adts->crc_check = (uint16_t)faad_getbits(ld, 16
DEBUGVAR(1,134,"adts_error_check(): crc_check"));
}
}