1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-27 10:03:32 +00:00
mpv/audio/out/ao_coreaudio_utils.c
2013-08-01 20:32:49 +02:00

420 lines
14 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file contains functions interacting with the CoreAudio framework
* that are not specific to the AUHAL. These are split in a separate file for
* the sake of readability. In the future the could be used by other AOs based
* on CoreAudio but not the AUHAL (such as using AudioQueue services).
*/
#include "audio/out/ao_coreaudio_utils.h"
#include "audio/out/ao_coreaudio_properties.h"
#include "osdep/timer.h"
char *fourcc_repr(void *talloc_ctx, uint32_t code)
{
// Extract FourCC letters from the uint32_t and finde out if it's a valid
// code that is made of letters.
char fcc[4] = {
(code >> 24) & 0xFF,
(code >> 16) & 0xFF,
(code >> 8) & 0xFF,
code & 0xFF,
};
bool valid_fourcc = true;
for (int i = 0; i < 4; i++)
if (!isprint(fcc[i]))
valid_fourcc = false;
char *repr;
if (valid_fourcc)
repr = talloc_asprintf(talloc_ctx, "'%c%c%c%c'",
fcc[0], fcc[1], fcc[2], fcc[3]);
else
repr = talloc_asprintf(NULL, "%d", code);
return repr;
}
bool check_ca_st(struct ao *ao, int level, OSStatus code, const char *message)
{
if (code == noErr) return true;
char *error_string = fourcc_repr(NULL, code);
mp_msg_log(ao->log, level, "%s (%s)\n", message, error_string);
talloc_free(error_string);
return false;
}
void ca_print_asbd(struct ao *ao, const char *description,
const AudioStreamBasicDescription *asbd)
{
uint32_t flags = asbd->mFormatFlags;
char *format = fourcc_repr(NULL, asbd->mFormatID);
MP_VERBOSE(ao,
"%s %7.1fHz %" PRIu32 "bit [%s]"
"[%" PRIu32 "][%" PRIu32 "][%" PRIu32 "]"
"[%" PRIu32 "][%" PRIu32 "] "
"%s %s %s%s%s%s\n",
description, asbd->mSampleRate, asbd->mBitsPerChannel, format,
asbd->mFormatFlags, asbd->mBytesPerPacket, asbd->mFramesPerPacket,
asbd->mBytesPerFrame, asbd->mChannelsPerFrame,
(flags & kAudioFormatFlagIsFloat) ? "float" : "int",
(flags & kAudioFormatFlagIsBigEndian) ? "BE" : "LE",
(flags & kAudioFormatFlagIsSignedInteger) ? "S" : "U",
(flags & kAudioFormatFlagIsPacked) ? " packed" : "",
(flags & kAudioFormatFlagIsAlignedHigh) ? " aligned" : "",
(flags & kAudioFormatFlagIsNonInterleaved) ? " P" : "");
talloc_free(format);
}
bool ca_format_is_digital(AudioStreamBasicDescription asbd)
{
switch (asbd.mFormatID)
case 'IAC3':
case 'iac3':
case kAudioFormat60958AC3:
case kAudioFormatAC3:
return true;
return false;
}
bool ca_stream_supports_digital(struct ao *ao, AudioStreamID stream)
{
AudioStreamRangedDescription *formats = NULL;
size_t n_formats;
OSStatus err =
CA_GET_ARY(stream, kAudioStreamPropertyAvailablePhysicalFormats,
&formats, &n_formats);
CHECK_CA_ERROR("Could not get number of stream formats.");
for (int i = 0; i < n_formats; i++) {
AudioStreamBasicDescription asbd = formats[i].mFormat;
ca_print_asbd(ao, "supported format:", &(asbd));
if (ca_format_is_digital(asbd)) {
talloc_free(formats);
return true;
}
}
talloc_free(formats);
coreaudio_error:
return false;
}
bool ca_device_supports_digital(struct ao *ao, AudioDeviceID device)
{
AudioStreamID *streams = NULL;
size_t n_streams;
/* Retrieve all the output streams. */
OSStatus err =
CA_GET_ARY_O(device, kAudioDevicePropertyStreams, &streams, &n_streams);
CHECK_CA_ERROR("could not get number of streams.");
for (int i = 0; i < n_streams; i++) {
if (ca_stream_supports_digital(ao, streams[i])) {
talloc_free(streams);
return true;
}
}
talloc_free(streams);
coreaudio_error:
return false;
}
OSStatus ca_property_listener(AudioObjectPropertySelector selector,
AudioObjectID object, uint32_t n_addresses,
const AudioObjectPropertyAddress addresses[],
void *data)
{
void *talloc_ctx = talloc_new(NULL);
for (int i = 0; i < n_addresses; i++) {
if (addresses[i].mSelector == selector) {
if (data) *(volatile int *)data = 1;
break;
}
}
talloc_free(talloc_ctx);
return noErr;
}
OSStatus ca_stream_listener(AudioObjectID object, uint32_t n_addresses,
const AudioObjectPropertyAddress addresses[],
void *data)
{
return ca_property_listener(kAudioStreamPropertyPhysicalFormat,
object, n_addresses, addresses, data);
}
OSStatus ca_device_listener(AudioObjectID object, uint32_t n_addresses,
const AudioObjectPropertyAddress addresses[],
void *data)
{
return ca_property_listener(kAudioDevicePropertyDeviceHasChanged,
object, n_addresses, addresses, data);
}
OSStatus ca_lock_device(AudioDeviceID device, pid_t *pid) {
*pid = getpid();
OSStatus err = CA_SET(device, kAudioDevicePropertyHogMode, pid);
if (err != noErr)
*pid = -1;
return err;
}
OSStatus ca_unlock_device(AudioDeviceID device, pid_t *pid) {
if (*pid == getpid()) {
*pid = -1;
return CA_SET(device, kAudioDevicePropertyHogMode, &pid);
}
return noErr;
}
static OSStatus ca_change_mixing(struct ao *ao, AudioDeviceID device,
uint32_t val, bool *changed) {
*changed = false;
AudioObjectPropertyAddress p_addr = (AudioObjectPropertyAddress) {
.mSelector = kAudioDevicePropertySupportsMixing,
.mScope = kAudioObjectPropertyScopeGlobal,
.mElement = kAudioObjectPropertyElementMaster,
};
if (AudioObjectHasProperty(device, &p_addr)) {
OSStatus err;
Boolean writeable = 0;
err = CA_SETTABLE(device, kAudioDevicePropertySupportsMixing,
&writeable);
if (!CHECK_CA_WARN("can't tell if mixing property is settable")) {
return err;
}
if (!writeable)
return noErr;
err = CA_SET(device, kAudioDevicePropertySupportsMixing, &val);
if (err != noErr)
return err;
if (!CHECK_CA_WARN("can't set mix mode")) {
return err;
}
*changed = true;
}
return noErr;
}
OSStatus ca_disable_mixing(struct ao *ao, AudioDeviceID device, bool *changed) {
return ca_change_mixing(ao, device, 0, changed);
}
OSStatus ca_enable_mixing(struct ao *ao, AudioDeviceID device, bool changed) {
if (changed) {
bool dont_care = false;
return ca_change_mixing(ao, device, 1, &dont_care);
}
return noErr;
}
static OSStatus ca_change_device_listening(AudioDeviceID device,
void *flag, bool enabled)
{
AudioObjectPropertyAddress p_addr = (AudioObjectPropertyAddress) {
.mSelector = kAudioDevicePropertyDeviceHasChanged,
.mScope = kAudioObjectPropertyScopeGlobal,
.mElement = kAudioObjectPropertyElementMaster,
};
if (enabled) {
return AudioObjectAddPropertyListener(
device, &p_addr, ca_device_listener, flag);
} else {
return AudioObjectRemovePropertyListener(
device, &p_addr, ca_device_listener, flag);
}
}
OSStatus ca_enable_device_listener(AudioDeviceID device, void *flag) {
return ca_change_device_listening(device, flag, true);
}
OSStatus ca_disable_device_listener(AudioDeviceID device, void *flag) {
return ca_change_device_listening(device, flag, false);
}
bool ca_change_format(struct ao *ao, AudioStreamID stream,
AudioStreamBasicDescription change_format)
{
OSStatus err = noErr;
AudioObjectPropertyAddress p_addr;
volatile int stream_format_changed = 0;
ca_print_asbd(ao, "setting stream format:", &change_format);
/* Install the callback. */
p_addr = (AudioObjectPropertyAddress) {
.mSelector = kAudioStreamPropertyPhysicalFormat,
.mScope = kAudioObjectPropertyScopeGlobal,
.mElement = kAudioObjectPropertyElementMaster,
};
err = AudioObjectAddPropertyListener(stream, &p_addr, ca_stream_listener,
(void *)&stream_format_changed);
if (!CHECK_CA_WARN("can't add property listener during format change")) {
return false;
}
/* Change the format. */
err = CA_SET(stream, kAudioStreamPropertyPhysicalFormat, &change_format);
if (!CHECK_CA_WARN("error changing physical format")) {
return false;
}
/* The AudioStreamSetProperty is not only asynchronious,
* it is also not Atomic, in its behaviour.
* Therefore we check 5 times before we really give up. */
bool format_set = false;
for (int i = 0; !format_set && i < 5; i++) {
for (int j = 0; !stream_format_changed && j < 50; j++)
mp_sleep_us(10000);
if (stream_format_changed) {
stream_format_changed = 0;
} else {
MP_VERBOSE(ao, "reached timeout\n");
}
AudioStreamBasicDescription actual_format;
err = CA_GET(stream, kAudioStreamPropertyPhysicalFormat, &actual_format);
ca_print_asbd(ao, "actual format in use:", &actual_format);
if (actual_format.mSampleRate == change_format.mSampleRate &&
actual_format.mFormatID == change_format.mFormatID &&
actual_format.mFramesPerPacket == change_format.mFramesPerPacket) {
format_set = true;
}
}
err = AudioObjectRemovePropertyListener(stream, &p_addr, ca_stream_listener,
(void *)&stream_format_changed);
if (!CHECK_CA_WARN("can't remove property listener")) {
return false;
}
return format_set;
}
static bool ca_bitmap_from_ch_desc(struct ao *ao, AudioChannelLayout *layout,
uint32_t *bitmap)
{
// If the channel layout uses channel descriptions, from my
// exepriments there are there three possibile cases:
// * The description has a label kAudioChannelLabel_Unknown:
// Can't do anything about this (looks like non surround
// layouts are like this).
// * The description uses positional information: this in
// theory could be used but one would have to map spatial
// positions to labels which is not really feasible.
// * The description has a well known label which can be mapped
// to the waveextensible definition: this is the kind of
// descriptions we process here.
size_t ch_num = layout->mNumberChannelDescriptions;
bool all_channels_valid = true;
for (int j=0; j < ch_num && all_channels_valid; j++) {
AudioChannelLabel label = layout->mChannelDescriptions[j].mChannelLabel;
if (label == kAudioChannelLabel_UseCoordinates ||
label == kAudioChannelLabel_Unknown ||
label > kAudioChannelLabel_TopBackRight) {
MP_VERBOSE(ao, "channel label=%d unusable to build channel "
"bitmap, skipping layout\n", label);
all_channels_valid = false;
} else {
*bitmap |= 1ULL << (label - 1);
}
}
return all_channels_valid;
}
static bool ca_bitmap_from_ch_tag(struct ao *ao, AudioChannelLayout *layout,
uint32_t *bitmap)
{
// This layout is defined exclusively by it's tag. Use the Audio
// Format Services API to try and convert it to a bitmap that
// mpv can use.
uint32_t bitmap_size = sizeof(uint32_t);
AudioChannelLayoutTag tag = layout->mChannelLayoutTag;
OSStatus err = AudioFormatGetProperty(
kAudioFormatProperty_BitmapForLayoutTag,
sizeof(AudioChannelLayoutTag), &tag,
&bitmap_size, bitmap);
if (err != noErr) {
MP_VERBOSE(ao, "channel layout tag=%d unusable to build channel "
"bitmap, skipping layout\n", tag);
return false;
} else {
return true;
}
}
void ca_bitmaps_from_layouts(struct ao *ao,
AudioChannelLayout *layouts, size_t n_layouts,
uint32_t **bitmaps, size_t *n_bitmaps)
{
*n_bitmaps = 0;
*bitmaps = talloc_array_size(NULL, sizeof(uint32_t), n_layouts);
for (int i=0; i < n_layouts; i++) {
uint32_t bitmap = 0;
switch (layouts[i].mChannelLayoutTag) {
case kAudioChannelLayoutTag_UseChannelBitmap:
(*bitmaps)[(*n_bitmaps)++] = layouts[i].mChannelBitmap;
break;
case kAudioChannelLayoutTag_UseChannelDescriptions:
if (ca_bitmap_from_ch_desc(ao, &layouts[i], &bitmap))
(*bitmaps)[(*n_bitmaps)++] = bitmap;
break;
default:
if (ca_bitmap_from_ch_tag(ao, &layouts[i], &bitmap))
(*bitmaps)[(*n_bitmaps)++] = bitmap;
}
}
}