1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-27 18:13:15 +00:00
mpv/video/mp_image.c
wm4 1419aac22a mp_image: remove some unused interlacing flags
MP_IMGFIELD_TOP/MP_IMGFIELD_BOTTOM were completely unused, and
MP_IMGFIELD_ORDERED was always set (even though vf_vdpaupp.c strangely
checked for the latter).
2015-04-23 22:06:14 +02:00

778 lines
26 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <pthread.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include <libavutil/bswap.h>
#include <libavcodec/avcodec.h>
#include "talloc.h"
#include "img_format.h"
#include "mp_image.h"
#include "sws_utils.h"
#include "fmt-conversion.h"
#include "video/filter/vf.h"
static pthread_mutex_t refcount_mutex = PTHREAD_MUTEX_INITIALIZER;
#define refcount_lock() pthread_mutex_lock(&refcount_mutex)
#define refcount_unlock() pthread_mutex_unlock(&refcount_mutex)
struct m_refcount {
void *arg;
// free() is called if refcount reaches 0.
void (*free)(void *arg);
bool (*ext_is_unique)(void *arg);
// Native refcount (there may be additional references if .ext_* are set)
int refcount;
};
// Only for checking API usage
static void m_refcount_destructor(void *ptr)
{
struct m_refcount *ref = ptr;
assert(ref->refcount == 0);
}
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
static struct m_refcount *m_refcount_new(void)
{
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
*ref = (struct m_refcount) { .refcount = 1 };
talloc_set_destructor(ref, m_refcount_destructor);
return ref;
}
static void m_refcount_ref(struct m_refcount *ref)
{
refcount_lock();
ref->refcount++;
refcount_unlock();
}
static void m_refcount_unref(struct m_refcount *ref)
{
bool dead;
refcount_lock();
assert(ref->refcount > 0);
ref->refcount--;
dead = ref->refcount == 0;
refcount_unlock();
if (dead) {
if (ref->free)
ref->free(ref->arg);
talloc_free(ref);
}
}
static bool m_refcount_is_unique(struct m_refcount *ref)
{
bool nonunique;
refcount_lock();
nonunique = ref->refcount > 1;
refcount_unlock();
if (nonunique)
return false;
if (ref->ext_is_unique)
return ref->ext_is_unique(ref->arg); // referenced only by us
return true;
}
static bool mp_image_alloc_planes(struct mp_image *mpi)
{
assert(!mpi->planes[0]);
if (!mp_image_params_valid(&mpi->params) || mpi->fmt.flags & MP_IMGFLAG_HWACCEL)
return false;
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
// top/right border. This is needed for correct handling of such
// images in filter and VO code (e.g. vo_vdpau or vo_opengl).
size_t plane_size[MP_MAX_PLANES];
for (int n = 0; n < MP_MAX_PLANES; n++) {
int alloc_h = MP_ALIGN_UP(mpi->h, 32) >> mpi->fmt.ys[n];
int line_bytes = (mp_image_plane_w(mpi, n) * mpi->fmt.bpp[n] + 7) / 8;
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
plane_size[n] = mpi->stride[n] * alloc_h;
}
if (mpi->fmt.flags & MP_IMGFLAG_PAL)
plane_size[1] = MP_PALETTE_SIZE;
size_t sum = 0;
for (int n = 0; n < MP_MAX_PLANES; n++)
sum += plane_size[n];
uint8_t *data = av_malloc(FFMAX(sum, 1));
if (!data)
return false;
for (int n = 0; n < MP_MAX_PLANES; n++) {
mpi->planes[n] = plane_size[n] ? data : NULL;
data += plane_size[n];
}
return true;
}
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
{
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
mpi->params.imgfmt = fmt.id;
mpi->fmt = fmt;
mpi->imgfmt = fmt.id;
mpi->num_planes = fmt.num_planes;
mp_image_set_size(mpi, mpi->w, mpi->h);
}
static void mp_image_destructor(void *ptr)
{
mp_image_t *mpi = ptr;
m_refcount_unref(mpi->refcount);
}
int mp_chroma_div_up(int size, int shift)
{
return (size + (1 << shift) - 1) >> shift;
}
// Return the storage width in pixels of the given plane.
int mp_image_plane_w(struct mp_image *mpi, int plane)
{
return mp_chroma_div_up(mpi->w, mpi->fmt.xs[plane]);
}
// Return the storage height in pixels of the given plane.
int mp_image_plane_h(struct mp_image *mpi, int plane)
{
return mp_chroma_div_up(mpi->h, mpi->fmt.ys[plane]);
}
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
assert(w >= 0 && h >= 0);
mpi->w = mpi->params.w = mpi->params.d_w = w;
mpi->h = mpi->params.h = mpi->params.d_h = h;
}
void mp_image_set_params(struct mp_image *image,
const struct mp_image_params *params)
{
// possibly initialize other stuff
mp_image_setfmt(image, params->imgfmt);
mp_image_set_size(image, params->w, params->h);
image->params = *params;
}
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
{
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
talloc_set_destructor(mpi, mp_image_destructor);
mpi->refcount = m_refcount_new();
mp_image_set_size(mpi, w, h);
mp_image_setfmt(mpi, imgfmt);
if (!mp_image_alloc_planes(mpi)) {
talloc_free(mpi);
return NULL;
}
mpi->refcount->free = av_free;
mpi->refcount->arg = mpi->planes[0];
return mpi;
}
struct mp_image *mp_image_new_copy(struct mp_image *img)
{
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
if (!new)
return NULL;
mp_image_copy(new, img);
mp_image_copy_attributes(new, img);
return new;
}
// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
assert(dst->refcount && src->refcount);
for (int p = 0; p < MP_MAX_PLANES; p++) {
dst->planes[p] = src->planes[p];
dst->stride[p] = src->stride[p];
}
mp_image_copy_attributes(dst, src);
m_refcount_unref(dst->refcount);
dst->refcount = src->refcount;
talloc_set_destructor(src, NULL);
talloc_free(src);
}
// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
if (!img)
return NULL;
if (!img->refcount)
return mp_image_new_copy(img);
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
m_refcount_ref(new->refcount);
return new;
}
// Return a reference counted reference to img. is_unique us used to connect to
// an external refcounting API. It is assumed that the new object
// has an initial reference to that external API. If free is given, that is
// called after the last unref. All function pointers are optional.
// On allocation failure, unref the frame and return NULL.
static struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
bool (*is_unique)(void *arg),
void (*free)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->ext_is_unique = is_unique;
new->refcount->free = free;
new->refcount->arg = arg;
return new;
}
// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
// On allocation failure, unref the frame and return NULL.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
void (*free)(void *arg))
{
return mp_image_new_external_ref(img, free_arg, NULL, free);
}
bool mp_image_is_writeable(struct mp_image *img)
{
if (!img->refcount)
return true; // not ref-counted => always considered writeable
return m_refcount_is_unique(img->refcount);
}
// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
// Returns success; if false is returned, the image could not be made writeable.
bool mp_image_make_writeable(struct mp_image *img)
{
if (mp_image_is_writeable(img))
return true;
struct mp_image *new = mp_image_new_copy(img);
if (!new)
return false;
mp_image_steal_data(img, new);
assert(mp_image_is_writeable(img));
return true;
}
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
// Only unrefs *p_img and sets it to NULL if out of memory.
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
if (*p_img != new_value) {
talloc_free(*p_img);
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
}
}
// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
talloc_free(*p_img);
*p_img = NULL;
}
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt);
assert(dst->w == src->w && dst->h == src->h);
assert(mp_image_is_writeable(dst));
for (int n = 0; n < dst->num_planes; n++) {
int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
int plane_h = mp_image_plane_h(dst, n);
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, plane_h,
dst->stride[n], src->stride[n]);
}
// Watch out for AV_PIX_FMT_FLAG_PSEUDOPAL retardation
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && dst->planes[1] && src->planes[1])
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
dst->pict_type = src->pict_type;
dst->fields = src->fields;
dst->pts = src->pts;
dst->params.rotate = src->params.rotate;
dst->params.stereo_in = src->params.stereo_in;
dst->params.stereo_out = src->params.stereo_out;
if (dst->w == src->w && dst->h == src->h) {
dst->params.d_w = src->params.d_w;
dst->params.d_h = src->params.d_h;
}
dst->params.primaries = src->params.primaries;
dst->params.gamma = src->params.gamma;
if ((dst->fmt.flags & MP_IMGFLAG_YUV) == (src->fmt.flags & MP_IMGFLAG_YUV)) {
dst->params.colorspace = src->params.colorspace;
dst->params.colorlevels = src->params.colorlevels;
dst->params.chroma_location = src->params.chroma_location;
dst->params.outputlevels = src->params.outputlevels;
}
mp_image_params_guess_csp(&dst->params); // ensure colorspace consistency
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
if (dst->planes[1] && src->planes[1])
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
}
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
// x0/y0 must be naturally aligned.
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
for (int p = 0; p < img->num_planes; ++p) {
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
}
mp_image_set_size(img, x1 - x0, y1 - y0);
}
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
{
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
}
// Bottom/right border is allowed not to be aligned, but it might implicitly
// overwrite pixel data until the alignment (align_x/align_y) is reached.
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
struct mp_image area = *img;
mp_image_crop(&area, x0, y0, x1, y1);
uint32_t plane_clear[MP_MAX_PLANES] = {0};
if (area.imgfmt == IMGFMT_YUYV) {
plane_clear[0] = av_le2ne16(0x8000);
} else if (area.imgfmt == IMGFMT_UYVY) {
plane_clear[0] = av_le2ne16(0x0080);
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
plane_clear[1] = 0x8080;
} else if (area.fmt.flags & MP_IMGFLAG_YUV_P) {
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
if (!(area.fmt.flags & MP_IMGFLAG_NE))
chroma_clear = av_bswap16(chroma_clear);
if (area.num_planes > 2)
plane_clear[1] = plane_clear[2] = chroma_clear;
}
for (int p = 0; p < area.num_planes; p++) {
int bpp = area.fmt.bpp[p];
int bytes = (mp_image_plane_w(&area, p) * bpp + 7) / 8;
if (bpp <= 8) {
memset_pic(area.planes[p], plane_clear[p], bytes,
mp_image_plane_h(&area, p), area.stride[p]);
} else {
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
mp_image_plane_h(&area, p), area.stride[p]);
}
}
}
void mp_image_vflip(struct mp_image *img)
{
for (int p = 0; p < img->num_planes; p++) {
int plane_h = mp_image_plane_h(img, p);
img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
img->stride[p] = -img->stride[p];
}
}
char *mp_image_params_to_str_buf(char *b, size_t bs,
const struct mp_image_params *p)
{
if (p && p->imgfmt) {
snprintf(b, bs, "%dx%d", p->w, p->h);
if (p->w != p->d_w || p->h != p->d_h)
mp_snprintf_cat(b, bs, "->%dx%d", p->d_w, p->d_h);
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
mp_snprintf_cat(b, bs, " %s/%s",
m_opt_choice_str(mp_csp_names, p->colorspace),
m_opt_choice_str(mp_csp_levels_names, p->colorlevels));
mp_snprintf_cat(b, bs, " CL=%s",
m_opt_choice_str(mp_chroma_names, p->chroma_location));
if (p->outputlevels) {
mp_snprintf_cat(b, bs, " out=%s",
m_opt_choice_str(mp_csp_levels_names, p->outputlevels));
}
if (p->rotate)
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
if (p->stereo_in > 0 || p->stereo_out > 0) {
mp_snprintf_cat(b, bs, " stereo=%s/%s",
MP_STEREO3D_NAME_DEF(p->stereo_in, "?"),
MP_STEREO3D_NAME_DEF(p->stereo_out, "?"));
}
} else {
snprintf(b, bs, "???");
}
return b;
}
// Return whether the image parameters are valid.
// Some non-essential fields are allowed to be unset (like colorspace flags).
bool mp_image_params_valid(const struct mp_image_params *p)
{
// av_image_check_size has similar checks and triggers around 16000*16000
// It's mostly needed to deal with the fact that offsets are sometimes
// ints. We also should (for now) do the same as FFmpeg, to be sure large
// images don't crash with libswscale or when wrapping with AVFrame and
// passing the result to filters.
if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
return false;
if (p->d_w <= 0 || p->d_h <= 0)
return false;
if (p->rotate < 0 || p->rotate >= 360)
return false;
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
if (!desc.id)
return false;
return true;
}
bool mp_image_params_equal(const struct mp_image_params *p1,
const struct mp_image_params *p2)
{
return p1->imgfmt == p2->imgfmt &&
p1->w == p2->w && p1->h == p2->h &&
p1->d_w == p2->d_w && p1->d_h == p2->d_h &&
p1->colorspace == p2->colorspace &&
p1->colorlevels == p2->colorlevels &&
p1->outputlevels == p2->outputlevels &&
p1->primaries == p2->primaries &&
p1->gamma == p2->gamma &&
p1->chroma_location == p2->chroma_location &&
p1->rotate == p2->rotate &&
p1->stereo_in == p2->stereo_in &&
p1->stereo_out == p2->stereo_out;
}
// Set most image parameters, but not image format or size.
// Display size is used to set the PAR.
void mp_image_set_attributes(struct mp_image *image,
const struct mp_image_params *params)
{
struct mp_image_params nparams = *params;
nparams.imgfmt = image->imgfmt;
nparams.w = image->w;
nparams.h = image->h;
if (nparams.imgfmt != params->imgfmt)
mp_image_params_guess_csp(&nparams);
if (nparams.w != params->w || nparams.h != params->h) {
if (nparams.d_w && nparams.d_h) {
vf_rescale_dsize(&nparams.d_w, &nparams.d_h,
params->w, params->h, nparams.w, nparams.h);
}
}
mp_image_set_params(image, &nparams);
}
// If details like params->colorspace/colorlevels are missing, guess them from
// the other settings. Also, even if they are set, make them consistent with
// the colorspace as implied by the pixel format.
void mp_image_params_guess_csp(struct mp_image_params *params)
{
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(params->imgfmt);
if (!fmt.id)
return;
if (fmt.flags & MP_IMGFLAG_YUV) {
if (params->colorspace != MP_CSP_BT_601 &&
params->colorspace != MP_CSP_BT_709 &&
params->colorspace != MP_CSP_BT_2020_NC &&
params->colorspace != MP_CSP_BT_2020_C &&
params->colorspace != MP_CSP_SMPTE_240M &&
params->colorspace != MP_CSP_YCGCO)
{
// Makes no sense, so guess instead
// YCGCO should be separate, but libavcodec disagrees
params->colorspace = MP_CSP_AUTO;
}
if (params->colorspace == MP_CSP_AUTO)
params->colorspace = mp_csp_guess_colorspace(params->w, params->h);
if (params->colorlevels == MP_CSP_LEVELS_AUTO)
params->colorlevels = MP_CSP_LEVELS_TV;
if (params->primaries == MP_CSP_PRIM_AUTO) {
// Guess based on the colormatrix as a first priority
if (params->colorspace == MP_CSP_BT_2020_NC ||
params->colorspace == MP_CSP_BT_2020_C) {
params->primaries = MP_CSP_PRIM_BT_2020;
} else if (params->colorspace == MP_CSP_BT_709) {
params->primaries = MP_CSP_PRIM_BT_709;
} else {
// Ambiguous colormatrix for BT.601, guess based on res
params->primaries = mp_csp_guess_primaries(params->w, params->h);
}
}
if (params->gamma == MP_CSP_TRC_AUTO)
params->gamma = MP_CSP_TRC_BT_1886;
} else if (fmt.flags & MP_IMGFLAG_RGB) {
params->colorspace = MP_CSP_RGB;
params->colorlevels = MP_CSP_LEVELS_PC;
// The majority of RGB content is either sRGB or (rarely) some other
// color space which we don't even handle, like AdobeRGB or
// ProPhotoRGB. The only reasonable thing we can do is assume it's
// sRGB and hope for the best, which should usually just work out fine.
// Note: sRGB primaries = BT.709 primaries
if (params->primaries == MP_CSP_PRIM_AUTO)
params->primaries = MP_CSP_PRIM_BT_709;
if (params->gamma == MP_CSP_TRC_AUTO)
params->gamma = MP_CSP_TRC_SRGB;
} else if (fmt.flags & MP_IMGFLAG_XYZ) {
params->colorspace = MP_CSP_XYZ;
params->colorlevels = MP_CSP_LEVELS_PC;
// The default XYZ matrix converts it to BT.709 color space
// since that's the most likely scenario. Proper VOs should ignore
// this field as well as the matrix and treat XYZ input as absolute,
// but for VOs which use the matrix (and hence, consult this field)
// this is the correct parameter. This doubles as a reasonable output
// gamut for VOs which *do* use the specialized XYZ matrix but don't
// know any better output gamut other than whatever the source is
// tagged with.
if (params->primaries == MP_CSP_PRIM_AUTO)
params->primaries = MP_CSP_PRIM_BT_709;
if (params->gamma == MP_CSP_TRC_AUTO)
params->gamma = MP_CSP_TRC_LINEAR;
} else {
// We have no clue.
params->colorspace = MP_CSP_AUTO;
params->colorlevels = MP_CSP_LEVELS_AUTO;
params->primaries = MP_CSP_PRIM_AUTO;
params->gamma = MP_CSP_TRC_AUTO;
}
}
// Copy properties and data of the AVFrame into the mp_image, without taking
// care of memory management issues.
void mp_image_copy_fields_from_av_frame(struct mp_image *dst,
struct AVFrame *src)
{
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
mp_image_set_size(dst, src->width, src->height);
for (int i = 0; i < 4; i++) {
dst->planes[i] = src->data[i];
dst->stride[i] = src->linesize[i];
}
dst->pict_type = src->pict_type;
dst->fields = 0;
if (src->interlaced_frame)
dst->fields |= MP_IMGFIELD_INTERLACED;
if (src->top_field_first)
dst->fields |= MP_IMGFIELD_TOP_FIRST;
if (src->repeat_pict == 1)
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
}
// Copy properties and data of the mp_image into the AVFrame, without taking
// care of memory management issues.
void mp_image_copy_fields_to_av_frame(struct AVFrame *dst,
struct mp_image *src)
{
dst->format = imgfmt2pixfmt(src->imgfmt);
dst->width = src->w;
dst->height = src->h;
for (int i = 0; i < 4; i++) {
dst->data[i] = src->planes[i];
dst->linesize[i] = src->stride[i];
}
dst->extended_data = dst->data;
dst->pict_type = src->pict_type;
if (src->fields & MP_IMGFIELD_INTERLACED)
dst->interlaced_frame = 1;
if (src->fields & MP_IMGFIELD_TOP_FIRST)
dst->top_field_first = 1;
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
dst->repeat_pict = 1;
dst->colorspace = mp_csp_to_avcol_spc(src->params.colorspace);
dst->color_range = mp_csp_levels_to_avcol_range(src->params.colorlevels);
}
static void frame_free(void *p)
{
AVFrame *frame = p;
av_frame_free(&frame);
}
static bool frame_is_unique(void *p)
{
AVFrame *frame = p;
return av_frame_is_writable(frame);
}
// Create a new mp_image reference to av_frame.
struct mp_image *mp_image_from_av_frame(struct AVFrame *av_frame)
{
AVFrame *new_ref = av_frame_clone(av_frame);
if (!new_ref)
return NULL;
struct mp_image t = {0};
mp_image_copy_fields_from_av_frame(&t, new_ref);
return mp_image_new_external_ref(&t, new_ref, frame_is_unique, frame_free);
}
static void free_img(void *opaque, uint8_t *data)
{
struct mp_image *img = opaque;
talloc_free(img);
}
// Convert the mp_image reference to a AVFrame reference.
// Warning: img is unreferenced (i.e. free'd). This is asymmetric to
// mp_image_from_av_frame(). It's done this way to allow marking the
// resulting AVFrame as writeable if img is the only reference (in
// other words, it's an optimization).
// On failure, img is only unreffed.
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
{
struct mp_image *new_ref = mp_image_new_ref(img); // ensure it's refcounted
talloc_free(img);
if (!new_ref)
return NULL;
AVFrame *frame = av_frame_alloc();
if (!frame) {
talloc_free(new_ref);
return NULL;
}
mp_image_copy_fields_to_av_frame(frame, new_ref);
// Caveat: if img has shared references, and all other references disappear
// at a later point, the AVFrame will still be read-only.
int flags = 0;
if (!mp_image_is_writeable(new_ref))
flags |= AV_BUFFER_FLAG_READONLY;
for (int n = 0; n < new_ref->num_planes; n++) {
// Make it so that the actual image data is freed only if _all_ buffers
// are unreferenced.
struct mp_image *dummy_ref = mp_image_new_ref(new_ref);
if (!dummy_ref)
abort(); // out of memory (for the ref, not real image data)
void *ptr = new_ref->planes[n];
size_t size = new_ref->stride[n] * new_ref->h;
frame->buf[n] = av_buffer_create(ptr, size, free_img, dummy_ref, flags);
if (!frame->buf[n])
abort();
}
talloc_free(new_ref);
return frame;
}
void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
int dstStride, int srcStride)
{
if (bytesPerLine == dstStride && dstStride == srcStride && height) {
if (srcStride < 0) {
src = (uint8_t*)src + (height - 1) * srcStride;
dst = (uint8_t*)dst + (height - 1) * dstStride;
srcStride = -srcStride;
}
memcpy(dst, src, srcStride * (height - 1) + bytesPerLine);
} else {
for (int i = 0; i < height; i++) {
memcpy(dst, src, bytesPerLine);
src = (uint8_t*)src + srcStride;
dst = (uint8_t*)dst + dstStride;
}
}
}
void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
{
if (bytesPerLine == stride && height) {
memset(dst, fill, stride * (height - 1) + bytesPerLine);
} else {
for (int i = 0; i < height; i++) {
memset(dst, fill, bytesPerLine);
dst = (uint8_t *)dst + stride;
}
}
}
void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
{
if (fill == 0) {
memset_pic(dst, 0, unitsPerLine * 2, height, stride);
} else {
for (int i = 0; i < height; i++) {
uint16_t *line = dst;
uint16_t *end = line + unitsPerLine;
while (line < end)
*line++ = fill;
dst = (uint8_t *)dst + stride;
}
}
}