1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-13 02:15:59 +00:00
mpv/libfaad2/decoder.c
alex e24087509a synced with current cvs
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10990 b3059339-0415-0410-9bf9-f77b7e298cf2
2003-10-03 22:23:26 +00:00

1224 lines
37 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: decoder.c,v 1.1 2003/08/30 22:30:21 arpi Exp $
**/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#include <string.h>
#include "decoder.h"
#include "mp4.h"
#include "syntax.h"
#include "tns.h"
#include "pns.h"
#include "is.h"
#include "ms.h"
#include "ic_predict.h"
#include "lt_predict.h"
#include "drc.h"
#include "error.h"
#include "output.h"
#include "dither.h"
#ifdef SSR_DEC
#include "ssr.h"
#include "ssr_fb.h"
#endif
#ifdef SBR_DEC
#include "sbr_dec.h"
#endif
#ifdef ANALYSIS
uint16_t dbg_count;
#endif
int8_t* FAADAPI faacDecGetErrorMessage(uint8_t errcode)
{
if (errcode >= NUM_ERROR_MESSAGES)
return NULL;
return err_msg[errcode];
}
uint32_t FAADAPI faacDecGetCapabilities()
{
uint32_t cap = 0;
/* can't do without it */
cap += LC_DEC_CAP;
#ifdef MAIN_DEC
cap += MAIN_DEC_CAP;
#endif
#ifdef LTP_DEC
cap += LTP_DEC_CAP;
#endif
#ifdef LD_DEC
cap += LD_DEC_CAP;
#endif
#ifdef ERROR_RESILIENCE
cap += ERROR_RESILIENCE_CAP;
#endif
#ifdef FIXED_POINT
cap += FIXED_POINT_CAP;
#endif
return cap;
}
faacDecHandle FAADAPI faacDecOpen()
{
uint8_t i;
faacDecHandle hDecoder = NULL;
if ((hDecoder = (faacDecHandle)malloc(sizeof(faacDecStruct))) == NULL)
return NULL;
memset(hDecoder, 0, sizeof(faacDecStruct));
hDecoder->config.outputFormat = FAAD_FMT_16BIT;
hDecoder->config.defObjectType = MAIN;
hDecoder->config.defSampleRate = 44100; /* Default: 44.1kHz */
hDecoder->adts_header_present = 0;
hDecoder->adif_header_present = 0;
#ifdef ERROR_RESILIENCE
hDecoder->aacSectionDataResilienceFlag = 0;
hDecoder->aacScalefactorDataResilienceFlag = 0;
hDecoder->aacSpectralDataResilienceFlag = 0;
#endif
hDecoder->frameLength = 1024;
hDecoder->frame = 0;
hDecoder->sample_buffer = NULL;
for (i = 0; i < MAX_CHANNELS; i++)
{
hDecoder->window_shape_prev[i] = 0;
hDecoder->time_out[i] = NULL;
#ifdef SBR_DEC
hDecoder->time_out2[i] = NULL;
#endif
#ifdef SSR_DEC
hDecoder->ssr_overlap[i] = NULL;
hDecoder->prev_fmd[i] = NULL;
#endif
#ifdef MAIN_DEC
hDecoder->pred_stat[i] = NULL;
#endif
#ifdef LTP_DEC
hDecoder->ltp_lag[i] = 0;
hDecoder->lt_pred_stat[i] = NULL;
#endif
}
#ifdef SBR_DEC
for (i = 0; i < 32; i++)
{
hDecoder->sbr[i] = NULL;
}
#endif
hDecoder->drc = drc_init(REAL_CONST(1.0), REAL_CONST(1.0));
#if POW_TABLE_SIZE
hDecoder->pow2_table = (real_t*)malloc(POW_TABLE_SIZE*sizeof(real_t));
if (!hDecoder->pow2_table)
{
free(hDecoder);
hDecoder = NULL;
return hDecoder;
}
build_tables(hDecoder->pow2_table);
#endif
return hDecoder;
}
faacDecConfigurationPtr FAADAPI faacDecGetCurrentConfiguration(faacDecHandle hDecoder)
{
if (hDecoder)
{
faacDecConfigurationPtr config = &(hDecoder->config);
return config;
}
return NULL;
}
uint8_t FAADAPI faacDecSetConfiguration(faacDecHandle hDecoder,
faacDecConfigurationPtr config)
{
if (hDecoder && config)
{
/* check if we can decode this object type */
if (can_decode_ot(config->defObjectType) < 0)
return 0;
hDecoder->config.defObjectType = config->defObjectType;
/* samplerate: anything but 0 should be possible */
if (config->defSampleRate == 0)
return 0;
hDecoder->config.defSampleRate = config->defSampleRate;
/* check output format */
if ((config->outputFormat < 1) || (config->outputFormat > 9))
return 0;
hDecoder->config.outputFormat = config->outputFormat;
if (config->downMatrix > 1)
hDecoder->config.downMatrix = config->downMatrix;
/* OK */
return 1;
}
return 0;
}
int32_t FAADAPI faacDecInit(faacDecHandle hDecoder, uint8_t *buffer,
uint32_t buffer_size,
uint32_t *samplerate, uint8_t *channels)
{
uint32_t bits = 0;
bitfile ld;
adif_header adif;
adts_header adts;
if ((hDecoder == NULL) || (samplerate == NULL) || (channels == NULL))
return -1;
hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate);
hDecoder->object_type = hDecoder->config.defObjectType;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = 1;
if (buffer != NULL)
{
faad_initbits(&ld, buffer, buffer_size);
/* Check if an ADIF header is present */
if ((buffer[0] == 'A') && (buffer[1] == 'D') &&
(buffer[2] == 'I') && (buffer[3] == 'F'))
{
hDecoder->adif_header_present = 1;
get_adif_header(&adif, &ld);
faad_byte_align(&ld);
hDecoder->sf_index = adif.pce[0].sf_index;
hDecoder->object_type = adif.pce[0].object_type + 1;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = adif.pce[0].channels;
memcpy(&(hDecoder->pce), &(adif.pce[0]), sizeof(program_config));
hDecoder->pce_set = 1;
bits = bit2byte(faad_get_processed_bits(&ld));
/* Check if an ADTS header is present */
} else if (faad_showbits(&ld, 12) == 0xfff) {
hDecoder->adts_header_present = 1;
adts.old_format = hDecoder->config.useOldADTSFormat;
adts_frame(&adts, &ld);
hDecoder->sf_index = adts.sf_index;
hDecoder->object_type = adts.profile + 1;
*samplerate = get_sample_rate(hDecoder->sf_index);
*channels = (adts.channel_configuration > 6) ?
2 : adts.channel_configuration;
}
if (ld.error)
{
faad_endbits(&ld);
return -1;
}
faad_endbits(&ld);
}
hDecoder->channelConfiguration = *channels;
#ifdef SBR_DEC
/* implicit signalling */
if (*samplerate <= 24000)
{
*samplerate *= 2;
hDecoder->forceUpSampling = 1;
}
#endif
/* must be done before frameLength is divided by 2 for LD */
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);
else
#endif
hDecoder->fb = filter_bank_init(hDecoder->frameLength);
#ifdef LD_DEC
if (hDecoder->object_type == LD)
hDecoder->frameLength >>= 1;
#endif
if (can_decode_ot(hDecoder->object_type) < 0)
return -1;
#ifndef FIXED_POINT
if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST)
Init_Dither(16, (uint8_t)(hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST));
#endif
return bits;
}
/* Init the library using a DecoderSpecificInfo */
int8_t FAADAPI faacDecInit2(faacDecHandle hDecoder, uint8_t *pBuffer,
uint32_t SizeOfDecoderSpecificInfo,
uint32_t *samplerate, uint8_t *channels)
{
int8_t rc;
mp4AudioSpecificConfig mp4ASC;
if((hDecoder == NULL)
|| (pBuffer == NULL)
|| (SizeOfDecoderSpecificInfo < 2)
|| (samplerate == NULL)
|| (channels == NULL))
{
return -1;
}
hDecoder->adif_header_present = 0;
hDecoder->adts_header_present = 0;
/* decode the audio specific config */
rc = AudioSpecificConfig2(pBuffer, SizeOfDecoderSpecificInfo, &mp4ASC,
&(hDecoder->pce));
/* copy the relevant info to the decoder handle */
*samplerate = mp4ASC.samplingFrequency;
if (mp4ASC.channelsConfiguration)
{
*channels = mp4ASC.channelsConfiguration;
} else {
*channels = hDecoder->pce.channels;
hDecoder->pce_set = 1;
}
hDecoder->sf_index = mp4ASC.samplingFrequencyIndex;
hDecoder->object_type = mp4ASC.objectTypeIndex;
#ifdef ERROR_RESILIENCE
hDecoder->aacSectionDataResilienceFlag = mp4ASC.aacSectionDataResilienceFlag;
hDecoder->aacScalefactorDataResilienceFlag = mp4ASC.aacScalefactorDataResilienceFlag;
hDecoder->aacSpectralDataResilienceFlag = mp4ASC.aacSpectralDataResilienceFlag;
#endif
#ifdef SBR_DEC
hDecoder->sbr_present_flag = mp4ASC.sbr_present_flag;
hDecoder->forceUpSampling = mp4ASC.forceUpSampling;
/* AAC core decoder samplerate is 2 times as low */
if (hDecoder->sbr_present_flag == 1 || hDecoder->forceUpSampling == 1)
{
hDecoder->sf_index = get_sr_index(mp4ASC.samplingFrequency / 2);
}
#endif
if (rc != 0)
{
return rc;
}
hDecoder->channelConfiguration = mp4ASC.channelsConfiguration;
if (mp4ASC.frameLengthFlag)
hDecoder->frameLength = 960;
/* must be done before frameLength is divided by 2 for LD */
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);
else
#endif
hDecoder->fb = filter_bank_init(hDecoder->frameLength);
#ifdef LD_DEC
if (hDecoder->object_type == LD)
hDecoder->frameLength >>= 1;
#endif
#ifndef FIXED_POINT
if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST)
Init_Dither(16, (uint8_t)(hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST));
#endif
return 0;
}
int8_t FAADAPI faacDecInitDRM(faacDecHandle hDecoder, uint32_t samplerate,
uint8_t channels)
{
/* Special object type defined for DRM */
hDecoder->config.defObjectType = DRM_ER_LC;
hDecoder->config.defSampleRate = samplerate;
#ifdef ERROR_RESILIENCE // This shoudl always be defined for DRM
hDecoder->aacSectionDataResilienceFlag = 1; /* VCB11 */
hDecoder->aacScalefactorDataResilienceFlag = 0; /* no RVLC */
hDecoder->aacSpectralDataResilienceFlag = 1; /* HCR */
#endif
hDecoder->frameLength = 960;
hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate);
hDecoder->object_type = hDecoder->config.defObjectType;
if ((channels == DRMCH_STEREO) || (channels == DRMCH_SBR_STEREO))
hDecoder->channelConfiguration = 2;
else
hDecoder->channelConfiguration = 1;
#ifdef SBR_DEC
#ifdef DRM
if (channels == DRMCH_SBR_LC_STEREO)
hDecoder->lcstereo_flag = 1;
else
hDecoder->lcstereo_flag = 0;
if ((channels == DRMCH_MONO) || (channels == DRMCH_STEREO))
hDecoder->sbr_present_flag = 0;
else
hDecoder->sbr_present_flag = 1;
/* Reset sbr for new initialization */
sbrDecodeEnd(hDecoder->sbr[0]);
hDecoder->sbr[0] = NULL;
#endif
#endif
/* must be done before frameLength is divided by 2 for LD */
hDecoder->fb = filter_bank_init(hDecoder->frameLength);
#ifndef FIXED_POINT
if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST)
Init_Dither(16, (uint8_t)(hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST));
#endif
return 0;
}
void FAADAPI faacDecClose(faacDecHandle hDecoder)
{
uint8_t i;
if (hDecoder == NULL)
return;
for (i = 0; i < MAX_CHANNELS; i++)
{
if (hDecoder->time_out[i]) free(hDecoder->time_out[i]);
#ifdef SBR_DEC
if (hDecoder->time_out2[i]) free(hDecoder->time_out2[i]);
#endif
#ifdef SSR_DEC
if (hDecoder->ssr_overlap[i]) free(hDecoder->ssr_overlap[i]);
if (hDecoder->prev_fmd[i]) free(hDecoder->prev_fmd[i]);
#endif
#ifdef MAIN_DEC
if (hDecoder->pred_stat[i]) free(hDecoder->pred_stat[i]);
#endif
#ifdef LTP_DEC
if (hDecoder->lt_pred_stat[i]) free(hDecoder->lt_pred_stat[i]);
#endif
}
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
ssr_filter_bank_end(hDecoder->fb);
else
#endif
filter_bank_end(hDecoder->fb);
drc_end(hDecoder->drc);
#ifndef FIXED_POINT
#if POW_TABLE_SIZE
if (hDecoder->pow2_table) free(hDecoder->pow2_table);
#endif
#endif
if (hDecoder->sample_buffer) free(hDecoder->sample_buffer);
#ifdef SBR_DEC
for (i = 0; i < 32; i++)
{
if (hDecoder->sbr[i])
sbrDecodeEnd(hDecoder->sbr[i]);
}
#endif
if (hDecoder) free(hDecoder);
}
void FAADAPI faacDecPostSeekReset(faacDecHandle hDecoder, int32_t frame)
{
if (hDecoder)
{
hDecoder->postSeekResetFlag = 1;
if (frame != -1)
hDecoder->frame = frame;
}
}
static void create_channel_config(faacDecHandle hDecoder, faacDecFrameInfo *hInfo)
{
hInfo->num_front_channels = 0;
hInfo->num_side_channels = 0;
hInfo->num_back_channels = 0;
hInfo->num_lfe_channels = 0;
memset(hInfo->channel_position, 0, MAX_CHANNELS*sizeof(uint8_t));
if (hDecoder->downMatrix)
{
hInfo->num_front_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;
return;
}
/* check if there is a PCE */
if (hDecoder->pce_set)
{
uint8_t i, chpos = 0;
uint8_t chdir, back_center = 0;
hInfo->num_front_channels = hDecoder->pce.num_front_channels;
hInfo->num_side_channels = hDecoder->pce.num_side_channels;
hInfo->num_back_channels = hDecoder->pce.num_back_channels;
hInfo->num_lfe_channels = hDecoder->pce.num_lfe_channels;
chdir = hInfo->num_front_channels;
if (chdir & 1)
{
hInfo->channel_position[chpos++] = FRONT_CHANNEL_CENTER;
chdir--;
}
for (i = 0; i < chdir; i += 2)
{
hInfo->channel_position[chpos++] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = FRONT_CHANNEL_RIGHT;
}
for (i = 0; i < hInfo->num_side_channels; i += 2)
{
hInfo->channel_position[chpos++] = SIDE_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = SIDE_CHANNEL_RIGHT;
}
chdir = hInfo->num_back_channels;
if (chdir & 1)
{
back_center = 1;
chdir--;
}
for (i = 0; i < chdir; i += 2)
{
hInfo->channel_position[chpos++] = BACK_CHANNEL_LEFT;
hInfo->channel_position[chpos++] = BACK_CHANNEL_RIGHT;
}
if (back_center)
{
hInfo->channel_position[chpos++] = BACK_CHANNEL_CENTER;
}
for (i = 0; i < hInfo->num_lfe_channels; i++)
{
hInfo->channel_position[chpos++] = LFE_CHANNEL;
}
} else {
switch (hDecoder->channelConfiguration)
{
case 1:
hInfo->num_front_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
break;
case 2:
hInfo->num_front_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;
break;
case 3:
hInfo->num_front_channels = 3;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
break;
case 4:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_CENTER;
break;
case 5:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 2;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_LEFT;
hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;
break;
case 6:
hInfo->num_front_channels = 3;
hInfo->num_back_channels = 2;
hInfo->num_lfe_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = BACK_CHANNEL_LEFT;
hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;
hInfo->channel_position[5] = LFE_CHANNEL;
break;
case 7:
hInfo->num_front_channels = 3;
hInfo->num_side_channels = 2;
hInfo->num_back_channels = 2;
hInfo->num_lfe_channels = 1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;
hInfo->channel_position[3] = SIDE_CHANNEL_LEFT;
hInfo->channel_position[4] = SIDE_CHANNEL_RIGHT;
hInfo->channel_position[5] = BACK_CHANNEL_LEFT;
hInfo->channel_position[6] = BACK_CHANNEL_RIGHT;
hInfo->channel_position[7] = LFE_CHANNEL;
break;
default: /* channelConfiguration == 0 || channelConfiguration > 7 */
{
uint8_t i;
uint8_t ch = hDecoder->fr_channels - hDecoder->has_lfe;
if (ch & 1) /* there's either a center front or a center back channel */
{
uint8_t ch1 = (ch-1)/2;
if (hDecoder->first_syn_ele == ID_SCE)
{
hInfo->num_front_channels = ch1 + 1;
hInfo->num_back_channels = ch1;
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
for (i = 1; i <= ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1+1; i < ch; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
} else {
hInfo->num_front_channels = ch1;
hInfo->num_back_channels = ch1 + 1;
for (i = 0; i < ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1; i < ch-1; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;
}
} else {
uint8_t ch1 = (ch)/2;
hInfo->num_front_channels = ch1;
hInfo->num_back_channels = ch1;
if (ch1 & 1)
{
hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;
for (i = 1; i <= ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1+1; i < ch-1; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;
} else {
for (i = 0; i < ch1; i+=2)
{
hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;
hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;
}
for (i = ch1; i < ch; i+=2)
{
hInfo->channel_position[i] = BACK_CHANNEL_LEFT;
hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;
}
}
}
hInfo->num_lfe_channels = hDecoder->has_lfe;
for (i = ch; i < hDecoder->fr_channels; i++)
{
hInfo->channel_position[i] = LFE_CHANNEL;
}
}
break;
}
}
}
void* FAADAPI faacDecDecode(faacDecHandle hDecoder,
faacDecFrameInfo *hInfo,
uint8_t *buffer, uint32_t buffer_size)
{
int32_t i;
uint8_t ch;
adts_header adts;
uint8_t channels = 0, ch_ele = 0;
uint8_t output_channels = 0;
bitfile *ld = (bitfile*)malloc(sizeof(bitfile));
uint32_t bitsconsumed;
#ifdef DRM
uint8_t *revbuffer;
uint8_t *prevbufstart;
uint8_t *pbufend;
#endif
/* local copy of globals */
uint8_t sf_index, object_type, channelConfiguration, outputFormat;
uint8_t *window_shape_prev;
uint16_t frame_len;
#ifdef MAIN_DEC
pred_state **pred_stat;
#endif
#ifdef LTP_DEC
real_t **lt_pred_stat;
#endif
real_t **time_out;
#ifdef SBR_DEC
real_t **time_out2;
#endif
#ifdef SSR_DEC
real_t **ssr_overlap, **prev_fmd;
#endif
fb_info *fb;
drc_info *drc;
#ifdef LTP_DEC
uint16_t *ltp_lag;
#endif
program_config *pce;
void *sample_buffer;
element *syntax_elements[MAX_SYNTAX_ELEMENTS];
element **elements;
real_t *spec_coef[MAX_CHANNELS];
/* safety checks */
if ((hDecoder == NULL) || (hInfo == NULL) || (buffer == NULL) || (ld == NULL))
{
return NULL;
}
sf_index = hDecoder->sf_index;
object_type = hDecoder->object_type;
channelConfiguration = hDecoder->channelConfiguration;
#ifdef MAIN_DEC
pred_stat = hDecoder->pred_stat;
#endif
#ifdef LTP_DEC
lt_pred_stat = hDecoder->lt_pred_stat;
#endif
window_shape_prev = hDecoder->window_shape_prev;
time_out = hDecoder->time_out;
#ifdef SBR_DEC
time_out2 = hDecoder->time_out2;
#endif
#ifdef SSR_DEC
ssr_overlap = hDecoder->ssr_overlap;
prev_fmd = hDecoder->prev_fmd;
#endif
fb = hDecoder->fb;
drc = hDecoder->drc;
outputFormat = hDecoder->config.outputFormat;
#ifdef LTP_DEC
ltp_lag = hDecoder->ltp_lag;
#endif
pce = &hDecoder->pce;
frame_len = hDecoder->frameLength;
memset(hInfo, 0, sizeof(faacDecFrameInfo));
memset(hDecoder->internal_channel, 0, MAX_CHANNELS*sizeof(hDecoder->internal_channel[0]));
/* initialize the bitstream */
faad_initbits(ld, buffer, buffer_size);
#ifdef DRM
if (object_type == DRM_ER_LC)
{
faad_getbits(ld, 8
DEBUGVAR(1,1,"faacDecDecode(): skip CRC"));
}
#endif
if (hDecoder->adts_header_present)
{
adts.old_format = hDecoder->config.useOldADTSFormat;
if ((hInfo->error = adts_frame(&adts, ld)) > 0)
goto error;
/* MPEG2 does byte_alignment() here,
* but ADTS header is always multiple of 8 bits in MPEG2
* so not needed to actually do it.
*/
}
#ifdef ANALYSIS
dbg_count = 0;
#endif
elements = syntax_elements;
/* decode the complete bitstream */
elements = raw_data_block(hDecoder, hInfo, ld, syntax_elements,
spec_coef, pce, drc);
ch_ele = hDecoder->fr_ch_ele;
channels = hDecoder->fr_channels;
if (hInfo->error > 0)
goto error;
/* no more bit reading after this */
bitsconsumed = faad_get_processed_bits(ld);
hInfo->bytesconsumed = bit2byte(bitsconsumed);
if (ld->error)
{
hInfo->error = 14;
goto error;
}
faad_endbits(ld);
if (ld) free(ld);
ld = NULL;
#ifdef DRM
#ifdef SBR_DEC
if ((hDecoder->sbr_present_flag == 1) && (hDecoder->object_type == DRM_ER_LC))
{
if (bitsconsumed + 8 > buffer_size*8)
{
hInfo->error = 14;
goto error;
}
hDecoder->sbr_used[0] = 1;
if (!hDecoder->sbr[0])
hDecoder->sbr[0] = sbrDecodeInit(hDecoder->frameLength, 1);
/* Reverse bit reading of SBR data in DRM audio frame */
revbuffer = (uint8_t*)malloc(buffer_size*sizeof(uint8_t));
prevbufstart = revbuffer;
pbufend = &buffer[buffer_size - 1];
for (i = 0; i < buffer_size; i++)
*prevbufstart++ = tabFlipbits[*pbufend--];
/* Set SBR data */
hDecoder->sbr[0]->data = revbuffer;
/* consider 8 bits from AAC-CRC */
hDecoder->sbr[0]->data_size_bits = buffer_size*8 - bitsconsumed - 8;
hDecoder->sbr[0]->data_size =
bit2byte(hDecoder->sbr[0]->data_size_bits + 8);
hDecoder->sbr[0]->lcstereo_flag = hDecoder->lcstereo_flag;
hDecoder->sbr[0]->sample_rate = get_sample_rate(hDecoder->sf_index);
hDecoder->sbr[0]->sample_rate *= 2;
}
#endif
#endif
if (!hDecoder->adts_header_present && !hDecoder->adif_header_present)
{
if (channels != hDecoder->channelConfiguration)
hDecoder->channelConfiguration = channels;
if (channels == 8) /* 7.1 */
hDecoder->channelConfiguration = 7;
if (channels == 7) /* not a standard channelConfiguration */
hDecoder->channelConfiguration = 0;
}
if ((channels == 5 || channels == 6) && hDecoder->config.downMatrix)
{
hDecoder->downMatrix = 1;
output_channels = 2;
} else {
output_channels = channels;
}
/* Make a channel configuration based on either a PCE or a channelConfiguration */
create_channel_config(hDecoder, hInfo);
/* number of samples in this frame */
hInfo->samples = frame_len*output_channels;
/* number of channels in this frame */
hInfo->channels = output_channels;
/* samplerate */
hInfo->samplerate = get_sample_rate(hDecoder->sf_index);
/* object type */
hInfo->object_type = hDecoder->object_type;
/* sbr */
hInfo->sbr = NO_SBR;
/* header type */
hInfo->header_type = RAW;
if (hDecoder->adif_header_present)
hInfo->header_type = ADIF;
if (hDecoder->adts_header_present)
hInfo->header_type = ADTS;
/* check if frame has channel elements */
if (channels == 0)
{
hDecoder->frame++;
return NULL;
}
if (hDecoder->sample_buffer == NULL)
{
#ifdef SBR_DEC
if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
{
if (hDecoder->config.outputFormat == FAAD_FMT_DOUBLE)
hDecoder->sample_buffer = malloc(2*frame_len*channels*sizeof(double));
else
hDecoder->sample_buffer = malloc(2*frame_len*channels*sizeof(real_t));
} else {
#endif
if (hDecoder->config.outputFormat == FAAD_FMT_DOUBLE)
hDecoder->sample_buffer = malloc(frame_len*channels*sizeof(double));
else
hDecoder->sample_buffer = malloc(frame_len*channels*sizeof(real_t));
#ifdef SBR_DEC
}
#endif
}
sample_buffer = hDecoder->sample_buffer;
/* Because for ms, is and pns both channels spectral coefficients are needed
we have to restart running through all channels here.
*/
for (ch = 0; ch < channels; ch++)
{
int16_t pch = -1;
uint8_t right_channel;
ic_stream *ics, *icsr;
ltp_info *ltp;
/* find the syntax element to which this channel belongs */
if (syntax_elements[hDecoder->channel_element[ch]]->channel == ch)
{
ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics1);
icsr = &(syntax_elements[hDecoder->channel_element[ch]]->ics2);
ltp = &(ics->ltp);
pch = syntax_elements[hDecoder->channel_element[ch]]->paired_channel;
right_channel = 0;
} else if (syntax_elements[hDecoder->channel_element[ch]]->paired_channel == ch) {
ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics2);
if (syntax_elements[hDecoder->channel_element[ch]]->common_window)
ltp = &(ics->ltp2);
else
ltp = &(ics->ltp);
right_channel = 1;
}
/* pns decoding */
if ((!right_channel) && (pch != -1) && (ics->ms_mask_present))
pns_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len, 1, object_type);
else if ((pch == -1) || ((pch != -1) && (!ics->ms_mask_present)))
pns_decode(ics, NULL, spec_coef[ch], NULL, frame_len, 0, object_type);
if (!right_channel && (pch != -1))
{
/* mid/side decoding */
ms_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len);
/* intensity stereo decoding */
is_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len);
}
#ifdef MAIN_DEC
/* MAIN object type prediction */
if (object_type == MAIN)
{
/* allocate the state only when needed */
if (pred_stat[ch] == NULL)
{
pred_stat[ch] = (pred_state*)malloc(frame_len * sizeof(pred_state));
reset_all_predictors(pred_stat[ch], frame_len);
}
/* intra channel prediction */
ic_prediction(ics, spec_coef[ch], pred_stat[ch], frame_len);
/* In addition, for scalefactor bands coded by perceptual
noise substitution the predictors belonging to the
corresponding spectral coefficients are reset.
*/
pns_reset_pred_state(ics, pred_stat[ch]);
}
#endif
#ifdef LTP_DEC
if ((object_type == LTP)
#ifdef ERROR_RESILIENCE
|| (object_type == ER_LTP)
#endif
#ifdef LD_DEC
|| (object_type == LD)
#endif
)
{
#ifdef LD_DEC
if (object_type == LD)
{
if (ltp->data_present)
{
if (ltp->lag_update)
ltp_lag[ch] = ltp->lag;
}
ltp->lag = ltp_lag[ch];
}
#endif
/* allocate the state only when needed */
if (lt_pred_stat[ch] == NULL)
{
lt_pred_stat[ch] = (real_t*)malloc(frame_len*4 * sizeof(real_t));
memset(lt_pred_stat[ch], 0, frame_len*4 * sizeof(real_t));
}
/* long term prediction */
lt_prediction(ics, ltp, spec_coef[ch], lt_pred_stat[ch], fb,
ics->window_shape, window_shape_prev[ch],
sf_index, object_type, frame_len);
}
#endif
/* tns decoding */
tns_decode_frame(ics, &(ics->tns), sf_index, object_type,
spec_coef[ch], frame_len);
/* drc decoding */
if (drc->present)
{
if (!drc->exclude_mask[ch] || !drc->excluded_chns_present)
drc_decode(drc, spec_coef[ch]);
}
if (time_out[ch] == NULL)
{
time_out[ch] = (real_t*)malloc(frame_len*2*sizeof(real_t));
memset(time_out[ch], 0, frame_len*2*sizeof(real_t));
}
#ifdef SBR_DEC
if (time_out2[ch] == NULL)
{
time_out2[ch] = (real_t*)malloc(frame_len*2*sizeof(real_t));
memset(time_out2[ch], 0, frame_len*2*sizeof(real_t));
}
#endif
/* filter bank */
#ifdef SSR_DEC
if (object_type != SSR)
{
#endif
ifilter_bank(fb, ics->window_sequence, ics->window_shape,
window_shape_prev[ch], spec_coef[ch],
time_out[ch], object_type, frame_len);
#ifdef SSR_DEC
} else {
if (ssr_overlap[ch] == NULL)
{
ssr_overlap[ch] = (real_t*)malloc(2*frame_len*sizeof(real_t));
memset(ssr_overlap[ch], 0, 2*frame_len*sizeof(real_t));
}
if (prev_fmd[ch] == NULL)
{
uint16_t k;
prev_fmd[ch] = (real_t*)malloc(2*frame_len*sizeof(real_t));
for (k = 0; k < 2*frame_len; k++)
prev_fmd[ch][k] = REAL_CONST(-1);
}
ssr_decode(&(ics->ssr), fb, ics->window_sequence, ics->window_shape,
window_shape_prev[ch], spec_coef[ch], time_out[ch],
ssr_overlap[ch], hDecoder->ipqf_buffer[ch], prev_fmd[ch], frame_len);
}
#endif
/* save window shape for next frame */
window_shape_prev[ch] = ics->window_shape;
#ifdef LTP_DEC
if ((object_type == LTP)
#ifdef ERROR_RESILIENCE
|| (object_type == ER_LTP)
#endif
#ifdef LD_DEC
|| (object_type == LD)
#endif
)
{
lt_update_state(lt_pred_stat[ch], time_out[ch], time_out[ch]+frame_len,
frame_len, object_type);
}
#endif
}
#ifdef SBR_DEC
if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
{
for (i = 0; i < ch_ele; i++)
{
/* following case can happen when forceUpSampling == 1 */
if (hDecoder->sbr[i] == NULL)
{
hDecoder->sbr[i] = sbrDecodeInit(hDecoder->frameLength
#ifdef DRM
, 0
#endif
);
hDecoder->sbr[i]->data = NULL;
hDecoder->sbr[i]->data_size = 0;
}
if (syntax_elements[i]->paired_channel != -1)
{
memcpy(time_out2[syntax_elements[i]->channel],
time_out[syntax_elements[i]->channel], frame_len*sizeof(real_t));
memcpy(time_out2[syntax_elements[i]->paired_channel],
time_out[syntax_elements[i]->paired_channel], frame_len*sizeof(real_t));
sbrDecodeFrame(hDecoder->sbr[i],
time_out2[syntax_elements[i]->channel],
time_out2[syntax_elements[i]->paired_channel], ID_CPE,
hDecoder->postSeekResetFlag, hDecoder->forceUpSampling);
} else {
memcpy(time_out2[syntax_elements[i]->channel],
time_out[syntax_elements[i]->channel], frame_len*sizeof(real_t));
sbrDecodeFrame(hDecoder->sbr[i],
time_out2[syntax_elements[i]->channel],
NULL, ID_SCE,
hDecoder->postSeekResetFlag, hDecoder->forceUpSampling);
}
}
frame_len *= 2;
hInfo->samples *= 2;
hInfo->samplerate *= 2;
/* sbr */
if (hDecoder->sbr_present_flag == 1)
{
hInfo->object_type = HE_AAC;
hInfo->sbr = SBR_UPSAMPLED;
} else {
hInfo->sbr = NO_SBR_UPSAMPLED;
}
sample_buffer = output_to_PCM(hDecoder, time_out2, sample_buffer,
output_channels, frame_len, outputFormat);
} else {
#endif
sample_buffer = output_to_PCM(hDecoder, time_out, sample_buffer,
output_channels, frame_len, outputFormat);
#ifdef SBR_DEC
}
#endif
hDecoder->postSeekResetFlag = 0;
hDecoder->frame++;
#ifdef LD_DEC
if (object_type != LD)
{
#endif
if (hDecoder->frame <= 1)
hInfo->samples = 0;
#ifdef LD_DEC
} else {
/* LD encoders will give lower delay */
if (hDecoder->frame <= 0)
hInfo->samples = 0;
}
#endif
/* cleanup */
for (ch = 0; ch < channels; ch++)
{
if (spec_coef[ch]) free(spec_coef[ch]);
}
for (i = 0; i < ch_ele; i++)
{
if (syntax_elements[i]) free(syntax_elements[i]);
}
#ifdef ANALYSIS
fflush(stdout);
#endif
return sample_buffer;
error:
/* free all memory that could have been allocated */
faad_endbits(ld);
if (ld) free(ld);
/* cleanup */
for (ch = 0; ch < channels; ch++)
{
if (spec_coef[ch]) free(spec_coef[ch]);
}
for (i = 0; i < ch_ele; i++)
{
if (syntax_elements[i]) free(syntax_elements[i]);
}
#ifdef ANALYSIS
fflush(stdout);
#endif
return NULL;
}