1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-07 07:30:09 +00:00
mpv/video/out/gl_video_shaders.glsl
wm4 93feffad15 vo_opengl: blend alpha components by default
Improves display of images and video with alpha channel, especially if
the transparent regions contain (supposed to be invisible) garbage
color values.
2013-09-19 17:03:03 +02:00

399 lines
14 KiB
GLSL

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*
* You can alternatively redistribute this file and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
// Note that this file is not directly passed as shader, but run through some
// text processing functions, and in fact contains multiple vertex and fragment
// shaders.
// inserted at the beginning of all shaders
#!section prelude
// GLSL 1.20 compatibility layer
// texture() should be assumed to always map to texture2D()
#if __VERSION__ >= 130
# define texture1D texture
# define texture3D texture
# define DECLARE_FRAGPARMS \
out vec4 out_color;
#else
# define texture texture2D
# define DECLARE_FRAGPARMS
# define out_color gl_FragColor
# define in varying
#endif
// Earlier GLSL doesn't support mix() with bvec
#if __VERSION__ >= 130
vec3 srgb_compand(vec3 v)
{
return mix(1.055 * pow(v, vec3(1.0/2.4)) - vec3(0.055), v * 12.92,
lessThanEqual(v, vec3(0.0031308)));
}
#endif
#!section vertex_all
#if __VERSION__ < 130
# undef in
# define in attribute
# define out varying
#endif
uniform mat3 transform;
uniform sampler3D lut_3d;
in vec2 vertex_position;
in vec4 vertex_color;
out vec4 color;
in vec2 vertex_texcoord;
out vec2 texcoord;
void main() {
vec3 position = vec3(vertex_position, 1);
#ifndef FIXED_SCALE
position = transform * position;
#endif
gl_Position = vec4(position, 1);
color = vertex_color;
#ifdef USE_OSD_LINEAR_CONV
// If no 3dlut is being used, we need to pull up to linear light for
// the sRGB function. *IF* 3dlut is used, we do not.
color.rgb = pow(color.rgb, vec3(1.0/0.45));
#endif
#ifdef USE_OSD_3DLUT
color = vec4(texture3D(lut_3d, color.rgb).rgb, color.a);
#endif
#ifdef USE_OSD_SRGB
color.rgb = srgb_compand(color.rgb);
#endif
texcoord = vertex_texcoord;
}
#!section frag_osd_libass
uniform sampler2D texture0;
in vec2 texcoord;
in vec4 color;
DECLARE_FRAGPARMS
void main() {
out_color = vec4(color.rgb, color.a * texture(texture0, texcoord).r);
}
#!section frag_osd_rgba
uniform sampler2D texture0;
in vec2 texcoord;
DECLARE_FRAGPARMS
void main() {
out_color = texture(texture0, texcoord);
}
#!section frag_video
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;
uniform sampler2D texture3;
uniform vec2 textures_size[4];
uniform vec2 chroma_center_offset;
uniform sampler1D lut_c_1d;
uniform sampler1D lut_l_1d;
uniform sampler2D lut_c_2d;
uniform sampler2D lut_l_2d;
uniform sampler3D lut_3d;
uniform sampler2D dither;
uniform mat4x3 colormatrix;
uniform mat2 dither_trafo;
uniform vec3 inv_gamma;
uniform float input_gamma;
uniform float conv_gamma;
uniform float dither_quantization;
uniform float dither_center;
uniform float filter_param1;
uniform vec2 dither_size;
in vec2 texcoord;
DECLARE_FRAGPARMS
#define CONV_NV12 1
#define CONV_PLANAR 2
vec4 sample_bilinear(sampler2D tex, vec2 texsize, vec2 texcoord) {
return texture(tex, texcoord);
}
// Explanation how bicubic scaling with only 4 texel fetches is done:
// http://www.mate.tue.nl/mate/pdfs/10318.pdf
// 'Efficient GPU-Based Texture Interpolation using Uniform B-Splines'
// Explanation why this algorithm normally always blurs, even with unit scaling:
// http://bigwww.epfl.ch/preprints/ruijters1001p.pdf
// 'GPU Prefilter for Accurate Cubic B-spline Interpolation'
vec4 calcweights(float s) {
vec4 t = vec4(-0.5, 0.1666, 0.3333, -0.3333) * s + vec4(1, 0, -0.5, 0.5);
t = t * s + vec4(0, 0, -0.5, 0.5);
t = t * s + vec4(-0.6666, 0, 0.8333, 0.1666);
vec2 a = vec2(1, 1) / vec2(t.z, t.w);
t.xy = t.xy * a + vec2(1, 1);
t.x = t.x + s;
t.y = t.y - s;
return t;
}
vec4 sample_bicubic_fast(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 fcoord = fract(texcoord * texsize + vec2(0.5, 0.5));
vec4 parmx = calcweights(fcoord.x);
vec4 parmy = calcweights(fcoord.y);
vec4 cdelta;
cdelta.xz = parmx.rg * vec2(-pt.x, pt.x);
cdelta.yw = parmy.rg * vec2(-pt.y, pt.y);
// first y-interpolation
vec4 ar = texture(tex, texcoord + cdelta.xy);
vec4 ag = texture(tex, texcoord + cdelta.xw);
vec4 ab = mix(ag, ar, parmy.b);
// second y-interpolation
vec4 br = texture(tex, texcoord + cdelta.zy);
vec4 bg = texture(tex, texcoord + cdelta.zw);
vec4 aa = mix(bg, br, parmy.b);
// x-interpolation
return mix(aa, ab, parmx.b);
}
float[2] weights2(sampler1D lookup, float f) {
vec4 c = texture1D(lookup, f);
return float[2](c.r, c.g);
}
float[4] weights4(sampler1D lookup, float f) {
vec4 c = texture1D(lookup, f);
return float[4](c.r, c.g, c.b, c.a);
}
float[6] weights6(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.25, f));
vec4 c2 = texture(lookup, vec2(0.75, f));
return float[6](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);
}
float[8] weights8(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.25, f));
vec4 c2 = texture(lookup, vec2(0.75, f));
return float[8](c1.r, c1.g, c1.b, c1.a, c2.r, c2.g, c2.b, c2.a);
}
float[12] weights12(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(1.0/6.0, f));
vec4 c2 = texture(lookup, vec2(0.5, f));
vec4 c3 = texture(lookup, vec2(5.0/6.0, f));
return float[12](c1.r, c1.g, c1.b, c1.a,
c2.r, c2.g, c2.b, c2.a,
c3.r, c3.g, c3.b, c3.a);
}
float[16] weights16(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.125, f));
vec4 c2 = texture(lookup, vec2(0.375, f));
vec4 c3 = texture(lookup, vec2(0.625, f));
vec4 c4 = texture(lookup, vec2(0.875, f));
return float[16](c1.r, c1.g, c1.b, c1.a, c2.r, c2.g, c2.b, c2.a,
c3.r, c3.g, c3.b, c3.a, c4.r, c4.g, c4.b, c4.a);
}
#define CONVOLUTION_SEP_N(NAME, N) \
vec4 NAME(sampler2D tex, vec2 texcoord, vec2 pt, float weights[N]) { \
vec4 res = vec4(0); \
for (int n = 0; n < N; n++) { \
res += weights[n] * texture(tex, texcoord + pt * n); \
} \
return res; \
}
CONVOLUTION_SEP_N(convolution_sep2, 2)
CONVOLUTION_SEP_N(convolution_sep4, 4)
CONVOLUTION_SEP_N(convolution_sep6, 6)
CONVOLUTION_SEP_N(convolution_sep8, 8)
CONVOLUTION_SEP_N(convolution_sep12, 12)
CONVOLUTION_SEP_N(convolution_sep16, 16)
// The dir parameter is (0, 1) or (1, 0), and we expect the shader compiler to
// remove all the redundant multiplications and additions.
#define SAMPLE_CONVOLUTION_SEP_N(NAME, N, SAMPLERT, CONV_FUNC, WEIGHTS_FUNC)\
vec4 NAME(vec2 dir, SAMPLERT lookup, sampler2D tex, vec2 texsize, \
vec2 texcoord) { \
vec2 pt = (1 / texsize) * dir; \
float fcoord = dot(fract(texcoord * texsize - 0.5), dir); \
vec2 base = texcoord - fcoord * pt; \
return CONV_FUNC(tex, base - pt * (N / 2 - 1), pt, \
WEIGHTS_FUNC(lookup, fcoord)); \
}
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep2, 2, sampler1D, convolution_sep2, weights2)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep4, 4, sampler1D, convolution_sep4, weights4)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep6, 6, sampler2D, convolution_sep6, weights6)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep8, 8, sampler2D, convolution_sep8, weights8)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep12, 12, sampler2D, convolution_sep12, weights12)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep16, 16, sampler2D, convolution_sep16, weights16)
#define CONVOLUTION_N(NAME, N) \
vec4 NAME(sampler2D tex, vec2 texcoord, vec2 pt, float taps_x[N], \
float taps_y[N]) { \
vec4 res = vec4(0); \
for (int y = 0; y < N; y++) { \
vec4 line = vec4(0); \
for (int x = 0; x < N; x++) \
line += taps_x[x] * texture(tex, texcoord + pt * vec2(x, y));\
res += taps_y[y] * line; \
} \
return res; \
}
CONVOLUTION_N(convolution2, 2)
CONVOLUTION_N(convolution4, 4)
CONVOLUTION_N(convolution6, 6)
CONVOLUTION_N(convolution8, 8)
CONVOLUTION_N(convolution12, 12)
CONVOLUTION_N(convolution16, 16)
#define SAMPLE_CONVOLUTION_N(NAME, N, SAMPLERT, CONV_FUNC, WEIGHTS_FUNC) \
vec4 NAME(SAMPLERT lookup, sampler2D tex, vec2 texsize, vec2 texcoord) {\
vec2 pt = 1 / texsize; \
vec2 fcoord = fract(texcoord * texsize - 0.5); \
vec2 base = texcoord - fcoord * pt; \
return CONV_FUNC(tex, base - pt * (N / 2 - 1), pt, \
WEIGHTS_FUNC(lookup, fcoord.x), \
WEIGHTS_FUNC(lookup, fcoord.y)); \
}
SAMPLE_CONVOLUTION_N(sample_convolution2, 2, sampler1D, convolution2, weights2)
SAMPLE_CONVOLUTION_N(sample_convolution4, 4, sampler1D, convolution4, weights4)
SAMPLE_CONVOLUTION_N(sample_convolution6, 6, sampler2D, convolution6, weights6)
SAMPLE_CONVOLUTION_N(sample_convolution8, 8, sampler2D, convolution8, weights8)
SAMPLE_CONVOLUTION_N(sample_convolution12, 12, sampler2D, convolution12, weights12)
SAMPLE_CONVOLUTION_N(sample_convolution16, 16, sampler2D, convolution16, weights16)
// Unsharp masking
vec4 sample_sharpen3(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 st = pt * 0.5;
vec4 p = texture(tex, texcoord);
vec4 sum = texture(tex, texcoord + st * vec2(+1, +1))
+ texture(tex, texcoord + st * vec2(+1, -1))
+ texture(tex, texcoord + st * vec2(-1, +1))
+ texture(tex, texcoord + st * vec2(-1, -1));
return p + (p - 0.25 * sum) * filter_param1;
}
vec4 sample_sharpen5(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 st1 = pt * 1.2;
vec4 p = texture(tex, texcoord);
vec4 sum1 = texture(tex, texcoord + st1 * vec2(+1, +1))
+ texture(tex, texcoord + st1 * vec2(+1, -1))
+ texture(tex, texcoord + st1 * vec2(-1, +1))
+ texture(tex, texcoord + st1 * vec2(-1, -1));
vec2 st2 = pt * 1.5;
vec4 sum2 = texture(tex, texcoord + st2 * vec2(+1, 0))
+ texture(tex, texcoord + st2 * vec2( 0, +1))
+ texture(tex, texcoord + st2 * vec2(-1, 0))
+ texture(tex, texcoord + st2 * vec2( 0, -1));
vec4 t = p * 0.859375 + sum2 * -0.1171875 + sum1 * -0.09765625;
return p + t * filter_param1;
}
void main() {
vec2 chr_texcoord = texcoord + chroma_center_offset;
#ifndef USE_CONV
#define USE_CONV 0
#endif
#if USE_CONV == CONV_PLANAR
vec4 acolor = vec4(SAMPLE_L(texture0, textures_size[0], texcoord).r,
SAMPLE_C(texture1, textures_size[1], chr_texcoord).r,
SAMPLE_C(texture2, textures_size[2], chr_texcoord).r,
1.0);
#elif USE_CONV == CONV_NV12
vec4 acolor = vec4(SAMPLE_L(texture0, textures_size[0], texcoord).r,
SAMPLE_C(texture1, textures_size[1], chr_texcoord).rg,
1.0);
#else
vec4 acolor = SAMPLE_L(texture0, textures_size[0], texcoord);
#endif
#ifdef USE_ALPHA_PLANE
acolor.a = SAMPLE_L(texture3, textures_size[3], texcoord).r;
#endif
#ifdef USE_COLOR_SWIZZLE
acolor = acolor. USE_COLOR_SWIZZLE ;
#endif
vec3 color = acolor.rgb;
float alpha = acolor.a;
#ifdef USE_YGRAY
// NOTE: actually slightly wrong for 16 bit input video, and completely
// wrong for 9/10 bit input
color.gb = vec2(128.0/255.0);
#endif
#ifdef USE_INPUT_GAMMA
color = pow(color, vec3(input_gamma));
#endif
#ifdef USE_COLORMATRIX
color = mat3(colormatrix) * color + colormatrix[3];
color = clamp(color, 0, 1);
#endif
#ifdef USE_CONV_GAMMA
color = pow(color, vec3(conv_gamma));
#endif
#ifdef USE_LINEAR_CONV_INV
// Convert from linear RGB to gamma RGB before putting it through the 3D-LUT
// in the final stage.
color = pow(color, vec3(0.45));
#endif
#ifdef USE_GAMMA_POW
color = pow(color, inv_gamma);
#endif
#ifdef USE_3DLUT
color = texture3D(lut_3d, color).rgb;
#endif
#ifdef USE_SRGB
color.rgb = srgb_compand(color.rgb);
#endif
#ifdef USE_DITHER
vec2 dither_pos = gl_FragCoord.xy / dither_size;
#ifdef USE_TEMPORAL_DITHER
dither_pos = dither_trafo * dither_pos;
#endif
float dither_value = texture(dither, dither_pos).r;
color = floor(color * dither_quantization + dither_value + dither_center) /
dither_quantization;
#endif
#ifdef USE_ALPHA_BLEND
color = color * alpha;
#endif
#ifdef USE_ALPHA
out_color = vec4(color, alpha);
#else
out_color = vec4(color, 1.0);
#endif
}