1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-19 13:21:13 +00:00
mpv/video/out/gl_video.c
Niklas Haas 856b57e418 vo_opengl: Make approx-gamma affect OSD/sub
Close #837

Signed-off-by: wm4 <wm4@nowhere>
2014-06-22 19:07:02 +02:00

2397 lines
77 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*
* You can alternatively redistribute this file and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <libavutil/common.h>
#include "gl_video.h"
#include "bstr/bstr.h"
#include "gl_common.h"
#include "gl_osd.h"
#include "filter_kernels.h"
#include "aspect.h"
#include "video/memcpy_pic.h"
#include "bitmap_packer.h"
#include "dither.h"
static const char vo_opengl_shaders[] =
// Generated from gl_video_shaders.glsl
#include "video/out/gl_video_shaders.h"
;
// Pixel width of 1D lookup textures.
#define LOOKUP_TEXTURE_SIZE 256
// Texture units 0-3 are used by the video, with unit 0 for free use.
// Units 4-5 are used for scaler LUTs.
#define TEXUNIT_SCALERS 4
#define TEXUNIT_3DLUT 6
#define TEXUNIT_DITHER 7
// lscale/cscale arguments that map directly to shader filter routines.
// Note that the convolution filters are not included in this list.
static const char *const fixed_scale_filters[] = {
"bilinear",
"bicubic_fast",
"sharpen3",
"sharpen5",
NULL
};
struct lut_tex_format {
int pixels;
GLint internal_format;
GLenum format;
};
// Indexed with filter_kernel->size.
// This must match the weightsN functions in the shader.
// Each entry uses (size+3)/4 pixels per LUT entry, and size/pixels components
// per pixel.
const struct lut_tex_format lut_tex_formats[] = {
[2] = {1, GL_RG16F, GL_RG},
[4] = {1, GL_RGBA16F, GL_RGBA},
[6] = {2, GL_RGB16F, GL_RGB},
[8] = {2, GL_RGBA16F, GL_RGBA},
[12] = {3, GL_RGBA16F, GL_RGBA},
[16] = {4, GL_RGBA16F, GL_RGBA},
};
// must be sorted, and terminated with 0
static const int filter_sizes[] = {2, 4, 6, 8, 12, 16, 0};
struct vertex {
float position[2];
uint8_t color[4];
float texcoord[2];
};
#define VERTEX_ATTRIB_POSITION 0
#define VERTEX_ATTRIB_COLOR 1
#define VERTEX_ATTRIB_TEXCOORD 2
// 2 triangles primitives per quad = 6 vertices per quad
// (GL_QUAD is deprecated, strips can't be used with OSD image lists)
#define VERTICES_PER_QUAD 6
struct texplane {
int w, h;
int tex_w, tex_h;
GLint gl_internal_format;
GLenum gl_format;
GLenum gl_type;
GLuint gl_texture;
int gl_buffer;
int buffer_size;
void *buffer_ptr;
};
struct video_image {
struct texplane planes[4];
bool image_flipped;
struct mp_image *hwimage; // if hw decoding is active
};
struct scaler {
int index;
const char *name;
float params[2];
struct filter_kernel *kernel;
GLuint gl_lut;
const char *lut_name;
// kernel points here
struct filter_kernel kernel_storage;
};
struct fbotex {
GLuint fbo;
GLuint texture;
int tex_w, tex_h; // size of .texture
int vp_x, vp_y, vp_w, vp_h; // viewport of fbo / used part of the texture
};
struct gl_video {
GL *gl;
struct mp_log *log;
struct gl_video_opts opts;
bool gl_debug;
int depth_g;
GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs
GLuint vertex_buffer;
GLuint vao;
GLuint osd_programs[SUBBITMAP_COUNT];
GLuint indirect_program, scale_sep_program, final_program;
struct osd_state *osd_state;
struct mpgl_osd *osd;
double osd_pts;
GLuint lut_3d_texture;
bool use_lut_3d;
GLuint dither_texture;
float dither_quantization;
float dither_center;
int dither_size;
uint32_t image_w, image_h;
uint32_t image_dw, image_dh;
uint32_t image_format;
int texture_w, texture_h;
struct mp_imgfmt_desc image_desc;
bool is_yuv, is_rgb, is_packed_yuv;
bool is_linear_rgb;
bool has_alpha;
char color_swizzle[5];
float input_gamma, conv_gamma;
// per pixel (full pixel when packed, each component when planar)
int plane_bits;
int plane_count;
struct video_image image;
bool have_image;
struct fbotex indirect_fbo; // RGB target
struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling
// state for luma (0) and chroma (1) scalers
struct scaler scalers[2];
struct mp_csp_equalizer video_eq;
struct mp_image_params image_params;
// Source and destination color spaces for the CMS matrix
struct mp_csp_primaries csp_src, csp_dest;
struct mp_rect src_rect; // displayed part of the source video
struct mp_rect src_rect_rot;// compensated for optional rotation
struct mp_rect dst_rect; // video rectangle on output window
struct mp_osd_res osd_rect; // OSD size/margins
int vp_x, vp_y, vp_w, vp_h; // GL viewport
int frames_rendered;
// Cached because computing it can take relatively long
int last_dither_matrix_size;
float *last_dither_matrix;
struct gl_hwdec *hwdec;
bool hwdec_active;
void *scratch;
};
struct fmt_entry {
int mp_format;
GLint internal_format;
GLenum format;
GLenum type;
};
// Very special formats, for which OpenGL happens to have direct support
static const struct fmt_entry mp_to_gl_formats[] = {
{IMGFMT_BGR555, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
{IMGFMT_BGR565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV},
{IMGFMT_RGB555, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
{IMGFMT_RGB565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5},
{0},
};
static const struct fmt_entry gl_byte_formats[] = {
{0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8
{0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
{0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16
{0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16
{0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16
{0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16
};
static const struct fmt_entry gl_apple_formats[] = {
{IMGFMT_UYVY, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_APPLE},
{IMGFMT_YUYV, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE},
{0}
};
struct packed_fmt_entry {
int fmt;
int8_t component_size;
int8_t components[4]; // source component - 0 means unmapped
};
static const struct packed_fmt_entry mp_packed_formats[] = {
// R G B A
{IMGFMT_Y8, 1, {1, 0, 0, 0}},
{IMGFMT_Y16, 2, {1, 0, 0, 0}},
{IMGFMT_YA8, 1, {1, 0, 0, 2}},
{IMGFMT_ARGB, 1, {2, 3, 4, 1}},
{IMGFMT_0RGB, 1, {2, 3, 4, 0}},
{IMGFMT_BGRA, 1, {3, 2, 1, 4}},
{IMGFMT_BGR0, 1, {3, 2, 1, 0}},
{IMGFMT_ABGR, 1, {4, 3, 2, 1}},
{IMGFMT_0BGR, 1, {4, 3, 2, 0}},
{IMGFMT_RGBA, 1, {1, 2, 3, 4}},
{IMGFMT_RGB0, 1, {1, 2, 3, 0}},
{IMGFMT_BGR24, 1, {3, 2, 1, 0}},
{IMGFMT_RGB24, 1, {1, 2, 3, 0}},
{IMGFMT_RGB48, 2, {1, 2, 3, 0}},
{IMGFMT_RGBA64, 2, {1, 2, 3, 4}},
{IMGFMT_BGRA64, 2, {3, 2, 1, 4}},
{0},
};
static const char *const osd_shaders[SUBBITMAP_COUNT] = {
[SUBBITMAP_LIBASS] = "frag_osd_libass",
[SUBBITMAP_RGBA] = "frag_osd_rgba",
};
static const struct gl_video_opts gl_video_opts_def = {
.npot = 1,
.dither_depth = -1,
.dither_size = 6,
.fbo_format = GL_RGB,
.scale_sep = 1,
.scalers = { "bilinear", "bilinear" },
.scaler_params = {NAN, NAN},
.alpha_mode = 2,
};
const struct gl_video_opts gl_video_opts_hq_def = {
.npot = 1,
.dither_depth = 0,
.dither_size = 6,
.fbo_format = GL_RGBA16,
.scale_sep = 1,
.scalers = { "spline36", "bilinear" },
.scaler_params = {NAN, NAN},
.alpha_mode = 2,
};
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs);
#define OPT_BASE_STRUCT struct gl_video_opts
const struct m_sub_options gl_video_conf = {
.opts = (const m_option_t[]) {
OPT_FLOATRANGE("gamma", gamma, 0, 0.0, 10.0),
OPT_FLAG("srgb", srgb, 0),
OPT_FLAG("approx-gamma", approx_gamma, 0),
OPT_FLAG("npot", npot, 0),
OPT_FLAG("pbo", pbo, 0),
OPT_CHOICE("stereo", stereo_mode, 0,
({"no", 0},
{"red-cyan", GL_3D_RED_CYAN},
{"green-magenta", GL_3D_GREEN_MAGENTA},
{"quadbuffer", GL_3D_QUADBUFFER})),
OPT_STRING_VALIDATE("lscale", scalers[0], 0, validate_scaler_opt),
OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt),
OPT_FLOAT("lparam1", scaler_params[0], 0),
OPT_FLOAT("lparam2", scaler_params[1], 0),
OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0),
OPT_FLAG("fancy-downscaling", fancy_downscaling, 0),
OPT_FLAG("indirect", indirect, 0),
OPT_FLAG("scale-sep", scale_sep, 0),
OPT_CHOICE("fbo-format", fbo_format, 0,
({"rgb", GL_RGB},
{"rgba", GL_RGBA},
{"rgb8", GL_RGB8},
{"rgb10", GL_RGB10},
{"rgb10_a2", GL_RGB10_A2},
{"rgb16", GL_RGB16},
{"rgb16f", GL_RGB16F},
{"rgb32f", GL_RGB32F},
{"rgba12", GL_RGBA12},
{"rgba16", GL_RGBA16},
{"rgba16f", GL_RGBA16F},
{"rgba32f", GL_RGBA32F})),
OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16,
({"no", -1}, {"auto", 0})),
OPT_CHOICE("dither", dither_algo, 0,
({"fruit", 0}, {"ordered", 1}, {"no", -1})),
OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8),
OPT_FLAG("temporal-dither", temporal_dither, 0),
OPT_CHOICE("chroma-location", chroma_location, 0,
({"auto", MP_CHROMA_AUTO},
{"center", MP_CHROMA_CENTER},
{"left", MP_CHROMA_LEFT})),
OPT_CHOICE("alpha", alpha_mode, M_OPT_OPTIONAL_PARAM,
({"no", 0},
{"yes", 1}, {"", 1},
{"blend", 2})),
OPT_FLAG("rectangle-textures", use_rectangle, 0),
{0}
},
.size = sizeof(struct gl_video_opts),
.defaults = &gl_video_opts_def,
};
static void uninit_rendering(struct gl_video *p);
static void delete_shaders(struct gl_video *p);
static void check_gl_features(struct gl_video *p);
static bool init_format(int fmt, struct gl_video *init);
static void default_tex_params(struct GL *gl, GLenum target, GLint filter)
{
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
static void debug_check_gl(struct gl_video *p, const char *msg)
{
if (p->gl_debug)
glCheckError(p->gl, p->log, msg);
}
void gl_video_set_debug(struct gl_video *p, bool enable)
{
p->gl_debug = enable;
}
static void texture_size(struct gl_video *p, int w, int h, int *texw, int *texh)
{
if (p->opts.npot) {
*texw = w;
*texh = h;
} else {
*texw = 32;
while (*texw < w)
*texw *= 2;
*texh = 32;
while (*texh < h)
*texh *= 2;
}
}
static void draw_triangles(struct gl_video *p, struct vertex *vb, int vert_count)
{
GL *gl = p->gl;
assert(vert_count % 3 == 0);
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
gl->BufferData(GL_ARRAY_BUFFER, vert_count * sizeof(struct vertex), vb,
GL_DYNAMIC_DRAW);
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
if (gl->BindVertexArray)
gl->BindVertexArray(p->vao);
gl->DrawArrays(GL_TRIANGLES, 0, vert_count);
if (gl->BindVertexArray)
gl->BindVertexArray(0);
debug_check_gl(p, "after rendering");
}
// Write a textured quad to a vertex array.
// va = destination vertex array, VERTICES_PER_QUAD entries will be overwritten
// x0, y0, x1, y1 = destination coordinates of the quad
// tx0, ty0, tx1, ty1 = source texture coordinates (usually in pixels)
// texture_w, texture_h = size of the texture, or an inverse factor
// color = optional color for all vertices, NULL for opaque white
// flags = bits 0-1: rotate, bits 2: flip vertically
static void write_quad(struct vertex *va,
float x0, float y0, float x1, float y1,
float tx0, float ty0, float tx1, float ty1,
float texture_w, float texture_h,
const uint8_t color[4], GLenum target, int flags)
{
static const uint8_t white[4] = { 255, 255, 255, 255 };
if (!color)
color = white;
if (target == GL_TEXTURE_2D) {
tx0 /= texture_w;
ty0 /= texture_h;
tx1 /= texture_w;
ty1 /= texture_h;
}
if (flags & 4) {
float tmp = ty0;
ty0 = ty1;
ty1 = tmp;
}
#define COLOR_INIT {color[0], color[1], color[2], color[3]}
va[0] = (struct vertex) { {x0, y0}, COLOR_INIT, {tx0, ty0} };
va[1] = (struct vertex) { {x0, y1}, COLOR_INIT, {tx0, ty1} };
va[2] = (struct vertex) { {x1, y0}, COLOR_INIT, {tx1, ty0} };
va[3] = (struct vertex) { {x1, y1}, COLOR_INIT, {tx1, ty1} };
va[4] = va[2];
va[5] = va[1];
#undef COLOR_INIT
int rot = flags & 3;
while (rot--) {
static const int perm[6] = {1, 3, 0, 2, 0, 3};
struct vertex vb[6];
memcpy(vb, va, sizeof(vb));
for (int n = 0; n < 6; n++)
memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2]));
}
}
static bool fbotex_init(struct gl_video *p, struct fbotex *fbo, int w, int h,
GLenum iformat)
{
GL *gl = p->gl;
bool res = true;
assert(!fbo->fbo);
assert(!fbo->texture);
*fbo = (struct fbotex) {
.vp_w = w,
.vp_h = h,
};
texture_size(p, w, h, &fbo->tex_w, &fbo->tex_h);
MP_VERBOSE(p, "Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h);
if (!(gl->mpgl_caps & MPGL_CAP_FB))
return false;
gl->GenFramebuffers(1, &fbo->fbo);
gl->GenTextures(1, &fbo->texture);
gl->BindTexture(p->gl_target, fbo->texture);
gl->TexImage2D(p->gl_target, 0, iformat,
fbo->tex_w, fbo->tex_h, 0,
GL_RGB, GL_UNSIGNED_BYTE, NULL);
default_tex_params(gl, p->gl_target, GL_LINEAR);
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
p->gl_target, fbo->texture, 0);
if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
MP_ERR(p, "Error: framebuffer completeness check failed!\n");
res = false;
}
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
debug_check_gl(p, "after creating framebuffer & associated texture");
return res;
}
static void fbotex_uninit(struct gl_video *p, struct fbotex *fbo)
{
GL *gl = p->gl;
if (gl->mpgl_caps & MPGL_CAP_FB) {
gl->DeleteFramebuffers(1, &fbo->fbo);
gl->DeleteTextures(1, &fbo->texture);
*fbo = (struct fbotex) {0};
}
}
static void matrix_ortho2d(float m[3][3], float x0, float x1,
float y0, float y1)
{
memset(m, 0, 9 * sizeof(float));
m[0][0] = 2.0f / (x1 - x0);
m[1][1] = 2.0f / (y1 - y0);
m[2][0] = -(x1 + x0) / (x1 - x0);
m[2][1] = -(y1 + y0) / (y1 - y0);
m[2][2] = 1.0f;
}
static void update_uniforms(struct gl_video *p, GLuint program)
{
GL *gl = p->gl;
GLint loc;
if (program == 0)
return;
gl->UseProgram(program);
struct mp_csp_details csp = MP_CSP_DETAILS_DEFAULTS;
csp.levels_in = p->image_params.colorlevels;
csp.levels_out = p->image_params.outputlevels;
csp.format = p->image_params.colorspace;
struct mp_csp_params cparams = {
.colorspace = csp,
.input_bits = p->plane_bits,
.texture_bits = (p->plane_bits + 7) & ~7,
};
mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
cparams.colorspace.format = MP_CSP_XYZ;
cparams.input_bits = 8;
cparams.texture_bits = 8;
}
loc = gl->GetUniformLocation(program, "transform");
if (loc >= 0) {
float matrix[3][3];
matrix_ortho2d(matrix, 0, p->vp_w, p->vp_h, 0);
gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]);
}
loc = gl->GetUniformLocation(program, "colormatrix");
if (loc >= 0) {
float m[3][4] = {{0}};
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
// Hard-coded as relative colorimetric for now, since this transforms
// from the source file's D55 material to whatever color space our
// projector/display lives in, which should be D55 for a proper
// home cinema setup either way.
mp_get_xyz2rgb_coeffs(&cparams, p->csp_src, MP_INTENT_RELATIVE_COLORIMETRIC, m);
} else {
mp_get_yuv2rgb_coeffs(&cparams, m);
}
gl->UniformMatrix4x3fv(loc, 1, GL_TRUE, &m[0][0]);
}
gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"),
p->input_gamma);
gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"),
p->conv_gamma);
float gamma = p->opts.gamma ? p->opts.gamma : 1.0;
gl->Uniform3f(gl->GetUniformLocation(program, "inv_gamma"),
1.0 / (cparams.rgamma * gamma),
1.0 / (cparams.ggamma * gamma),
1.0 / (cparams.bgamma * gamma));
for (int n = 0; n < p->plane_count; n++) {
char textures_n[32];
char textures_size_n[32];
snprintf(textures_n, sizeof(textures_n), "texture%d", n);
snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n);
gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n);
if (p->gl_target == GL_TEXTURE_2D) {
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n),
p->image.planes[n].tex_w, p->image.planes[n].tex_h);
} else {
// Makes the pixel size calculation code think they are 1x1
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1);
}
}
loc = gl->GetUniformLocation(program, "chroma_div");
if (loc >= 0) {
int xs = p->image_desc.chroma_xs;
int ys = p->image_desc.chroma_ys;
gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys));
}
loc = gl->GetUniformLocation(program, "chroma_center_offset");
if (loc >= 0) {
int chr = p->opts.chroma_location;
if (!chr)
chr = p->image_params.chroma_location;
int cx, cy;
mp_get_chroma_location(chr, &cx, &cy);
// By default texture coordinates are such that chroma is centered with
// any chroma subsampling. If a specific direction is given, make it
// so that the luma and chroma sample line up exactly.
// For 4:4:4, setting chroma location should have no effect at all.
// luma sample size (in chroma coord. space)
float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
// move chroma center to luma center (in chroma coord. space)
float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0;
float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0;
int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0;
gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1),
o_y / FFMAX(p->image.planes[1].h * c, 1));
}
gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"),
p->dither_size, p->dither_size);
gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT);
loc = gl->GetUniformLocation(program, "cms_matrix");
if (loc >= 0) {
float cms_matrix[3][3] = {{0}};
// Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect
// the input to be actual BT.2020 and not something red- or blueshifted,
// and for sRGB monitors we most likely want relative scaling either way.
mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix);
gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]);
}
for (int n = 0; n < 2; n++) {
const char *lut = p->scalers[n].lut_name;
if (lut)
gl->Uniform1i(gl->GetUniformLocation(program, lut),
TEXUNIT_SCALERS + n);
}
gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER);
gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"),
p->dither_quantization);
gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"),
p->dither_center);
float sparam1 = p->opts.scaler_params[0];
gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1"),
isnan(sparam1) ? 0.5f : sparam1);
gl->UseProgram(0);
debug_check_gl(p, "update_uniforms()");
}
static void update_all_uniforms(struct gl_video *p)
{
for (int n = 0; n < SUBBITMAP_COUNT; n++)
update_uniforms(p, p->osd_programs[n]);
update_uniforms(p, p->indirect_program);
update_uniforms(p, p->scale_sep_program);
update_uniforms(p, p->final_program);
}
#define SECTION_HEADER "#!section "
static char *get_section(void *talloc_ctx, struct bstr source,
const char *section)
{
char *res = talloc_strdup(talloc_ctx, "");
bool copy = false;
while (source.len) {
struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source));
if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) {
copy = bstrcmp0(line, section) == 0;
} else if (copy) {
res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line));
}
}
return res;
}
static char *t_concat(void *talloc_ctx, const char *s1, const char *s2)
{
return talloc_asprintf(talloc_ctx, "%s%s", s1, s2);
}
static GLuint create_shader(struct gl_video *p, GLenum type, const char *header,
const char *source)
{
GL *gl = p->gl;
void *tmp = talloc_new(NULL);
const char *full_source = t_concat(tmp, header, source);
GLuint shader = gl->CreateShader(type);
gl->ShaderSource(shader, 1, &full_source, NULL);
gl->CompileShader(shader);
GLint status;
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
GLint log_length;
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
if (mp_msg_test(p->log, pri)) {
MP_MSG(p, pri, "%s shader source:\n", typestr);
mp_log_source(p->log, pri, full_source);
}
if (log_length > 1) {
GLchar *logstr = talloc_zero_size(tmp, log_length + 1);
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n",
typestr, status, logstr);
}
talloc_free(tmp);
return shader;
}
static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type,
const char *header, const char *source)
{
GL *gl = p->gl;
GLuint shader = create_shader(p, type, header, source);
gl->AttachShader(program, shader);
gl->DeleteShader(shader);
}
static void link_shader(struct gl_video *p, GLuint program)
{
GL *gl = p->gl;
gl->LinkProgram(program);
GLint status;
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
GLint log_length;
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
if (mp_msg_test(p->log, pri)) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr);
talloc_free(logstr);
}
}
static void bind_attrib_locs(GL *gl, GLuint program)
{
gl->BindAttribLocation(program, VERTEX_ATTRIB_POSITION, "vertex_position");
gl->BindAttribLocation(program, VERTEX_ATTRIB_COLOR, "vertex_color");
gl->BindAttribLocation(program, VERTEX_ATTRIB_TEXCOORD, "vertex_texcoord");
}
#define PRELUDE_END "// -- prelude end\n"
static GLuint create_program(struct gl_video *p, const char *name,
const char *header, const char *vertex,
const char *frag)
{
GL *gl = p->gl;
MP_VERBOSE(p, "compiling shader program '%s', header:\n", name);
const char *real_header = strstr(header, PRELUDE_END);
real_header = real_header ? real_header + strlen(PRELUDE_END) : header;
mp_log_source(p->log, MSGL_V, real_header);
GLuint prog = gl->CreateProgram();
prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex);
prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag);
bind_attrib_locs(gl, prog);
link_shader(p, prog);
return prog;
}
static void shader_def(char **shader, const char *name,
const char *value)
{
*shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value);
}
static void shader_def_opt(char **shader, const char *name, bool b)
{
if (b)
shader_def(shader, name, "1");
}
static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass)
{
const char *target = scaler->index == 0 ? "SAMPLE_L" : "SAMPLE_C";
if (!scaler->kernel) {
*shader = talloc_asprintf_append(*shader, "#define %s sample_%s\n",
target, scaler->name);
} else {
int size = scaler->kernel->size;
if (pass != -1) {
// The direction/pass assignment is rather arbitrary, but fixed in
// other parts of the code (like FBO setup).
const char *direction = pass == 0 ? "0, 1" : "1, 0";
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
"sample_convolution_sep%d(vec2(%s), %s, p0, p1, p2)\n",
target, size, direction, scaler->lut_name);
} else {
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
"sample_convolution%d(%s, p0, p1, p2)\n",
target, size, scaler->lut_name);
}
}
}
// return false if RGB or 4:4:4 YUV
static bool input_is_subsampled(struct gl_video *p)
{
for (int i = 0; i < p->plane_count; i++)
if (p->image_desc.xs[i] || p->image_desc.ys[i])
return true;
return false;
}
static void compile_shaders(struct gl_video *p)
{
GL *gl = p->gl;
delete_shaders(p);
void *tmp = talloc_new(NULL);
struct bstr src = bstr0(vo_opengl_shaders);
char *vertex_shader = get_section(tmp, src, "vertex_all");
char *shader_prelude = get_section(tmp, src, "prelude");
char *s_video = get_section(tmp, src, "frag_video");
char *header = talloc_asprintf(tmp, "#version %d\n%s%s", gl->glsl_version,
shader_prelude, PRELUDE_END);
bool use_cms = p->opts.srgb || p->use_lut_3d;
float input_gamma = 1.0;
float conv_gamma = 1.0;
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
input_gamma *= 2.6;
// If we're using cms, we can treat it as proper linear input,
// otherwise we just scale back to 1.95 as a reasonable approximation.
if (use_cms) {
p->is_linear_rgb = true;
} else {
conv_gamma *= 1.0 / 1.95;
}
}
p->input_gamma = input_gamma;
p->conv_gamma = conv_gamma;
bool use_input_gamma = p->input_gamma != 1.0;
bool use_conv_gamma = p->conv_gamma != 1.0;
bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C;
// Linear light scaling is only enabled when either color correction
// option (3dlut or srgb) is enabled, otherwise scaling is done in the
// source space. We also need to linearize for constant luminance systems.
bool convert_to_linear_gamma = !p->is_linear_rgb && use_cms || use_const_luma;
// Figure out the right color spaces we need to convert, if any
enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest;
if (use_cms) {
// sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is
// always built against BT.2020.
prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020;
} else {
// If no CMS is being done we just want to output stuff as-is,
// in the native colorspace of the source.
prim_dest = prim_src;
}
// XYZ input has no defined input color space, so we can directly convert
// it to whatever output space we actually need.
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
prim_src = prim_dest;
// Set the colorspace primaries and figure out whether we need to perform
// an extra conversion.
p->csp_src = mp_get_csp_primaries(prim_src);
p->csp_dest = mp_get_csp_primaries(prim_dest);
bool use_cms_matrix = prim_src != prim_dest;
if (p->gl_target == GL_TEXTURE_RECTANGLE) {
shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect");
shader_def_opt(&header, "USE_RECTANGLE", true);
} else {
shader_def(&header, "VIDEO_SAMPLER", "sampler2D");
}
// Need to pass alpha through the whole chain. (Not needed for OSD shaders.)
if (p->opts.alpha_mode == 1)
shader_def_opt(&header, "USE_ALPHA", p->has_alpha);
char *header_osd = talloc_strdup(tmp, header);
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_APPROX",
use_cms && p->opts.approx_gamma);
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT2020",
use_cms && !p->opts.approx_gamma);
shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix);
shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d);
// 3DLUT overrides SRGB
shader_def_opt(&header_osd, "USE_OSD_SRGB", !p->use_lut_3d && p->opts.srgb);
for (int n = 0; n < SUBBITMAP_COUNT; n++) {
const char *name = osd_shaders[n];
if (name) {
char *s_osd = get_section(tmp, src, name);
p->osd_programs[n] =
create_program(p, name, header_osd, vertex_shader, s_osd);
}
}
char *header_conv = talloc_strdup(tmp, "");
char *header_final = talloc_strdup(tmp, "");
char *header_sep = NULL;
if (p->image_format == IMGFMT_NV12 || p->image_format == IMGFMT_NV21) {
shader_def(&header_conv, "USE_CONV", "CONV_NV12");
} else if (p->plane_count > 1) {
shader_def(&header_conv, "USE_CONV", "CONV_PLANAR");
}
if (p->color_swizzle[0])
shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle);
shader_def_opt(&header_conv, "USE_SWAP_UV", p->image_format == IMGFMT_NV21);
shader_def_opt(&header_conv, "USE_YGRAY", p->is_yuv && !p->is_packed_yuv
&& p->plane_count == 1);
shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma);
shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb);
shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma);
shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma);
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_APPROX",
convert_to_linear_gamma && p->opts.approx_gamma);
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT2020",
convert_to_linear_gamma && !p->opts.approx_gamma);
if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3)
shader_def(&header_conv, "USE_ALPHA_PLANE", "3");
if (p->opts.alpha_mode == 2 && p->has_alpha)
shader_def(&header_conv, "USE_ALPHA_BLEND", "1");
shader_def_opt(&header_final, "USE_GAMMA_POW", p->opts.gamma > 0);
shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix);
shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d);
// 3DLUT overrides SRGB
shader_def_opt(&header_final, "USE_SRGB", p->opts.srgb && !p->use_lut_3d);
shader_def_opt(&header_final, "USE_CONST_LUMA_INV_APPROX",
use_const_luma && !use_cms && p->opts.approx_gamma);
shader_def_opt(&header_final, "USE_CONST_LUMA_INV_BT2020",
use_const_luma && !use_cms && !p->opts.approx_gamma);
shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0);
shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither);
if (p->opts.scale_sep && p->scalers[0].kernel) {
header_sep = talloc_strdup(tmp, "");
shader_def_opt(&header_sep, "FIXED_SCALE", true);
shader_setup_scaler(&header_sep, &p->scalers[0], 0);
shader_setup_scaler(&header_final, &p->scalers[0], 1);
} else {
shader_setup_scaler(&header_final, &p->scalers[0], -1);
}
// We want to do scaling in linear light. Scaling is closely connected to
// texture sampling due to how the shader is structured (or if GL bilinear
// scaling is used). The purpose of the "indirect" pass is to convert the
// input video to linear RGB.
// Another purpose is reducing input to a single texture for scaling.
bool use_indirect = p->opts.indirect;
// Don't sample from input video textures before converting the input to
// linear light.
if (use_input_gamma || use_conv_gamma)
use_indirect = true;
// It doesn't make sense to scale the chroma with cscale in the 1. scale
// step and with lscale in the 2. step. If the chroma is subsampled, a
// convolution filter wouldn't even work entirely correctly, because the
// luma scaler would sample two texels instead of one per tap for chroma.
// Also, even with 4:4:4 YUV or planar RGB, the indirection might be faster,
// because the shader can't use one scaler for sampling from 3 textures. It
// has to fetch the coefficients for each texture separately, even though
// they're the same (this is not an inherent restriction, but would require
// to restructure the shader).
if (header_sep && p->plane_count > 1)
use_indirect = true;
if (input_is_subsampled(p)) {
shader_setup_scaler(&header_conv, &p->scalers[1], -1);
} else {
// Force using the luma scaler on chroma. If the "indirect" stage is
// used, the actual scaling will happen in the next stage.
shader_def(&header_conv, "SAMPLE_C",
use_indirect ? "sample_bilinear" : "SAMPLE_L");
}
if (use_indirect) {
// We don't use filtering for the Y-plane (luma), because it's never
// scaled in this scenario.
shader_def(&header_conv, "SAMPLE_L", "sample_bilinear");
shader_def_opt(&header_conv, "FIXED_SCALE", true);
header_conv = t_concat(tmp, header, header_conv);
p->indirect_program =
create_program(p, "indirect", header_conv, vertex_shader, s_video);
} else if (header_sep) {
header_sep = t_concat(tmp, header_sep, header_conv);
} else {
header_final = t_concat(tmp, header_final, header_conv);
}
if (header_sep) {
header_sep = t_concat(tmp, header, header_sep);
p->scale_sep_program =
create_program(p, "scale_sep", header_sep, vertex_shader, s_video);
}
header_final = t_concat(tmp, header, header_final);
p->final_program =
create_program(p, "final", header_final, vertex_shader, s_video);
debug_check_gl(p, "shader compilation");
talloc_free(tmp);
}
static void delete_program(GL *gl, GLuint *prog)
{
gl->DeleteProgram(*prog);
*prog = 0;
}
static void delete_shaders(struct gl_video *p)
{
GL *gl = p->gl;
for (int n = 0; n < SUBBITMAP_COUNT; n++)
delete_program(gl, &p->osd_programs[n]);
delete_program(gl, &p->indirect_program);
delete_program(gl, &p->scale_sep_program);
delete_program(gl, &p->final_program);
}
static double get_scale_factor(struct gl_video *p)
{
double sx = (p->dst_rect.x1 - p->dst_rect.x0) /
(double)(p->src_rect.x1 - p->src_rect.x0);
double sy = (p->dst_rect.y1 - p->dst_rect.y0) /
(double)(p->src_rect.y1 - p->src_rect.y0);
// xxx: actually we should use different scalers in X/Y directions if the
// scale factors are different due to anamorphic content
return FFMIN(sx, sy);
}
static bool update_scale_factor(struct gl_video *p, struct filter_kernel *kernel)
{
double scale = get_scale_factor(p);
if (!p->opts.fancy_downscaling && scale < 1.0)
scale = 1.0;
return mp_init_filter(kernel, filter_sizes, FFMAX(1.0, 1.0 / scale));
}
static void init_scaler(struct gl_video *p, struct scaler *scaler)
{
GL *gl = p->gl;
assert(scaler->name);
scaler->kernel = NULL;
const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
if (!t_kernel)
return;
scaler->kernel_storage = *t_kernel;
scaler->kernel = &scaler->kernel_storage;
for (int n = 0; n < 2; n++) {
if (!isnan(p->opts.scaler_params[n]))
scaler->kernel->params[n] = p->opts.scaler_params[n];
}
update_scale_factor(p, scaler->kernel);
int size = scaler->kernel->size;
assert(size < FF_ARRAY_ELEMS(lut_tex_formats));
const struct lut_tex_format *fmt = &lut_tex_formats[size];
bool use_2d = fmt->pixels > 1;
bool is_luma = scaler->index == 0;
scaler->lut_name = use_2d
? (is_luma ? "lut_l_2d" : "lut_c_2d")
: (is_luma ? "lut_l_1d" : "lut_c_1d");
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
GLenum target = use_2d ? GL_TEXTURE_2D : GL_TEXTURE_1D;
if (!scaler->gl_lut)
gl->GenTextures(1, &scaler->gl_lut);
gl->BindTexture(target, scaler->gl_lut);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
if (use_2d) {
gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, fmt->pixels,
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
weights);
} else {
gl->TexImage1D(GL_TEXTURE_1D, 0, fmt->internal_format,
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
weights);
}
talloc_free(weights);
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl->ActiveTexture(GL_TEXTURE0);
debug_check_gl(p, "after initializing scaler");
}
static void init_dither(struct gl_video *p)
{
GL *gl = p->gl;
// Assume 8 bits per component if unknown.
int dst_depth = p->depth_g ? p->depth_g : 8;
if (p->opts.dither_depth > 0)
dst_depth = p->opts.dither_depth;
if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
return;
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
int tex_size;
void *tex_data;
GLint tex_iformat;
GLenum tex_type;
unsigned char temp[256];
if (p->opts.dither_algo == 0) {
int sizeb = p->opts.dither_size;
int size = 1 << sizeb;
if (p->last_dither_matrix_size != size) {
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
float, size * size);
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
p->last_dither_matrix_size = size;
}
tex_size = size;
tex_iformat = GL_R16;
tex_type = GL_FLOAT;
tex_data = p->last_dither_matrix;
} else {
assert(sizeof(temp) >= 8 * 8);
mp_make_ordered_dither_matrix(temp, 8);
tex_size = 8;
tex_iformat = GL_RED;
tex_type = GL_UNSIGNED_BYTE;
tex_data = temp;
}
// This defines how many bits are considered significant for output on
// screen. The superfluous bits will be used for rounding according to the
// dither matrix. The precision of the source implicitly decides how many
// dither patterns can be visible.
p->dither_quantization = (1 << dst_depth) - 1;
p->dither_center = 0.5 / (tex_size * tex_size);
p->dither_size = tex_size;
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
gl->GenTextures(1, &p->dither_texture);
gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, GL_RED,
tex_type, tex_data);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
gl->ActiveTexture(GL_TEXTURE0);
}
static void recreate_osd(struct gl_video *p)
{
if (p->osd)
mpgl_osd_destroy(p->osd);
p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state);
p->osd->use_pbo = p->opts.pbo;
}
static bool does_resize(struct mp_rect src, struct mp_rect dst)
{
return src.x1 - src.x0 != dst.x1 - dst.x0 ||
src.y1 - src.y0 != dst.y1 - dst.y0;
}
static const char *expected_scaler(struct gl_video *p, int unit)
{
if (p->opts.scaler_resizes_only && unit == 0 &&
!does_resize(p->src_rect, p->dst_rect))
{
return "bilinear";
}
return p->opts.scalers[unit];
}
static void reinit_rendering(struct gl_video *p)
{
MP_VERBOSE(p, "Reinit rendering.\n");
debug_check_gl(p, "before scaler initialization");
uninit_rendering(p);
if (!p->image_format)
return;
for (int n = 0; n < 2; n++)
p->scalers[n].name = expected_scaler(p, n);
init_dither(p);
init_scaler(p, &p->scalers[0]);
init_scaler(p, &p->scalers[1]);
compile_shaders(p);
update_all_uniforms(p);
int w = p->image_w;
int h = p->image_h;
if (p->indirect_program && !p->indirect_fbo.fbo)
fbotex_init(p, &p->indirect_fbo, w, h, p->opts.fbo_format);
recreate_osd(p);
}
static void uninit_rendering(struct gl_video *p)
{
GL *gl = p->gl;
delete_shaders(p);
for (int n = 0; n < 2; n++) {
gl->DeleteTextures(1, &p->scalers[n].gl_lut);
p->scalers[n].gl_lut = 0;
p->scalers[n].lut_name = NULL;
p->scalers[n].kernel = NULL;
}
gl->DeleteTextures(1, &p->dither_texture);
p->dither_texture = 0;
}
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
{
GL *gl = p->gl;
if (!lut3d) {
if (p->use_lut_3d) {
p->use_lut_3d = false;
reinit_rendering(p);
}
return;
}
if (!p->lut_3d_texture)
gl->GenTextures(1, &p->lut_3d_texture);
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT);
gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1],
lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gl->ActiveTexture(GL_TEXTURE0);
p->use_lut_3d = true;
check_gl_features(p);
debug_check_gl(p, "after 3d lut creation");
reinit_rendering(p);
}
static void set_image_textures(struct gl_video *p, struct video_image *vimg,
GLuint imgtex[4])
{
GL *gl = p->gl;
GLuint dummy[4] = {0};
if (!imgtex)
imgtex = dummy;
if (p->hwdec_active) {
assert(vimg->hwimage);
p->hwdec->driver->map_image(p->hwdec, vimg->hwimage, imgtex);
} else {
for (int n = 0; n < p->plane_count; n++)
imgtex[n] = vimg->planes[n].gl_texture;
}
for (int n = 0; n < 4; n++) {
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, imgtex[n]);
}
gl->ActiveTexture(GL_TEXTURE0);
}
static void unset_image_textures(struct gl_video *p)
{
GL *gl = p->gl;
for (int n = 0; n < 4; n++) {
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, 0);
}
gl->ActiveTexture(GL_TEXTURE0);
if (p->hwdec_active)
p->hwdec->driver->unmap_image(p->hwdec);
}
static void init_video(struct gl_video *p, const struct mp_image_params *params)
{
GL *gl = p->gl;
init_format(params->imgfmt, p);
p->gl_target = p->opts.use_rectangle ? GL_TEXTURE_RECTANGLE : GL_TEXTURE_2D;
if (p->hwdec_active)
p->gl_target = p->hwdec->gl_texture_target;
check_gl_features(p);
p->image_w = params->w;
p->image_h = params->h;
p->image_dw = params->d_w;
p->image_dh = params->d_h;
p->image_params = *params;
if (p->is_rgb && (p->opts.srgb || p->use_lut_3d)) {
// If we're opening an RGB source like a png file or similar,
// we just sample it using GL_SRGB which treats it as an sRGB source
// and pretend it's linear as far as CMS is concerned
p->is_linear_rgb = true;
p->image.planes[0].gl_internal_format = GL_SRGB;
}
int eq_caps = MP_CSP_EQ_CAPS_GAMMA;
if (p->is_yuv && p->image_params.colorspace != MP_CSP_BT_2020_C)
eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX;
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS;
p->video_eq.capabilities = eq_caps;
debug_check_gl(p, "before video texture creation");
// For video with odd sizes: enlarge the luma texture so that it covers all
// chroma pixels - then we can render these correctly by cropping the final
// image (conceptually).
// Image allocations are always such that the "additional" luma border
// exists and can be accessed.
int full_w = MP_ALIGN_UP(p->image_w, 1 << p->image_desc.chroma_xs);
int full_h = MP_ALIGN_UP(p->image_h, 1 << p->image_desc.chroma_ys);
struct video_image *vimg = &p->image;
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
plane->w = full_w >> p->image_desc.xs[n];
plane->h = full_h >> p->image_desc.ys[n];
if (p->hwdec_active) {
// We expect hwdec backends to allocate exact size
plane->tex_w = plane->w;
plane->tex_h = plane->h;
} else {
texture_size(p, plane->w, plane->h,
&plane->tex_w, &plane->tex_h);
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->GenTextures(1, &plane->gl_texture);
gl->BindTexture(p->gl_target, plane->gl_texture);
gl->TexImage2D(p->gl_target, 0, plane->gl_internal_format,
plane->tex_w, plane->tex_h, 0,
plane->gl_format, plane->gl_type, NULL);
default_tex_params(gl, p->gl_target, GL_LINEAR);
}
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n",
n, plane->tex_w, plane->tex_h);
}
gl->ActiveTexture(GL_TEXTURE0);
p->texture_w = p->image.planes[0].tex_w;
p->texture_h = p->image.planes[0].tex_h;
debug_check_gl(p, "after video texture creation");
if (p->hwdec_active) {
if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0)
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
}
reinit_rendering(p);
}
static void uninit_video(struct gl_video *p)
{
GL *gl = p->gl;
uninit_rendering(p);
struct video_image *vimg = &p->image;
for (int n = 0; n < 3; n++) {
struct texplane *plane = &vimg->planes[n];
gl->DeleteTextures(1, &plane->gl_texture);
plane->gl_texture = 0;
gl->DeleteBuffers(1, &plane->gl_buffer);
plane->gl_buffer = 0;
plane->buffer_ptr = NULL;
plane->buffer_size = 0;
}
mp_image_unrefp(&vimg->hwimage);
fbotex_uninit(p, &p->indirect_fbo);
fbotex_uninit(p, &p->scale_sep_fbo);
}
static void change_dither_trafo(struct gl_video *p)
{
GL *gl = p->gl;
int program = p->final_program;
int phase = p->frames_rendered % 8u;
float r = phase * (M_PI / 2); // rotate
float m = phase < 4 ? 1 : -1; // mirror
gl->UseProgram(program);
float matrix[2][2] = {{cos(r), -sin(r) },
{sin(r) * m, cos(r) * m}};
gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"),
1, GL_TRUE, &matrix[0][0]);
gl->UseProgram(0);
}
struct pass {
int num;
// Not necessarily a FBO; we just abuse this struct because it's convenient.
// It specifies the source texture/sub-rectangle for the next pass.
struct fbotex f;
// If true, render source (f) to dst, instead of the full dest. fbo viewport
bool use_dst;
struct mp_rect dst;
int flags; // for write_quad
bool render_stereo;
};
// *chain contains the source, and is overwritten with a copy of the result
// fbo is used as destination texture/render target.
static void handle_pass(struct gl_video *p, struct pass *chain,
struct fbotex *fbo, GLuint program)
{
struct vertex vb[VERTICES_PER_QUAD];
GL *gl = p->gl;
if (!program)
return;
gl->BindTexture(p->gl_target, chain->f.texture);
gl->UseProgram(program);
gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h);
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
int tex_w = chain->f.tex_w;
int tex_h = chain->f.tex_h;
struct mp_rect src = {
.x0 = chain->f.vp_x,
.y0 = chain->f.vp_y,
.x1 = chain->f.vp_x + chain->f.vp_w,
.y1 = chain->f.vp_y + chain->f.vp_h,
};
struct mp_rect dst = {-1, -1, 1, 1};
if (chain->use_dst)
dst = chain->dst;
MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n",
chain->num, src.x0, src.y0, src.x1, src.y1,
dst.x0, dst.y0, dst.x1, dst.y1,
fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h,
fbo->tex_w, fbo->tex_h, chain->flags);
if (chain->render_stereo && p->opts.stereo_mode) {
int w = src.x1 - src.x0;
int imgw = p->image_w;
glEnable3DLeft(gl, p->opts.stereo_mode);
write_quad(vb,
dst.x0, dst.y0, dst.x1, dst.y1,
src.x0 / 2, src.y0,
src.x0 / 2 + w / 2, src.y1,
tex_w, tex_h, NULL, p->gl_target, chain->flags);
draw_triangles(p, vb, VERTICES_PER_QUAD);
glEnable3DRight(gl, p->opts.stereo_mode);
write_quad(vb,
dst.x0, dst.y0, dst.x1, dst.y1,
src.x0 / 2 + imgw / 2, src.y0,
src.x0 / 2 + imgw / 2 + w / 2, src.y1,
tex_w, tex_h, NULL, p->gl_target, chain->flags);
draw_triangles(p, vb, VERTICES_PER_QUAD);
glDisable3D(gl, p->opts.stereo_mode);
} else {
write_quad(vb,
dst.x0, dst.y0, dst.x1, dst.y1,
src.x0, src.y0, src.x1, src.y1,
tex_w, tex_h, NULL, p->gl_target, chain->flags);
draw_triangles(p, vb, VERTICES_PER_QUAD);
}
*chain = (struct pass){
.num = chain->num + 1,
.f = *fbo,
};
}
void gl_video_render_frame(struct gl_video *p)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
if (p->opts.temporal_dither)
change_dither_trafo(p);
if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y
|| p->dst_rect.x1 < p->vp_x + p->vp_w
|| p->dst_rect.y1 < p->vp_y + p->vp_h)
{
gl->Clear(GL_COLOR_BUFFER_BIT);
}
if (!p->have_image) {
gl->Clear(GL_COLOR_BUFFER_BIT);
goto draw_osd;
}
// Order of processing:
// [indirect -> [scale_sep ->]] final
GLuint imgtex[4] = {0};
set_image_textures(p, vimg, imgtex);
struct pass chain = {
.f = {
.vp_w = p->image_w,
.vp_h = p->image_h,
.tex_w = p->texture_w,
.tex_h = p->texture_h,
.texture = imgtex[0],
},
};
handle_pass(p, &chain, &p->indirect_fbo, p->indirect_program);
// Clip to visible height so that separate scaling scales the visible part
// only (and the target FBO texture can have a bounded size).
// Don't clamp width; too hard to get correct final scaling on l/r borders.
chain.f.vp_y = p->src_rect_rot.y0;
chain.f.vp_h = p->src_rect_rot.y1 - p->src_rect_rot.y0;
handle_pass(p, &chain, &p->scale_sep_fbo, p->scale_sep_program);
struct fbotex screen = {
.vp_x = p->vp_x,
.vp_y = p->vp_y,
.vp_w = p->vp_w,
.vp_h = p->vp_h,
.texture = 0, //makes BindFramebuffer select the screen backbuffer
};
// For Y direction, use the whole source viewport; it has been fit to the
// correct origin/height before.
// For X direction, assume the texture wasn't scaled yet, so we can
// select the correct portion, which will be scaled to screen.
chain.f.vp_x = p->src_rect_rot.x0;
chain.f.vp_w = p->src_rect_rot.x1 - p->src_rect_rot.x0;
chain.use_dst = true;
chain.dst = p->dst_rect;
chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90)
| (vimg->image_flipped ? 4 : 0);
chain.render_stereo = true;
handle_pass(p, &chain, &screen, p->final_program);
gl->UseProgram(0);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
unset_image_textures(p);
p->frames_rendered++;
debug_check_gl(p, "after video rendering");
draw_osd:
assert(p->osd);
osd_draw(p->osd_state, p->osd_rect, p->osd_pts, 0, p->osd->formats,
draw_osd_cb, p);
// The playloop calls this last before waiting some time until it decides
// to call flip_page(). Tell OpenGL to start execution of the GPU commands
// while we sleep (this happens asynchronously).
gl->Flush();
}
static void update_window_sized_objects(struct gl_video *p)
{
if (p->scale_sep_program) {
int w = p->dst_rect.x1 - p->dst_rect.x0;
int h = p->dst_rect.y1 - p->dst_rect.y0;
if ((p->image_params.rotate % 180) == 90)
MPSWAP(int, w, h);
if (h > p->scale_sep_fbo.tex_h) {
fbotex_uninit(p, &p->scale_sep_fbo);
// Round up to an arbitrary alignment to make window resizing or
// panscan controls smoother (less texture reallocations).
int height = FFALIGN(h, 256);
fbotex_init(p, &p->scale_sep_fbo, p->image_w, height,
p->opts.fbo_format);
}
p->scale_sep_fbo.vp_w = p->image_w;
p->scale_sep_fbo.vp_h = h;
}
}
static void check_resize(struct gl_video *p)
{
bool need_scaler_reinit = false; // filter size change needed
bool need_scaler_update = false; // filter LUT change needed
bool too_small = false;
for (int n = 0; n < 2; n++) {
if (p->scalers[n].kernel) {
struct filter_kernel tkernel = *p->scalers[n].kernel;
struct filter_kernel old = tkernel;
bool ok = update_scale_factor(p, &tkernel);
too_small |= !ok;
need_scaler_reinit |= (tkernel.size != old.size);
need_scaler_update |= (tkernel.inv_scale != old.inv_scale);
}
}
for (int n = 0; n < 2; n++) {
if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0)
need_scaler_reinit = true;
}
if (need_scaler_reinit) {
reinit_rendering(p);
} else if (need_scaler_update) {
init_scaler(p, &p->scalers[0]);
init_scaler(p, &p->scalers[1]);
}
if (too_small) {
MP_WARN(p, "Can't downscale that much, window "
"output may look suboptimal.\n");
}
update_window_sized_objects(p);
update_all_uniforms(p);
}
void gl_video_resize(struct gl_video *p, struct mp_rect *window,
struct mp_rect *src, struct mp_rect *dst,
struct mp_osd_res *osd)
{
p->src_rect = *src;
p->src_rect_rot = *src;
p->dst_rect = *dst;
p->osd_rect = *osd;
if ((p->image_params.rotate % 180) == 90) {
MPSWAP(int, p->src_rect_rot.x0, p->src_rect_rot.y0);
MPSWAP(int, p->src_rect_rot.x1, p->src_rect_rot.y1);
}
p->vp_x = window->x0;
p->vp_y = window->y0;
p->vp_w = window->x1 - window->x0;
p->vp_h = window->y1 - window->y0;
p->gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
check_resize(p);
}
static bool get_image(struct gl_video *p, struct mp_image *mpi)
{
GL *gl = p->gl;
if (!p->opts.pbo)
return false;
struct video_image *vimg = &p->image;
// See comments in init_video() about odd video sizes.
// The normal upload path does this too, but less explicit.
mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n];
int needed_size = mpi->plane_h[n] * mpi->stride[n];
if (!plane->gl_buffer)
gl->GenBuffers(1, &plane->gl_buffer);
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
if (needed_size > plane->buffer_size) {
plane->buffer_size = needed_size;
gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size,
NULL, GL_DYNAMIC_DRAW);
}
if (!plane->buffer_ptr)
plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER,
GL_WRITE_ONLY);
mpi->planes[n] = plane->buffer_ptr;
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
return true;
}
void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
p->osd_pts = mpi->pts;
if (p->hwdec_active) {
talloc_free(vimg->hwimage);
vimg->hwimage = mpi;
p->have_image = true;
return;
}
assert(mpi->num_planes == p->plane_count);
mp_image_t mpi2 = *mpi;
bool pbo = false;
if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) {
for (int n = 0; n < p->plane_count; n++) {
int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n];
memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n],
mpi2.stride[n], mpi->stride[n]);
}
pbo = true;
}
vimg->image_flipped = mpi2.stride[0] < 0;
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
void *plane_ptr = mpi2.planes[n];
if (pbo) {
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER))
MP_FATAL(p, "Video PBO upload failed. "
"Remove the 'pbo' suboption.\n");
plane->buffer_ptr = NULL;
plane_ptr = NULL; // PBO offset 0
}
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, plane->gl_texture);
glUploadTex(gl, p->gl_target, plane->gl_format, plane->gl_type,
plane_ptr, mpi2.stride[n], 0, 0, plane->w, plane->h, 0);
}
gl->ActiveTexture(GL_TEXTURE0);
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
p->have_image = true;
talloc_free(mpi);
}
struct mp_image *gl_video_download_image(struct gl_video *p)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
if (!p->have_image)
return NULL;
if (p->hwdec_active && p->hwdec->driver->download_image) {
struct mp_image *dlimage =
p->hwdec->driver->download_image(p->hwdec, vimg->hwimage);
if (dlimage)
mp_image_set_attributes(dlimage, &p->image_params);
return dlimage;
}
set_image_textures(p, vimg, NULL);
assert(p->texture_w >= p->image_params.w);
assert(p->texture_h >= p->image_params.h);
mp_image_t *image = mp_image_alloc(p->image_format, p->texture_w,
p->texture_h);
if (image) {
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
gl->ActiveTexture(GL_TEXTURE0 + n);
glDownloadTex(gl, p->gl_target, plane->gl_format, plane->gl_type,
image->planes[n], image->stride[n]);
}
mp_image_set_attributes(image, &p->image_params);
}
unset_image_textures(p);
return image;
}
static void draw_osd_cb(void *ctx, struct sub_bitmaps *imgs)
{
struct gl_video *p = ctx;
GL *gl = p->gl;
struct mpgl_osd_part *osd = mpgl_osd_generate(p->osd, imgs);
if (!osd)
return;
assert(osd->format != SUBBITMAP_EMPTY);
if (!osd->num_vertices) {
osd->vertices = talloc_realloc(osd, osd->vertices, struct vertex,
osd->packer->count * VERTICES_PER_QUAD);
struct vertex *va = osd->vertices;
for (int n = 0; n < osd->packer->count; n++) {
struct sub_bitmap *b = &imgs->parts[n];
struct pos pos = osd->packer->result[n];
// NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it
// doesn't matter that we upload garbage for the other formats
uint32_t c = b->libass.color;
uint8_t color[4] = { c >> 24, (c >> 16) & 0xff,
(c >> 8) & 0xff, 255 - (c & 0xff) };
write_quad(&va[osd->num_vertices],
b->x, b->y, b->x + b->dw, b->y + b->dh,
pos.x, pos.y, pos.x + b->w, pos.y + b->h,
osd->w, osd->h, color, GL_TEXTURE_2D, 0);
osd->num_vertices += VERTICES_PER_QUAD;
}
}
debug_check_gl(p, "before drawing osd");
gl->UseProgram(p->osd_programs[osd->format]);
mpgl_osd_set_gl_state(p->osd, osd);
draw_triangles(p, osd->vertices, osd->num_vertices);
mpgl_osd_unset_gl_state(p->osd, osd);
gl->UseProgram(0);
debug_check_gl(p, "after drawing osd");
}
static bool test_fbo(struct gl_video *p, GLenum format)
{
static const float vals[] = {
127 / 255.0f, // full 8 bit integer
32767 / 65535.0f, // full 16 bit integer
0xFFFFFF / (float)(1 << 25), // float mantissa
2, // out of range value
};
static const char *const val_names[] = {
"8-bit precision",
"16-bit precision",
"full float",
"out of range value (2)",
};
GL *gl = p->gl;
bool success = false;
struct fbotex fbo = {0};
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
gl->PixelStorei(GL_PACK_ALIGNMENT, 1);
gl->PixelStorei(GL_PACK_ROW_LENGTH, 0);
if (fbotex_init(p, &fbo, 16, 16, format)) {
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo);
gl->ReadBuffer(GL_COLOR_ATTACHMENT0);
for (int i = 0; i < 4; i++) {
float pixel = -1;
float val = vals[i];
gl->ClearColor(val, 0.0f, 0.0f, 1.0f);
gl->Clear(GL_COLOR_BUFFER_BIT);
gl->ReadPixels(0, 0, 1, 1, GL_RED, GL_FLOAT, &pixel);
MP_VERBOSE(p, " %s: %a\n", val_names[i], val - pixel);
}
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
glCheckError(gl, p->log, "after FBO read");
success = true;
}
fbotex_uninit(p, &fbo);
glCheckError(gl, p->log, "FBO test");
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
return success;
}
// Disable features that are not supported with the current OpenGL version.
static void check_gl_features(struct gl_video *p)
{
GL *gl = p->gl;
bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX;
bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB;
bool have_srgb = gl->mpgl_caps & MPGL_CAP_SRGB_TEX;
bool have_mix = gl->glsl_version >= 130;
char *disabled[10];
int n_disabled = 0;
if (have_fbo) {
MP_VERBOSE(p, "Testing user-set FBO format\n");
have_fbo = test_fbo(p, p->opts.fbo_format);
}
// fruit dithering mode and the 3D lut use this texture format
if (have_fbo && ((p->opts.dither_depth >= 0 && p->opts.dither_algo == 0) ||
p->use_lut_3d))
{
// doesn't disable anything; it's just for the log
MP_VERBOSE(p, "Testing GL_R16 FBO (dithering/LUT)\n");
test_fbo(p, GL_R16);
}
// Disable these only if the user didn't disable scale-sep on the command
// line, so convolution filter can still be forced to be run.
// Normally, we want to disable them by default if FBOs are unavailable,
// because they will be slow (not critically slow, but still slower).
// Without FP textures, we must always disable them.
if (!have_float_tex || (!have_fbo && p->opts.scale_sep)) {
for (int n = 0; n < 2; n++) {
struct scaler *scaler = &p->scalers[n];
if (mp_find_filter_kernel(scaler->name)) {
scaler->name = "bilinear";
disabled[n_disabled++]
= have_float_tex ? "scaler (FBO)" : "scaler (float tex.)";
}
}
}
int use_cms = p->opts.srgb || p->use_lut_3d;
// srgb_compand() not available
if (!have_mix && p->opts.srgb) {
p->opts.srgb = false;
disabled[n_disabled++] = "sRGB output (GLSL version)";
}
if (!have_fbo && use_cms) {
p->opts.srgb = false;
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (FBO)";
}
if (p->is_rgb) {
// When opening RGB files we use SRGB to expand
if (!have_srgb && use_cms) {
p->opts.srgb = false;
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (SRGB textures)";
}
} else {
// when opening non-RGB files we use bt709_expand()
if (!have_mix && p->use_lut_3d) {
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (GLSL version)";
}
}
if (!have_fbo) {
p->opts.scale_sep = false;
p->opts.indirect = false;
}
if (n_disabled) {
MP_ERR(p, "Some OpenGL extensions not detected, "
"disabling: ");
for (int n = 0; n < n_disabled; n++) {
if (n)
MP_ERR(p, ", ");
MP_ERR(p, "%s", disabled[n]);
}
MP_ERR(p, ".\n");
}
}
static void setup_vertex_array(GL *gl)
{
size_t stride = sizeof(struct vertex);
gl->EnableVertexAttribArray(VERTEX_ATTRIB_POSITION);
gl->VertexAttribPointer(VERTEX_ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE,
stride, (void*)offsetof(struct vertex, position));
gl->EnableVertexAttribArray(VERTEX_ATTRIB_COLOR);
gl->VertexAttribPointer(VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE,
stride, (void*)offsetof(struct vertex, color));
gl->EnableVertexAttribArray(VERTEX_ATTRIB_TEXCOORD);
gl->VertexAttribPointer(VERTEX_ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE,
stride, (void*)offsetof(struct vertex, texcoord));
}
static int init_gl(struct gl_video *p)
{
GL *gl = p->gl;
debug_check_gl(p, "before init_gl");
check_gl_features(p);
gl->Disable(GL_DITHER);
gl->Disable(GL_BLEND);
gl->Disable(GL_DEPTH_TEST);
gl->DepthMask(GL_FALSE);
gl->Disable(GL_CULL_FACE);
gl->GenBuffers(1, &p->vertex_buffer);
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
if (gl->BindVertexArray) {
gl->GenVertexArrays(1, &p->vao);
gl->BindVertexArray(p->vao);
setup_vertex_array(gl);
gl->BindVertexArray(0);
} else {
setup_vertex_array(gl);
}
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
debug_check_gl(p, "after init_gl");
return 1;
}
void gl_video_uninit(struct gl_video *p)
{
GL *gl = p->gl;
uninit_video(p);
if (gl->DeleteVertexArrays)
gl->DeleteVertexArrays(1, &p->vao);
gl->DeleteBuffers(1, &p->vertex_buffer);
gl->DeleteTextures(1, &p->lut_3d_texture);
mpgl_osd_destroy(p->osd);
talloc_free(p);
}
// dest = src.<w> (always using 4 components)
static void packed_fmt_swizzle(char w[5], const struct packed_fmt_entry *fmt)
{
for (int c = 0; c < 4; c++)
w[c] = "rgba"[MPMAX(fmt->components[c] - 1, 0)];
w[4] = '\0';
}
static const struct fmt_entry *find_tex_format(int bytes_per_comp, int n_channels)
{
assert(bytes_per_comp == 1 || bytes_per_comp == 2);
assert(n_channels >= 1 && n_channels <= 4);
return &gl_byte_formats[n_channels - 1 + (bytes_per_comp - 1) * 4];
}
static bool init_format(int fmt, struct gl_video *init)
{
struct gl_video dummy;
if (!init)
init = &dummy;
init->hwdec_active = false;
if (init->hwdec && init->hwdec->driver->imgfmt == fmt) {
fmt = init->hwdec->converted_imgfmt;
init->hwdec_active = true;
}
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt);
if (!desc.id)
return false;
if (desc.num_planes > 4)
return false;
const struct fmt_entry *plane_format[4] = {0};
init->image_format = fmt;
init->plane_bits = desc.bpp[0];
init->color_swizzle[0] = '\0';
init->has_alpha = false;
// YUV/planar formats
if (desc.flags & MP_IMGFLAG_YUV_P) {
int bits = desc.plane_bits;
if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) {
init->plane_bits = bits;
init->has_alpha = desc.num_planes > 3;
plane_format[0] = find_tex_format((bits + 7) / 8, 1);
for (int p = 1; p < desc.num_planes; p++)
plane_format[p] = plane_format[0];
goto supported;
}
}
// YUV/half-packed
if (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21) {
plane_format[0] = find_tex_format(1, 1);
plane_format[1] = find_tex_format(1, 2);
if (fmt == IMGFMT_NV21)
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga");
goto supported;
}
// RGB/planar
if (fmt == IMGFMT_GBRP) {
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga");
plane_format[0] = find_tex_format(1, 1);
for (int p = 1; p < desc.num_planes; p++)
plane_format[p] = plane_format[0];
goto supported;
}
// XYZ (same organization as RGB packed, but requires conversion matrix)
if (fmt == IMGFMT_XYZ12) {
plane_format[0] = find_tex_format(2, 3);
goto supported;
}
// Packed RGB special formats
for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) {
if (e->mp_format == fmt) {
plane_format[0] = e;
goto supported;
}
}
// Packed RGB(A) formats
for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) {
if (e->fmt == fmt) {
int n_comp = desc.bytes[0] / e->component_size;
plane_format[0] = find_tex_format(e->component_size, n_comp);
packed_fmt_swizzle(init->color_swizzle, e);
init->has_alpha = e->components[3] != 0;
goto supported;
}
}
// Packed YUV Apple formats
if (init->gl->mpgl_caps & MPGL_CAP_APPLE_RGB_422) {
for (const struct fmt_entry *e = gl_apple_formats; e->mp_format; e++) {
if (e->mp_format == fmt) {
init->is_packed_yuv = true;
snprintf(init->color_swizzle, sizeof(init->color_swizzle),
"gbra");
plane_format[0] = e;
goto supported;
}
}
}
// Unsupported format
return false;
supported:
// Stuff like IMGFMT_420AP10. Untested, most likely insane.
if (desc.num_planes == 4 && (init->plane_bits % 8) != 0)
return false;
for (int p = 0; p < desc.num_planes; p++) {
struct texplane *plane = &init->image.planes[p];
const struct fmt_entry *format = plane_format[p];
assert(format);
plane->gl_format = format->format;
plane->gl_internal_format = format->internal_format;
plane->gl_type = format->type;
}
init->is_yuv = desc.flags & MP_IMGFLAG_YUV;
init->is_rgb = desc.flags & MP_IMGFLAG_RGB;
init->is_linear_rgb = false;
init->plane_count = desc.num_planes;
init->image_desc = desc;
return true;
}
bool gl_video_check_format(struct gl_video *p, int mp_format)
{
struct gl_video tmp = *p;
return init_format(mp_format, &tmp);
}
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
{
p->have_image = false;
mp_image_unrefp(&p->image.hwimage);
if (!mp_image_params_equal(&p->image_params, params)) {
uninit_video(p);
init_video(p, params);
}
}
void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b)
{
MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b);
p->depth_g = g;
}
struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd)
{
struct gl_video *p = talloc_ptrtype(NULL, p);
*p = (struct gl_video) {
.gl = gl,
.log = log,
.osd_state = osd,
.opts = gl_video_opts_def,
.gl_target = GL_TEXTURE_2D,
.gl_debug = true,
.scalers = {
{ .index = 0, .name = "bilinear" },
{ .index = 1, .name = "bilinear" },
},
.scratch = talloc_zero_array(p, char *, 1),
};
init_gl(p);
recreate_osd(p);
return p;
}
static bool can_use_filter_kernel(const struct filter_kernel *kernel)
{
if (!kernel)
return false;
struct filter_kernel k = *kernel;
return mp_init_filter(&k, filter_sizes, 1);
}
// Get static string for scaler shader.
static const char* handle_scaler_opt(const char *name)
{
if (name) {
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
if (can_use_filter_kernel(kernel))
return kernel->name;
for (const char *const *filter = fixed_scale_filters; *filter; filter++) {
if (strcmp(*filter, name) == 0)
return *filter;
}
}
return NULL;
}
// Set the options, and possibly update the filter chain too.
// Note: assumes all options are valid and verified by the option parser.
void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts)
{
p->opts = *opts;
for (int n = 0; n < 2; n++) {
p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]);
assert(p->opts.scalers[n]);
p->scalers[n].name = p->opts.scalers[n];
}
check_gl_features(p);
reinit_rendering(p);
}
void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params)
{
*params = p->image_params; // supports everything
}
bool gl_video_set_equalizer(struct gl_video *p, const char *name, int val)
{
if (mp_csp_equalizer_set(&p->video_eq, name, val) >= 0) {
if (!p->opts.gamma && p->video_eq.values[MP_CSP_EQ_GAMMA] != 0) {
MP_VERBOSE(p, "Auto-enabling gamma.\n");
p->opts.gamma = 1.0f;
compile_shaders(p);
}
update_all_uniforms(p);
return true;
}
return false;
}
bool gl_video_get_equalizer(struct gl_video *p, const char *name, int *val)
{
return mp_csp_equalizer_get(&p->video_eq, name, val) >= 0;
}
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
if (bstr_equals0(param, "help")) {
mp_info(log, "Available scalers:\n");
for (const char *const *filter = fixed_scale_filters; *filter; filter++)
mp_info(log, " %s\n", *filter);
for (int n = 0; mp_filter_kernels[n].name; n++)
mp_info(log, " %s\n", mp_filter_kernels[n].name);
return M_OPT_EXIT - 1;
}
char s[20];
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
return handle_scaler_opt(s) ? 1 : M_OPT_INVALID;
}
// Resize and redraw the contents of the window without further configuration.
// Intended to be used in situations where the frontend can't really be
// involved with reconfiguring the VO properly.
// gl_video_resize() should be called when user interaction is done.
void gl_video_resize_redraw(struct gl_video *p, int w, int h)
{
p->gl->Viewport(p->vp_x, p->vp_y, w, h);
p->vp_w = w;
p->vp_h = h;
gl_video_render_frame(p);
}
void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec)
{
p->hwdec = hwdec;
mp_image_unrefp(&p->image.hwimage);
}