mpv/libfaad2/sbr_hfadj.c

988 lines
30 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_hfadj.c,v 1.1 2003/07/29 08:20:13 menno Exp $
**/
/* High Frequency adjustment */
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include "sbr_syntax.h"
#include "sbr_hfadj.h"
#include "sbr_noise.h"
void hf_adjustment(sbr_info *sbr, qmf_t *Xsbr
#ifdef SBR_LOW_POWER
,real_t *deg /* aliasing degree */
#endif
,uint8_t ch)
{
sbr_hfadj_info adj;
memset(&adj, 0, sizeof(sbr_hfadj_info));
map_noise_data(sbr, &adj, ch);
map_sinusoids(sbr, &adj, ch);
estimate_current_envelope(sbr, &adj, Xsbr, ch);
calculate_gain(sbr, &adj, ch);
#if 1
#ifdef SBR_LOW_POWER
calc_gain_groups(sbr, &adj, deg, ch);
aliasing_reduction(sbr, &adj, deg, ch);
#endif
hf_assembly(sbr, &adj, Xsbr, ch);
#endif
}
static void map_noise_data(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
uint8_t l, i;
uint32_t m;
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (i = 0; i < sbr->N_Q; i++)
{
for (m = sbr->f_table_noise[i]; m < sbr->f_table_noise[i+1]; m++)
{
uint8_t k;
adj->Q_mapped[m - sbr->kx][l] = 0;
for (k = 0; k < 2; k++)
{
if ((sbr->t_E[ch][l] >= sbr->t_Q[ch][k]) &&
(sbr->t_E[ch][l+1] <= sbr->t_Q[ch][k+1]))
{
adj->Q_mapped[m - sbr->kx][l] =
sbr->Q_orig[ch][i][k];
}
}
}
}
}
}
static void map_sinusoids(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
uint8_t l, i, m, k, k1, k2, delta_S, l_i, u_i;
if (sbr->bs_frame_class[ch] == FIXFIX)
{
sbr->l_A[ch] = -1;
} else if (sbr->bs_frame_class[ch] == VARFIX) {
if (sbr->bs_pointer[ch] > 1)
sbr->l_A[ch] = -1;
else
sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
} else {
if (sbr->bs_pointer[ch] == 0)
sbr->l_A[ch] = -1;
else
sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
}
for (l = 0; l < 5; l++)
{
for (i = 0; i < 64; i++)
{
adj->S_index_mapped[i][l] = 0;
adj->S_mapped[i][l] = 0;
}
}
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (i = 0; i < sbr->N_high; i++)
{
for (m = sbr->f_table_res[HI_RES][i]; m < sbr->f_table_res[HI_RES][i+1]; m++)
{
uint8_t delta_step = 0;
if ((l >= sbr->l_A[ch]) || ((sbr->bs_add_harmonic_prev[ch][i]) &&
(sbr->bs_add_harmonic_flag_prev[ch])))
{
delta_step = 1;
}
if (m == (int32_t)((real_t)(sbr->f_table_res[HI_RES][i+1]+sbr->f_table_res[HI_RES][i])/2.))
{
adj->S_index_mapped[m - sbr->kx][l] =
delta_step * sbr->bs_add_harmonic[ch][i];
} else {
adj->S_index_mapped[m - sbr->kx][l] = 0;
}
#if 0
if (sbr->frame == 95)
{
printf("%d %d %d %d %d\n", adj->S_index_mapped[m - sbr->kx][l],
sbr->bs_add_harmonic[ch][i], sbr->bs_add_harmonic_prev[ch][i],
l, sbr->l_A[ch]);
}
#endif
}
}
}
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (i = 0; i < sbr->N_high; i++)
{
if (sbr->f[ch][l] == 1)
{
k1 = i;
k2 = i + 1;
} else {
for (k1 = 0; k1 < sbr->N_low; k1++)
{
if ((sbr->f_table_res[HI_RES][i] >= sbr->f_table_res[LO_RES][k1]) &&
(sbr->f_table_res[HI_RES][i+1] <= sbr->f_table_res[LO_RES][k1+1]))
{
break;
}
}
for (k2 = 0; k2 < sbr->N_low; k2++)
{
if ((sbr->f_table_res[HI_RES][i+1] >= sbr->f_table_res[LO_RES][k2]) &&
(sbr->f_table_res[HI_RES][i+2] <= sbr->f_table_res[LO_RES][k2+1]))
{
break;
}
}
}
l_i = sbr->f_table_res[sbr->f[ch][l]][k1];
u_i = sbr->f_table_res[sbr->f[ch][l]][k2];
delta_S = 0;
for (k = l_i; k < u_i; k++)
{
if (adj->S_index_mapped[k - sbr->kx][l] == 1)
delta_S = 1;
}
for (m = l_i; m < u_i; m++)
{
adj->S_mapped[m - sbr->kx][l] = delta_S;
}
}
}
}
static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t *Xsbr,
uint8_t ch)
{
uint8_t m, l, j, k, k_l, k_h, p;
real_t nrg, div;
if (sbr->bs_interpol_freq == 1)
{
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t i, l_i, u_i;
l_i = sbr->t_E[ch][l];
u_i = sbr->t_E[ch][l+1];
div = (real_t)(u_i - l_i);
for (m = 0; m < sbr->M; m++)
{
nrg = 0;
for (i = l_i + tHFAdj; i < u_i + tHFAdj; i++)
{
#ifdef FIXED_POINT
nrg += ((QMF_RE(Xsbr[(i<<6) + m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[(i<<6) + m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS);
#else
nrg += MUL(QMF_RE(Xsbr[(i<<6) + m + sbr->kx]), QMF_RE(Xsbr[(i<<6) + m + sbr->kx]))
#ifndef SBR_LOW_POWER
+ MUL(QMF_IM(Xsbr[(i<<6) + m + sbr->kx]), QMF_IM(Xsbr[(i<<6) + m + sbr->kx]))
#endif
;
#endif
}
sbr->E_curr[ch][m][l] = nrg / div;
#ifdef SBR_LOW_POWER
#ifdef FIXED_POINT
sbr->E_curr[ch][m][l] <<= 1;
#else
sbr->E_curr[ch][m][l] *= 2;
#endif
#endif
}
}
} else {
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
{
k_l = sbr->f_table_res[sbr->f[ch][l]][p];
k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
for (k = k_l; k < k_h; k++)
{
uint8_t i, l_i, u_i;
nrg = 0.0;
l_i = sbr->t_E[ch][l];
u_i = sbr->t_E[ch][l+1];
div = (real_t)((u_i - l_i)*(k_h - k_l + 1));
for (i = l_i + tHFAdj; i < u_i + tHFAdj; i++)
{
for (j = k_l; j < k_h; j++)
{
#ifdef FIXED_POINT
nrg += ((QMF_RE(Xsbr[(i<<6) + j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[(i<<6) + j])+(1<<(REAL_BITS-1)))>>REAL_BITS);
#else
nrg += MUL(QMF_RE(Xsbr[(i<<6) + j]), QMF_RE(Xsbr[(i<<6) + j]))
#ifndef SBR_LOW_POWER
+ MUL(QMF_IM(Xsbr[(i<<6) + j]), QMF_IM(Xsbr[(i<<6) + j]))
#endif
;
#endif
}
}
sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
#ifdef SBR_LOW_POWER
#ifdef FIXED_POINT
sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
#else
sbr->E_curr[ch][k - sbr->kx][l] *= 2;
#endif
#endif
}
}
}
}
}
#ifdef FIXED_POINT
#define step(shift) \
if ((0x40000000l >> shift) + root <= value) \
{ \
value -= (0x40000000l >> shift) + root; \
root = (root >> 1) | (0x40000000l >> shift); \
} else { \
root = root >> 1; \
}
/* fixed point square root approximation */
real_t sbr_sqrt(real_t value)
{
real_t root = 0;
step( 0); step( 2); step( 4); step( 6);
step( 8); step(10); step(12); step(14);
step(16); step(18); step(20); step(22);
step(24); step(26); step(28); step(30);
if (root < value)
++root;
root <<= (REAL_BITS/2);
return root;
}
real_t sbr_sqrt_int(real_t value)
{
real_t root = 0;
step( 0); step( 2); step( 4); step( 6);
step( 8); step(10); step(12); step(14);
step(16); step(18); step(20); step(22);
step(24); step(26); step(28); step(30);
if (root < value)
++root;
return root;
}
#define SBR_SQRT_FIX(A) sbr_sqrt(A)
#define SBR_SQRT_INT(A) sbr_sqrt_int(A)
#endif
#ifdef FIXED_POINT
#define EPS (1) /* smallest number available in fixed point */
#else
#define EPS (1e-12)
#endif
#ifdef FIXED_POINT
#define ONE (REAL_CONST(1)>>10)
#else
#define ONE (1)
#endif
#ifdef FIXED_POINT
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
uint8_t m, l, k, i;
real_t Q_M_lim[64];
real_t G_lim[64];
real_t G_boost;
real_t S_M[64];
uint8_t table_map_res_to_m[64];
for (l = 0; l < sbr->L_E[ch]; l++)
{
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
for (i = 0; i < sbr->n[sbr->f[ch][l]]; i++)
{
for (m = sbr->f_table_res[sbr->f[ch][l]][i]; m < sbr->f_table_res[sbr->f[ch][l]][i+1]; m++)
{
table_map_res_to_m[m - sbr->kx] = i;
}
}
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
real_t G_max;
real_t den = 0;
real_t acc1 = 0;
real_t acc2 = 0;
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
/* E_orig: integer */
acc1 += sbr->E_orig[ch][table_map_res_to_m[m]][l];
/* E_curr: integer */
acc2 += sbr->E_curr[ch][m][l];
}
/* G_max: fixed point */
if (acc2 == 0)
{
G_max = 0xFFF;
} else {
G_max = (((int64_t)acc1)<<REAL_BITS) / acc2;
switch (sbr->bs_limiter_gains)
{
case 0: G_max >>= 1; break;
case 2: G_max <<= 1; break;
default: break;
}
}
//printf("%f %d %d\n", G_max /(float)(1<<REAL_BITS), acc1, acc2);
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
real_t d, Q_M, G;
real_t div2;
/* Q_mapped: fixed point */
/* div2: fixed point COEF */
real_t tmp2 = adj->Q_mapped[m][l] << (COEF_BITS-REAL_BITS);
real_t tmp = COEF_CONST(1) + tmp2;
if (tmp == 0)
div2 = COEF_CONST(1);
else
div2 = (((int64_t)tmp2 << COEF_BITS)/tmp);
//printf("%f\n", div2 / (float)(1<<COEF_BITS));
/* Q_M: integer */
Q_M = MUL_R_C(sbr->E_orig[ch][table_map_res_to_m[m]][l], div2);
//printf("%d\n", Q_M /* / (float)(1<<REAL_BITS)*/);
if (adj->S_mapped[m][l] == 0)
{
real_t tmp, tmp2;
S_M[m] = 0;
/* d: fixed point */
tmp2 = adj->Q_mapped[m][l] /* << (COEF_BITS-REAL_BITS)*/;
tmp = REAL_CONST(1) + delta*tmp2;
d = (((int64_t)REAL_CONST(1))<<REAL_BITS) / (tmp);
/* G: fixed point */
G = (((int64_t)sbr->E_orig[ch][table_map_res_to_m[m]][l])<<REAL_BITS) / (1 + sbr->E_curr[ch][m][l]);
G = MUL(G, d);
//printf("%f\n", G/(float)(1<<REAL_BITS));
} else {
real_t div;
/* div: fixed point COEF */
real_t tmp = COEF_CONST(1.0) + (adj->Q_mapped[m][l] << (COEF_BITS-REAL_BITS));
real_t tmp2 = COEF_CONST(adj->S_mapped[m][l]);
if (tmp == 0)
div = COEF_CONST(1);
else
div = (((int64_t)tmp2 << COEF_BITS)/tmp);
//printf("%f\n", div/(float)(1<<COEF_BITS));
/* S_M: integer */
S_M[m] = MUL_R_C(sbr->E_orig[ch][table_map_res_to_m[m]][l], div);
//printf("%d\n", S_M[m]);
/* G: fixed_point */
if ((ONE + sbr->E_curr[ch][m][l]) == 0)
G = 0xFFF; // uhm???
else {
real_t tmp = ONE + sbr->E_curr[ch][m][l];
/* tmp2: fixed point */
real_t tmp2 = (((int64_t)(sbr->E_orig[ch][table_map_res_to_m[m]][l]))<<REAL_BITS)/(tmp);
G = MUL_R_C(tmp2, div2);
}
//printf("%f\n", G/(float)(1<<REAL_BITS));
}
/* limit the additional noise energy level */
/* and apply the limiter */
/* G_lim: fixed point */
/* Q_M_lim: integer */
if (G_max > G)
{
Q_M_lim[m] = Q_M;
G_lim[m] = G;
} else {
real_t tmp;
if (G == 0)
tmp = 0xFFF;
else
tmp = SBR_DIV(G_max, G);
Q_M_lim[m] = MUL(Q_M, tmp);
G_lim[m] = G_max;
}
/* E_curr: integer, using MUL() is NOT OK */
den += MUL(sbr->E_curr[ch][m][l], G_lim[m]);
if (adj->S_index_mapped[m][l])
den += S_M[m];
else if (l != sbr->l_A[ch])
den += Q_M_lim[m];
}
//printf("%d\n", den);
/* G_boost: fixed point */
if ((den + EPS) == 0)
G_boost = REAL_CONST(2.51188643);
else
G_boost = (((int64_t)(acc1 + EPS))<<REAL_BITS)/(den + EPS);
G_boost = min(G_boost, REAL_CONST(2.51188643) /* 1.584893192 ^ 2 */);
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
/* apply compensation to gain, noise floor sf's and sinusoid levels */
#ifndef SBR_LOW_POWER
/* G_lim_boost: fixed point */
adj->G_lim_boost[l][m] = SBR_SQRT_FIX(MUL(G_lim[m], G_boost));
#else
/* sqrt() will be done after the aliasing reduction to save a
* few multiplies
*/
/* G_lim_boost: fixed point */
adj->G_lim_boost[l][m] = MUL(G_lim[m], G_boost);
#endif
/* Q_M_lim_boost: integer */
adj->Q_M_lim_boost[l][m] = SBR_SQRT_INT(MUL(Q_M_lim[m], G_boost));
/* S_M_boost: integer */
if (adj->S_index_mapped[m][l])
adj->S_M_boost[l][m] = SBR_SQRT_INT(MUL(S_M[m], G_boost));
else
adj->S_M_boost[l][m] = 0;
}
}
}
}
#else
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
{
static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
uint8_t m, l, k, i;
real_t Q_M_lim[64];
real_t G_lim[64];
real_t G_boost;
real_t S_M[64];
uint8_t table_map_res_to_m[64];
for (l = 0; l < sbr->L_E[ch]; l++)
{
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
for (i = 0; i < sbr->n[sbr->f[ch][l]]; i++)
{
for (m = sbr->f_table_res[sbr->f[ch][l]][i]; m < sbr->f_table_res[sbr->f[ch][l]][i+1]; m++)
{
table_map_res_to_m[m - sbr->kx] = i;
}
}
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
real_t G_max;
real_t den = 0;
real_t acc1 = 0;
real_t acc2 = 0;
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
acc1 += sbr->E_orig[ch][table_map_res_to_m[m]][l];
acc2 += sbr->E_curr[ch][m][l];
}
G_max = ((EPS + acc1)/(EPS + acc2)) * limGain[sbr->bs_limiter_gains];
G_max = min(G_max, 1e10);
//printf("%f %d %d\n", G_max, (int)floor((acc1+EPS)/1024.), (int)floor((acc2+EPS)/1024.));
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
real_t d, Q_M, G;
real_t div2;
div2 = adj->Q_mapped[m][l] / (1 + adj->Q_mapped[m][l]);
//printf("%f\n", div2);
Q_M = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div2;
//printf("%f\n", Q_M/1024.);
if (adj->S_mapped[m][l] == 0)
{
S_M[m] = 0;
/* fixed point: delta* can stay since it's either 1 or 0 */
d = (1 + sbr->E_curr[ch][m][l]) * (1 + delta*adj->Q_mapped[m][l]);
//printf("%f\n", d/1024.);
G = sbr->E_orig[ch][table_map_res_to_m[m]][l] / d;
//printf("%f\n", G);
} else {
real_t div;
div = adj->S_mapped[m][l] / (1. + adj->Q_mapped[m][l]);
//printf("%f\n", div);
S_M[m] = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div;
//printf("%f\n", S_M[m]/1024.);
G = (sbr->E_orig[ch][table_map_res_to_m[m]][l] / (1. + sbr->E_curr[ch][m][l])) * div2;
//printf("%f\n", G);
}
/* limit the additional noise energy level */
/* and apply the limiter */
if (G_max > G)
{
Q_M_lim[m] = Q_M;
G_lim[m] = G;
} else {
Q_M_lim[m] = Q_M * G_max / G;
G_lim[m] = G_max;
//printf("%f\n", Q_M_lim[m] / 1024.);
}
den += sbr->E_curr[ch][m][l] * G_lim[m];
if (adj->S_index_mapped[m][l])
den += S_M[m];
else if (l != sbr->l_A[ch])
den += Q_M_lim[m];
}
//printf("%f\n", den/1024.);
G_boost = (acc1 + EPS) / (den + EPS);
G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
/* apply compensation to gain, noise floor sf's and sinusoid levels */
#ifndef SBR_LOW_POWER
adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
#else
/* sqrt() will be done after the aliasing reduction to save a
* few multiplies
*/
adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
#endif
adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
if (adj->S_index_mapped[m][l])
adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
else
adj->S_M_boost[l][m] = 0;
}
}
}
}
#endif
#ifdef SBR_LOW_POWER
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
{
uint8_t l, k, i;
uint8_t grouping;
for (l = 0; l < sbr->L_E[ch]; l++)
{
i = 0;
grouping = 0;
for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
{
if (deg[k + 1] && adj->S_mapped[k-sbr->kx][l] == 0)
{
if (grouping == 0)
{
sbr->f_group[l][i] = k;
grouping = 1;
i++;
}
} else {
if (grouping)
{
if (adj->S_mapped[k-sbr->kx][l])
sbr->f_group[l][i] = k;
else
sbr->f_group[l][i] = k + 1;
grouping = 0;
i++;
}
}
}
if (grouping)
{
sbr->f_group[l][i] = sbr->kx + sbr->M;
i++;
}
sbr->N_G[l] = (uint8_t)(i >> 1);
}
}
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
{
uint8_t l, k, m;
real_t E_total, E_total_est, G_target, acc;
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->N_G[l]; k++)
{
E_total_est = E_total = 0;
for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
/* E_curr: integer */
/* G_lim_boost: fixed point */
/* E_total_est: integer */
/* E_total: integer */
E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
E_total += MUL(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
}
/* G_target: fixed point */
if ((E_total_est + EPS) == 0)
G_target = 0;
else
#ifdef FIXED_POINT
G_target = (((int64_t)(E_total))<<REAL_BITS)/(E_total_est + EPS);
#else
G_target = E_total / (E_total_est + EPS);
#endif
acc = 0;
for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
real_t alpha;
/* alpha: fixed point */
if (m < sbr->kx + sbr->M - 1)
{
alpha = max(deg[m], deg[m + 1]);
} else {
alpha = deg[m];
}
adj->G_lim_boost[l][m-sbr->kx] = MUL(alpha, G_target) +
MUL((REAL_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
/* acc: integer */
acc += MUL(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
}
/* acc: fixed point */
if (acc + EPS == 0)
acc = 0;
else
#ifdef FIXED_POINT
acc = (((int64_t)(E_total))<<REAL_BITS)/(acc + EPS);
#else
acc = E_total / (acc + EPS);
#endif
for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{
adj->G_lim_boost[l][m-sbr->kx] = MUL(acc, adj->G_lim_boost[l][m-sbr->kx]);
}
}
}
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
{
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
{
#ifdef FIXED_POINT
adj->G_lim_boost[l][m] = SBR_SQRT_FIX(adj->G_lim_boost[l][m]);
#else
adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
#endif
}
}
}
}
#endif
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
qmf_t *Xsbr, uint8_t ch)
{
static real_t h_smooth[] = {
COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084),
COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582),
COEF_CONST(0.33333333333333)
};
static int8_t phi_re[] = { 1, 0, -1, 0 };
static int8_t phi_im[] = { 0, 1, 0, -1 };
uint8_t m, l, i, n;
uint16_t fIndexNoise = 0;
uint8_t fIndexSine = 0;
uint8_t assembly_reset = 0;
real_t *temp;
real_t G_filt, Q_filt;
uint8_t h_SL;
if (sbr->Reset == 1)
{
assembly_reset = 1;
fIndexNoise = 0;
} else {
fIndexNoise = sbr->index_noise_prev[ch];
}
fIndexSine = sbr->psi_is_prev[ch];
for (l = 0; l < sbr->L_E[ch]; l++)
{
uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
#ifdef SBR_LOW_POWER
h_SL = 0;
#else
h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
h_SL = (no_noise ? 0 : h_SL);
#endif
if (assembly_reset)
{
for (n = 0; n < 4; n++)
{
memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
}
assembly_reset = 0;
}
for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
{
#ifdef SBR_LOW_POWER
uint8_t i_min1, i_plus1;
uint8_t sinusoids = 0;
#endif
memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
for (m = 0; m < sbr->M; m++)
{
uint8_t j;
qmf_t psi;
G_filt = 0;
Q_filt = 0;
j = 0;
if (h_SL != 0)
{
for (n = 0; n <= 4; n++)
{
G_filt += MUL_R_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]);
Q_filt += MUL_R_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]);
j++;
}
} else {
G_filt = sbr->G_temp_prev[ch][4][m];
Q_filt = sbr->Q_temp_prev[ch][4][m];
}
Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;
#if 0
if (sbr->frame == 155)
{
printf("%f\n", G_filt);
}
#endif
/* add noise to the output */
fIndexNoise = (fIndexNoise + 1) & 511;
#if 0
printf("%d %f\n", Q_filt, RE(V[fIndexNoise])/(float)(1<<COEF_BITS));
#endif
/* the smoothed gain values are applied to Xsbr */
/* V is defined, not calculated */
#ifdef FIXED_POINT
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ MUL_R_C((Q_filt<<REAL_BITS), RE(V[fIndexNoise]));
#else
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ MUL_R_C(Q_filt, RE(V[fIndexNoise]));
#endif
if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = 16428320;
#ifndef SBR_LOW_POWER
QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ MUL_R_C(Q_filt, IM(V[fIndexNoise]));
#endif
if (adj->S_index_mapped[m][l])
{
int8_t rev = ((m + sbr->kx) & 1) ? -1 : 1;
QMF_RE(psi) = MUL(adj->S_M_boost[l][m], phi_re[fIndexSine]);
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) += QMF_RE(psi);
#ifndef SBR_LOW_POWER
QMF_IM(psi) = rev * MUL(adj->S_M_boost[l][m], phi_im[fIndexSine]);
QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) += QMF_IM(psi);
#else
i_min1 = (fIndexSine - 1) & 3;
i_plus1 = (fIndexSine + 1) & 3;
if (m == 0)
{
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx - 1]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815)));
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815)));
}
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16))
{
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815)));
}
if ((m == sbr->M - 1) && (sinusoids < 16) && (m + sbr->kx + 1 < 63))
{
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx + 1]) -=
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_min1]), COEF_CONST(0.00815)));
}
sinusoids++;
#endif
}
}
fIndexSine = (fIndexSine + 1) & 3;
temp = sbr->G_temp_prev[ch][0];
for (n = 0; n < 4; n++)
sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1];
sbr->G_temp_prev[ch][4] = temp;
temp = sbr->Q_temp_prev[ch][0];
for (n = 0; n < 4; n++)
sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1];
sbr->Q_temp_prev[ch][4] = temp;
}
}
sbr->index_noise_prev[ch] = fIndexNoise;
sbr->psi_is_prev[ch] = fIndexSine;
}
#endif