mpv/libfaad2/sbr_e_nf.c

358 lines
10 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_e_nf.c,v 1.1 2003/07/29 08:20:13 menno Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include <stdlib.h>
#include "sbr_syntax.h"
#include "sbr_e_nf.h"
void extract_envelope_data(sbr_info *sbr, uint8_t ch)
{
uint8_t l, k;
#if 0
if (sbr->frame == 19)
{
sbr->frame = 19;
}
#endif
for (l = 0; l < sbr->L_E[ch]; l++)
{
if (sbr->bs_df_env[ch][l] == 0)
{
for (k = 1; k < sbr->n[sbr->f[ch][l]]; k++)
{
sbr->E[ch][k][l] = sbr->E[ch][k - 1][l] + sbr->E[ch][k][l];
}
} else { /* bs_df_env == 1 */
uint8_t g = (l == 0) ? sbr->f_prev[ch] : sbr->f[ch][l-1];
int16_t E_prev;
if (sbr->f[ch][l] == g)
{
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
if (l == 0)
E_prev = sbr->E_prev[ch][k];
else
E_prev = sbr->E[ch][k][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
} else if ((g == 1) && (sbr->f[ch][l] == 0)) {
uint8_t i;
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
for (i = 0; i < sbr->N_high; i++)
{
if (sbr->f_table_res[HI_RES][i] == sbr->f_table_res[LO_RES][k])
{
if (l == 0)
E_prev = sbr->E_prev[ch][i];
else
E_prev = sbr->E[ch][i][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
}
}
} else if ((g == 0) && (sbr->f[ch][l] == 1)) {
uint8_t i;
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
for (i = 0; i < sbr->N_low; i++)
{
if ((sbr->f_table_res[LO_RES][i] <= sbr->f_table_res[HI_RES][k]) &&
(sbr->f_table_res[HI_RES][k] < sbr->f_table_res[LO_RES][i + 1]))
{
if (l == 0)
E_prev = sbr->E_prev[ch][i];
else
E_prev = sbr->E[ch][i][l - 1];
sbr->E[ch][k][l] = E_prev + sbr->E[ch][k][l];
}
}
}
}
}
}
#if 0
if (sbr->frame == 23)
{
int l, k;
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
//printf("l:%d k:%d E:%d\n",l,k, sbr->E[ch][k][l]);
printf("%d\n", sbr->E[ch][k][l]);
}
}
printf("\n");
}
#endif
}
void extract_noise_floor_data(sbr_info *sbr, uint8_t ch)
{
uint8_t l, k;
for (l = 0; l < sbr->L_Q[ch]; l++)
{
if (sbr->bs_df_noise[ch][l] == 0)
{
for (k = 1; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q[ch][k][l] + sbr->Q[ch][k-1][l];
}
} else {
if (l == 0)
{
for (k = 0; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q_prev[ch][k] + sbr->Q[ch][k][0];
}
} else {
for (k = 0; k < sbr->N_Q; k++)
{
sbr->Q[ch][k][l] = sbr->Q[ch][k][l - 1] + sbr->Q[ch][k][l];
}
}
}
}
#if 0
if (sbr->frame == 23)
{
int l, k;
for (l = 0; l < sbr->L_Q[ch]; l++)
{
for (k = 0; k < sbr->N_Q; k++)
{
//printf("l:%d k:%d E:%d\n",l,k, sbr->E[ch][k][l]);
printf("%d\n", sbr->Q[ch][k][l]);
}
}
printf("\n");
}
#endif
}
/* FIXME: pow() not needed */
void envelope_noise_dequantisation(sbr_info *sbr, uint8_t ch)
{
if (sbr->bs_coupling == 0)
{
uint8_t l, k;
#ifdef FIXED_POINT
uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
#else
real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
#endif
for (l = 0; l < sbr->L_E[ch]; l++)
{
for (k = 0; k < sbr->n[sbr->f[ch][l]]; k++)
{
#ifndef FIXED_POINT
/* +6 for the *64 */
sbr->E_orig[ch][k][l] = pow(2, sbr->E[ch][k][l]*amp + 6);
#else
int8_t exp;
/* +6 for the *64 and -10 for the /32 in the synthesis QMF
* since this is a energy value: (x/32)^2 = (x^2)/1024
*/
exp = (sbr->E[ch][k][l] >> amp) + 6 - 10;
// printf("%d\n", exp);
if (exp < 0)
sbr->E_orig[ch][k][l] = 0; //REAL_CONST(1) >> -exp;
else
sbr->E_orig[ch][k][l] = 1 << exp; //REAL_CONST(1) << exp;
if (amp && (sbr->E[ch][k][l] & 1))
sbr->E_orig[ch][k][l] = MUL(sbr->E_orig[ch][k][l], REAL_CONST(1.414213562));
#endif
}
}
for (l = 0; l < sbr->L_Q[ch]; l++)
{
for (k = 0; k < sbr->N_Q; k++)
{
if (sbr->Q[ch][k][l] < 0 || sbr->Q[ch][k][l] > 30)
sbr->Q_orig[ch][k][l] = 0;
else {
#ifndef FIXED_POINT
sbr->Q_orig[ch][k][l] = pow(2, NOISE_FLOOR_OFFSET - sbr->Q[ch][k][l]);
#else
int8_t exp = NOISE_FLOOR_OFFSET - sbr->Q[ch][k][l];
if (exp < 0)
sbr->Q_orig[ch][k][l] = REAL_CONST(1) >> -exp;
else
sbr->Q_orig[ch][k][l] = REAL_CONST(1) << exp;
#endif
}
}
}
}
}
void unmap_envelope_noise(sbr_info *sbr)
{
uint8_t l, k;
#ifdef FIXED_POINT
uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
#else
real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
#endif
for (l = 0; l < sbr->L_E[0]; l++)
{
for (k = 0; k < sbr->n[sbr->f[0][l]]; k++)
{
real_t l_temp, r_temp;
#ifdef FIXED_POINT
int8_t exp;
/* +6: * 64 ; +1: * 2 ; -10: /1024 QMF */
exp = (sbr->E[0][k][l] >> amp0) - 3;
// printf("%d\n", exp);
if (exp < 0)
l_temp = REAL_CONST(1) >> -exp;
else
l_temp = REAL_CONST(1) << exp;
if (amp0 && (sbr->E[0][k][l] & 1))
l_temp = MUL(l_temp, REAL_CONST(1.414213562373095));
/* UN_MAP removed: (x / 4096) same as (x >> 12) */
exp = (sbr->E[1][k][l] >> amp1) - 12;
// printf("%d\n", exp);
if (exp < 0)
r_temp = REAL_CONST(1) >> -exp;
else
r_temp = REAL_CONST(1) << exp;
if (amp1 && (sbr->E[1][k][l] & 1))
r_temp = MUL(r_temp, REAL_CONST(1.414213562373095));
#else
/* +6: * 64 ; +1: * 2 */
l_temp = pow(2, sbr->E[0][k][l]*amp0 + 7);
/* UN_MAP removed: (x / 4096) same as (x >> 12) */
r_temp = pow(2, sbr->E[1][k][l]*amp1 - 12);
#endif
#ifdef FIXED_POINT
{
real_t tmp = REAL_CONST(1.0) + r_temp;
sbr->E_orig[1][k][l] = SBR_DIV(l_temp, tmp);
}
#else
sbr->E_orig[1][k][l] = l_temp / (1.0 + r_temp);
#endif
sbr->E_orig[0][k][l] = MUL(r_temp, sbr->E_orig[1][k][l]);
#ifdef FIXED_POINT
sbr->E_orig[0][k][l] >>= REAL_BITS;
sbr->E_orig[1][k][l] >>= REAL_BITS;
#endif
//printf("%f\t%f\n", sbr->E_orig[0][k][l] /(float)(1<<REAL_BITS), sbr->E_orig[1][k][l] /(float)(1<<REAL_BITS));
//printf("%f\t%f\n", sbr->E_orig[0][k][l]/1024., sbr->E_orig[1][k][l]/1024.);
}
}
for (l = 0; l < sbr->L_Q[0]; l++)
{
for (k = 0; k < sbr->N_Q; k++)
{
if ((sbr->Q[0][k][l] < 0 || sbr->Q[0][k][l] > 30) ||
(sbr->Q[1][k][l] < 0 || sbr->Q[1][k][l] > 30))
{
sbr->Q_orig[0][k][l] = 0;
sbr->Q_orig[1][k][l] = 0;
} else {
real_t l_temp, r_temp;
#ifndef FIXED_POINT
l_temp = pow(2.0, NOISE_FLOOR_OFFSET - sbr->Q[0][k][l] + 1);
r_temp = pow(2.0, sbr->Q[1][k][l] - 12);
#else
int8_t exp;
exp = NOISE_FLOOR_OFFSET - sbr->Q[0][k][l] + 1;
if (exp < 0)
l_temp = REAL_CONST(1) >> -exp;
else
l_temp = REAL_CONST(1) << exp;
exp = sbr->Q[1][k][l] - 12;
if (exp < 0)
r_temp = REAL_CONST(1) >> -exp;
else
r_temp = REAL_CONST(1) << exp;
#endif
#ifdef FIXED_POINT
sbr->Q_orig[1][k][l] = SBR_DIV(l_temp, (REAL_CONST(1.0) + r_temp));
#else
sbr->Q_orig[1][k][l] = l_temp / (1.0 + r_temp);
#endif
sbr->Q_orig[0][k][l] = MUL(r_temp, sbr->Q_orig[1][k][l]);
}
}
}
}
#endif