mpv/libaf/af.h

253 lines
7.8 KiB
C

#include <stdio.h>
#include "af_mp.h"
#include "config.h"
#include "control.h"
#include "af_format.h"
#ifndef __aop_h__
#define __aop_h__
struct af_instance_s;
// Audio data chunk
typedef struct af_data_s
{
void* audio; // data buffer
int len; // buffer length
int rate; // sample rate
int nch; // number of channels
int format; // format
int bps; // bytes per sample
} af_data_t;
// Fraction, used to calculate buffer lengths
typedef struct frac_s
{
int n; // Numerator
int d; // Denominator
} frac_t;
// Flags used for defining the behavior of an audio filter
#define AF_FLAGS_REENTRANT 0x00000000
#define AF_FLAGS_NOT_REENTRANT 0x00000001
/* Audio filter information not specific for current instance, but for
a specific filter */
typedef struct af_info_s
{
const char *info;
const char *name;
const char *author;
const char *comment;
const int flags;
int (*open)(struct af_instance_s* vf);
} af_info_t;
// Linked list of audio filters
typedef struct af_instance_s
{
af_info_t* info;
int (*control)(struct af_instance_s* af, int cmd, void* arg);
void (*uninit)(struct af_instance_s* af);
af_data_t* (*play)(struct af_instance_s* af, af_data_t* data);
void* setup; // setup data for this specific instance and filter
af_data_t* data; // configuration for outgoing data stream
struct af_instance_s* next;
struct af_instance_s* prev;
double delay; // Delay caused by the filter [ms]
frac_t mul; /* length multiplier: how much does this instance change
the length of the buffer. */
}af_instance_t;
// Initialization flags
extern int* af_cpu_speed;
#define AF_INIT_AUTO 0x00000000
#define AF_INIT_SLOW 0x00000001
#define AF_INIT_FAST 0x00000002
#define AF_INIT_FORCE 0x00000003
#define AF_INIT_TYPE_MASK 0x00000003
// Default init type
#ifndef AF_INIT_TYPE
#if defined(HAVE_SSE) || defined(HAVE_3DNOW)
#define AF_INIT_TYPE (af_cpu_speed?*af_cpu_speed:AF_INIT_FAST)
#else
#define AF_INIT_TYPE (af_cpu_speed?*af_cpu_speed:AF_INIT_SLOW)
#endif
#endif
// Configuration switches
typedef struct af_cfg_s{
int force; // Initialization type
char** list; /* list of names of filters that are added to filter
list during first initialization of stream */
}af_cfg_t;
// Current audio stream
typedef struct af_stream_s
{
// The first and last filter in the list
af_instance_t* first;
af_instance_t* last;
// Storage for input and output data formats
af_data_t input;
af_data_t output;
// Configuration for this stream
af_cfg_t cfg;
}af_stream_t;
/*********************************************
// Return values
*/
#define AF_DETACH 2
#define AF_OK 1
#define AF_TRUE 1
#define AF_FALSE 0
#define AF_UNKNOWN -1
#define AF_ERROR -2
#define AF_FATAL -3
/*********************************************
// Export functions
*/
/* Initialize the stream "s". This function creates a new filter list
if necessary according to the values set in input and output. Input
and output should contain the format of the current movie and the
formate of the preferred output respectively. The function is
reentrant i.e. if called wit an already initialized stream the
stream will be reinitialized. The return value is 0 if success and
-1 if failure */
int af_init(af_stream_t* s);
// Uninit and remove all filters
void af_uninit(af_stream_t* s);
/* Add filter during execution. This function adds the filter "name"
to the stream s. The filter will be inserted somewhere nice in the
list of filters. The return value is a pointer to the new filter,
If the filter couldn't be added the return value is NULL. */
af_instance_t* af_add(af_stream_t* s, char* name);
// Uninit and remove the filter "af"
void af_remove(af_stream_t* s, af_instance_t* af);
/* Find filter in the dynamic filter list using it's name This
function is used for finding already initialized filters */
af_instance_t* af_get(af_stream_t* s, char* name);
// Filter data chunk through the filters in the list
af_data_t* af_play(af_stream_t* s, af_data_t* data);
/* Calculate how long the output from the filters will be given the
input length "len". The calculated length is >= the actual
length */
int af_outputlen(af_stream_t* s, int len);
/* Calculate how long the input to the filters should be to produce a
certain output length, i.e. the return value of this function is
the input length required to produce the output length "len". The
calculated length is <= the actual length */
int af_inputlen(af_stream_t* s, int len);
/* Calculate how long the input IN to the filters should be to produce
a certain output length OUT but with the following three constraints:
1. IN <= max_insize, where max_insize is the maximum possible input
block length
2. OUT <= max_outsize, where max_outsize is the maximum possible
output block length
3. If possible OUT >= len.
Return -1 in case of error */
int af_calc_insize_constrained(af_stream_t* s, int len,
int max_outsize,int max_insize);
/* Calculate the total delay caused by the filters */
double af_calc_delay(af_stream_t* s);
// Helper functions and macros used inside the audio filters
/* Helper function called by the macro with the same name only to be
called from inside filters */
int af_resize_local_buffer(af_instance_t* af, af_data_t* data);
/* Helper function used to calculate the exact buffer length needed
when buffers are resized. The returned length is >= than what is
needed */
int af_lencalc(frac_t mul, af_data_t* data);
/* Helper function used to convert to gain value from dB. Returns
AF_OK if of and AF_ERROR if fail */
int af_from_dB(int n, float* in, float* out, float k, float mi, float ma);
/* Helper function used to convert from gain value to dB. Returns
AF_OK if of and AF_ERROR if fail */
int af_to_dB(int n, float* in, float* out, float k);
/* Helper function used to convert from ms to sample time*/
int af_from_ms(int n, float* in, float* out, int rate, float mi, float ma);
/* Helper function used to convert from sample time to ms */
int af_to_ms(int n, float* in, float* out, int rate);
/* Helper function for testing the output format */
int af_test_output(struct af_instance_s* af, af_data_t* out);
/* Memory reallocation macro: if a local buffer is used (i.e. if the
filter doesn't operate on the incoming buffer this macro must be
called to ensure the buffer is big enough. */
#define RESIZE_LOCAL_BUFFER(a,d)\
((a->data->len < af_lencalc(a->mul,d))?af_resize_local_buffer(a,d):AF_OK)
/* Some other useful macro definitions*/
#ifndef min
#define min(a,b)(((a)>(b))?(b):(a))
#endif
#ifndef max
#define max(a,b)(((a)>(b))?(a):(b))
#endif
#ifndef clamp
#define clamp(a,min,max) (((a)>(max))?(max):(((a)<(min))?(min):(a)))
#endif
#ifndef sign
#define sign(a) (((a)>0)?(1):(-1))
#endif
#ifndef lrnd
#define lrnd(a,b) ((b)((a)>=0.0?(a)+0.5:(a)-0.5))
#endif
/* Error messages */
typedef struct af_msg_cfg_s
{
int level; /* Message level for debug and error messages max = 2
min = -2 default = 0 */
FILE* err; // Stream to print error messages to
FILE* msg; // Stream to print information messages to
}af_msg_cfg_t;
extern af_msg_cfg_t af_msg_cfg; // Message
#define AF_MSG_FATAL -3 // Fatal error exit immediately
#define AF_MSG_ERROR -2 // Error return gracefully
#define AF_MSG_WARN -1 // Print warning but do not exit (can be suppressed)
#define AF_MSG_INFO 0 // Important information
#define AF_MSG_VERBOSE 1 // Print this if verbose is enabled
#define AF_MSG_DEBUG0 2 // Print if very verbose
#define AF_MSG_DEBUG1 3 // Print if very very verbose
/* Macro for printing error messages */
#ifndef af_msg
#define af_msg(lev, args... ) \
((lev<AF_MSG_WARN)?(fprintf(af_msg_cfg.err?af_msg_cfg.err:stderr, ## args )): \
((lev<=af_msg_cfg.level)?(fprintf(af_msg_cfg.msg?af_msg_cfg.msg:stdout, ## args )):0))
#endif
#endif /* __aop_h__ */