1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-13 02:15:59 +00:00
mpv/libfaad2/specrec.c
diego 73829e43ab More information about modifications to comply more closely with GPL 2a.
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@12626 b3059339-0415-0410-9bf9-f77b7e298cf2
2004-06-23 13:50:53 +00:00

1285 lines
44 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** Initially modified for use with MPlayer by Arpad Gereöffy on 2003/08/30
** $Id: specrec.c,v 1.3 2004/06/02 22:59:03 diego Exp $
** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/
**/
/*
Spectral reconstruction:
- grouping/sectioning
- inverse quantization
- applying scalefactors
*/
#include "common.h"
#include "structs.h"
#include <string.h>
#include <stdlib.h>
#include "specrec.h"
#include "syntax.h"
#include "iq_table.h"
#include "ms.h"
#include "is.h"
#include "pns.h"
#include "tns.h"
#include "drc.h"
#include "lt_predict.h"
#include "ic_predict.h"
#ifdef SSR_DEC
#include "ssr.h"
#include "ssr_fb.h"
#endif
/* static function declarations */
static void quant_to_spec(ic_stream *ics, real_t *spec_data, uint16_t frame_len);
static uint8_t inverse_quantization(real_t *x_invquant, const int16_t *x_quant, const uint16_t frame_len);
#ifdef LD_DEC
ALIGN static const uint8_t num_swb_512_window[] =
{
0, 0, 0, 36, 36, 37, 31, 31, 0, 0, 0, 0
};
ALIGN static const uint8_t num_swb_480_window[] =
{
0, 0, 0, 35, 35, 37, 30, 30, 0, 0, 0, 0
};
#endif
ALIGN static const uint8_t num_swb_960_window[] =
{
40, 40, 45, 49, 49, 49, 46, 46, 42, 42, 42, 40
};
ALIGN static const uint8_t num_swb_1024_window[] =
{
41, 41, 47, 49, 49, 51, 47, 47, 43, 43, 43, 40
};
ALIGN static const uint8_t num_swb_128_window[] =
{
12, 12, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15
};
ALIGN static const uint16_t swb_offset_1024_96[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
64, 72, 80, 88, 96, 108, 120, 132, 144, 156, 172, 188, 212, 240,
276, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024
};
ALIGN static const uint16_t swb_offset_128_96[] =
{
0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128
};
ALIGN static const uint16_t swb_offset_1024_64[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
64, 72, 80, 88, 100, 112, 124, 140, 156, 172, 192, 216, 240, 268,
304, 344, 384, 424, 464, 504, 544, 584, 624, 664, 704, 744, 784, 824,
864, 904, 944, 984, 1024
};
ALIGN static const uint16_t swb_offset_128_64[] =
{
0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128
};
ALIGN static const uint16_t swb_offset_1024_48[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72,
80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292,
320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736,
768, 800, 832, 864, 896, 928, 1024
};
#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_48[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 68, 76, 84,
92, 100, 112, 124, 136, 148, 164, 184, 208, 236, 268, 300, 332, 364, 396,
428, 460, 512
};
ALIGN static const uint16_t swb_offset_480_48[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72 ,80 ,88,
96, 108, 120, 132, 144, 156, 172, 188, 212, 240, 272, 304, 336, 368, 400,
432, 480
};
#endif
ALIGN static const uint16_t swb_offset_128_48[] =
{
0, 4, 8, 12, 16, 20, 28, 36, 44, 56, 68, 80, 96, 112, 128
};
ALIGN static const uint16_t swb_offset_1024_32[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72,
80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292,
320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736,
768, 800, 832, 864, 896, 928, 960, 992, 1024
};
#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_32[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80,
88, 96, 108, 120, 132, 144, 160, 176, 192, 212, 236, 260, 288, 320, 352,
384, 416, 448, 480, 512
};
ALIGN static const uint16_t swb_offset_480_32[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80,
88, 96, 104, 112, 124, 136, 148, 164, 180, 200, 224, 256, 288, 320, 352,
384, 416, 448, 480
};
#endif
ALIGN static const uint16_t swb_offset_1024_24[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68,
76, 84, 92, 100, 108, 116, 124, 136, 148, 160, 172, 188, 204, 220,
240, 260, 284, 308, 336, 364, 396, 432, 468, 508, 552, 600, 652, 704,
768, 832, 896, 960, 1024
};
#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_24[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68,
80, 92, 104, 120, 140, 164, 192, 224, 256, 288, 320, 352, 384, 416,
448, 480, 512
};
ALIGN static const uint16_t swb_offset_480_24[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68, 80, 92, 104, 120,
140, 164, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480
};
#endif
ALIGN static const uint16_t swb_offset_128_24[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 64, 76, 92, 108, 128
};
ALIGN static const uint16_t swb_offset_1024_16[] =
{
0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 100, 112, 124,
136, 148, 160, 172, 184, 196, 212, 228, 244, 260, 280, 300, 320, 344,
368, 396, 424, 456, 492, 532, 572, 616, 664, 716, 772, 832, 896, 960, 1024
};
ALIGN static const uint16_t swb_offset_128_16[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 60, 72, 88, 108, 128
};
ALIGN static const uint16_t swb_offset_1024_8[] =
{
0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 172,
188, 204, 220, 236, 252, 268, 288, 308, 328, 348, 372, 396, 420, 448,
476, 508, 544, 580, 620, 664, 712, 764, 820, 880, 944, 1024
};
ALIGN static const uint16_t swb_offset_128_8[] =
{
0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 60, 72, 88, 108, 128
};
ALIGN static const uint16_t *swb_offset_1024_window[] =
{
swb_offset_1024_96, /* 96000 */
swb_offset_1024_96, /* 88200 */
swb_offset_1024_64, /* 64000 */
swb_offset_1024_48, /* 48000 */
swb_offset_1024_48, /* 44100 */
swb_offset_1024_32, /* 32000 */
swb_offset_1024_24, /* 24000 */
swb_offset_1024_24, /* 22050 */
swb_offset_1024_16, /* 16000 */
swb_offset_1024_16, /* 12000 */
swb_offset_1024_16, /* 11025 */
swb_offset_1024_8 /* 8000 */
};
#ifdef LD_DEC
ALIGN static const uint16_t *swb_offset_512_window[] =
{
0, /* 96000 */
0, /* 88200 */
0, /* 64000 */
swb_offset_512_48, /* 48000 */
swb_offset_512_48, /* 44100 */
swb_offset_512_32, /* 32000 */
swb_offset_512_24, /* 24000 */
swb_offset_512_24, /* 22050 */
0, /* 16000 */
0, /* 12000 */
0, /* 11025 */
0 /* 8000 */
};
ALIGN static const uint16_t *swb_offset_480_window[] =
{
0, /* 96000 */
0, /* 88200 */
0, /* 64000 */
swb_offset_480_48, /* 48000 */
swb_offset_480_48, /* 44100 */
swb_offset_480_32, /* 32000 */
swb_offset_480_24, /* 24000 */
swb_offset_480_24, /* 22050 */
0, /* 16000 */
0, /* 12000 */
0, /* 11025 */
0 /* 8000 */
};
#endif
ALIGN static const uint16_t *swb_offset_128_window[] =
{
swb_offset_128_96, /* 96000 */
swb_offset_128_96, /* 88200 */
swb_offset_128_64, /* 64000 */
swb_offset_128_48, /* 48000 */
swb_offset_128_48, /* 44100 */
swb_offset_128_48, /* 32000 */
swb_offset_128_24, /* 24000 */
swb_offset_128_24, /* 22050 */
swb_offset_128_16, /* 16000 */
swb_offset_128_16, /* 12000 */
swb_offset_128_16, /* 11025 */
swb_offset_128_8 /* 8000 */
};
#define bit_set(A, B) ((A) & (1<<(B)))
/* 4.5.2.3.4 */
/*
- determine the number of windows in a window_sequence named num_windows
- determine the number of window_groups named num_window_groups
- determine the number of windows in each group named window_group_length[g]
- determine the total number of scalefactor window bands named num_swb for
the actual window type
- determine swb_offset[swb], the offset of the first coefficient in
scalefactor window band named swb of the window actually used
- determine sect_sfb_offset[g][section],the offset of the first coefficient
in section named section. This offset depends on window_sequence and
scale_factor_grouping and is needed to decode the spectral_data().
*/
uint8_t window_grouping_info(faacDecHandle hDecoder, ic_stream *ics)
{
uint8_t i, g;
uint8_t sf_index = hDecoder->sf_index;
switch (ics->window_sequence) {
case ONLY_LONG_SEQUENCE:
case LONG_START_SEQUENCE:
case LONG_STOP_SEQUENCE:
ics->num_windows = 1;
ics->num_window_groups = 1;
ics->window_group_length[ics->num_window_groups-1] = 1;
#ifdef LD_DEC
if (hDecoder->object_type == LD)
{
if (hDecoder->frameLength == 512)
ics->num_swb = num_swb_512_window[sf_index];
else /* if (hDecoder->frameLength == 480) */
ics->num_swb = num_swb_480_window[sf_index];
} else {
#endif
if (hDecoder->frameLength == 1024)
ics->num_swb = num_swb_1024_window[sf_index];
else /* if (hDecoder->frameLength == 960) */
ics->num_swb = num_swb_960_window[sf_index];
#ifdef LD_DEC
}
#endif
/* preparation of sect_sfb_offset for long blocks */
/* also copy the last value! */
#ifdef LD_DEC
if (hDecoder->object_type == LD)
{
if (hDecoder->frameLength == 512)
{
for (i = 0; i < ics->num_swb; i++)
{
ics->sect_sfb_offset[0][i] = swb_offset_512_window[sf_index][i];
ics->swb_offset[i] = swb_offset_512_window[sf_index][i];
}
} else /* if (hDecoder->frameLength == 480) */ {
for (i = 0; i < ics->num_swb; i++)
{
ics->sect_sfb_offset[0][i] = swb_offset_480_window[sf_index][i];
ics->swb_offset[i] = swb_offset_480_window[sf_index][i];
}
}
ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength;
ics->swb_offset[ics->num_swb] = hDecoder->frameLength;
} else {
#endif
for (i = 0; i < ics->num_swb; i++)
{
ics->sect_sfb_offset[0][i] = swb_offset_1024_window[sf_index][i];
ics->swb_offset[i] = swb_offset_1024_window[sf_index][i];
}
ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength;
ics->swb_offset[ics->num_swb] = hDecoder->frameLength;
#ifdef LD_DEC
}
#endif
return 0;
case EIGHT_SHORT_SEQUENCE:
ics->num_windows = 8;
ics->num_window_groups = 1;
ics->window_group_length[ics->num_window_groups-1] = 1;
ics->num_swb = num_swb_128_window[sf_index];
for (i = 0; i < ics->num_swb; i++)
ics->swb_offset[i] = swb_offset_128_window[sf_index][i];
ics->swb_offset[ics->num_swb] = hDecoder->frameLength/8;
for (i = 0; i < ics->num_windows-1; i++) {
if (bit_set(ics->scale_factor_grouping, 6-i) == 0)
{
ics->num_window_groups += 1;
ics->window_group_length[ics->num_window_groups-1] = 1;
} else {
ics->window_group_length[ics->num_window_groups-1] += 1;
}
}
/* preparation of sect_sfb_offset for short blocks */
for (g = 0; g < ics->num_window_groups; g++)
{
uint16_t width;
uint8_t sect_sfb = 0;
uint16_t offset = 0;
for (i = 0; i < ics->num_swb; i++)
{
if (i+1 == ics->num_swb)
{
width = (hDecoder->frameLength/8) - swb_offset_128_window[sf_index][i];
} else {
width = swb_offset_128_window[sf_index][i+1] -
swb_offset_128_window[sf_index][i];
}
width *= ics->window_group_length[g];
ics->sect_sfb_offset[g][sect_sfb++] = offset;
offset += width;
}
ics->sect_sfb_offset[g][sect_sfb] = offset;
}
return 0;
default:
return 1;
}
}
/*
For ONLY_LONG_SEQUENCE windows (num_window_groups = 1,
window_group_length[0] = 1) the spectral data is in ascending spectral
order.
For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the
grouping in the following manner:
- Groups are ordered sequentially
- Within a group, a scalefactor band consists of the spectral data of all
grouped SHORT_WINDOWs for the associated scalefactor window band. To
clarify via example, the length of a group is in the range of one to eight
SHORT_WINDOWs.
- If there are eight groups each with length one (num_window_groups = 8,
window_group_length[0..7] = 1), the result is a sequence of eight spectra,
each in ascending spectral order.
- If there is only one group with length eight (num_window_groups = 1,
window_group_length[0] = 8), the result is that spectral data of all eight
SHORT_WINDOWs is interleaved by scalefactor window bands.
- Within a scalefactor window band, the coefficients are in ascending
spectral order.
*/
static void quant_to_spec(ic_stream *ics, real_t *spec_data, uint16_t frame_len)
{
uint8_t g, sfb, win;
uint16_t width, bin, k, gindex;
ALIGN real_t tmp_spec[1024] = {0};
k = 0;
gindex = 0;
for (g = 0; g < ics->num_window_groups; g++)
{
uint16_t j = 0;
uint16_t gincrease = 0;
uint16_t win_inc = ics->swb_offset[ics->num_swb];
for (sfb = 0; sfb < ics->num_swb; sfb++)
{
width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb];
for (win = 0; win < ics->window_group_length[g]; win++)
{
for (bin = 0; bin < width; bin += 4)
{
tmp_spec[gindex+(win*win_inc)+j+bin+0] = spec_data[k+0];
tmp_spec[gindex+(win*win_inc)+j+bin+1] = spec_data[k+1];
tmp_spec[gindex+(win*win_inc)+j+bin+2] = spec_data[k+2];
tmp_spec[gindex+(win*win_inc)+j+bin+3] = spec_data[k+3];
gincrease += 4;
k += 4;
}
}
j += width;
}
gindex += gincrease;
}
memcpy(spec_data, tmp_spec, frame_len*sizeof(real_t));
}
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error)
{
#ifdef FIXED_POINT
static const real_t errcorr[] = {
REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0),
REAL_CONST(4.0/8.0), REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0),
REAL_CONST(0)
};
real_t x1, x2;
int16_t sgn = 1;
if (q < 0)
{
q = -q;
sgn = -1;
}
if (q < IQ_TABLE_SIZE)
return sgn * tab[q];
/* linear interpolation */
x1 = tab[q>>3];
x2 = tab[(q>>3) + 1];
return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1);
#else
if (q < 0)
{
/* tab contains a value for all possible q [0,8192] */
if (-q < IQ_TABLE_SIZE)
return -tab[-q];
*error = 17;
return 0;
} else {
/* tab contains a value for all possible q [0,8192] */
if (q < IQ_TABLE_SIZE)
return tab[q];
*error = 17;
return 0;
}
#endif
}
static uint8_t inverse_quantization(real_t *x_invquant, const int16_t *x_quant, const uint16_t frame_len)
{
int16_t i;
uint8_t error = 0; /* Init error flag */
const real_t *tab = iq_table;
for (i = 0; i < frame_len; i+=4)
{
x_invquant[i] = iquant(x_quant[i], tab, &error);
x_invquant[i+1] = iquant(x_quant[i+1], tab, &error);
x_invquant[i+2] = iquant(x_quant[i+2], tab, &error);
x_invquant[i+3] = iquant(x_quant[i+3], tab, &error);
}
return error;
}
#ifndef FIXED_POINT
ALIGN static const real_t pow2sf_tab[] = {
2.9802322387695313E-008, 5.9604644775390625E-008, 1.1920928955078125E-007,
2.384185791015625E-007, 4.76837158203125E-007, 9.5367431640625E-007,
1.9073486328125E-006, 3.814697265625E-006, 7.62939453125E-006,
1.52587890625E-005, 3.0517578125E-005, 6.103515625E-005,
0.0001220703125, 0.000244140625, 0.00048828125,
0.0009765625, 0.001953125, 0.00390625,
0.0078125, 0.015625, 0.03125,
0.0625, 0.125, 0.25,
0.5, 1.0, 2.0,
4.0, 8.0, 16.0, 32.0,
64.0, 128.0, 256.0,
512.0, 1024.0, 2048.0,
4096.0, 8192.0, 16384.0,
32768.0, 65536.0, 131072.0,
262144.0, 524288.0, 1048576.0,
2097152.0, 4194304.0, 8388608.0,
16777216.0, 33554432.0, 67108864.0,
134217728.0, 268435456.0, 536870912.0,
1073741824.0, 2147483648.0, 4294967296.0,
8589934592.0, 17179869184.0, 34359738368.0,
68719476736.0, 137438953472.0, 274877906944.0
};
#endif
ALIGN static real_t pow2_table[] =
{
#if 0
COEF_CONST(0.59460355750136053335874998528024), /* 2^-0.75 */
COEF_CONST(0.70710678118654752440084436210485), /* 2^-0.5 */
COEF_CONST(0.84089641525371454303112547623321), /* 2^-0.25 */
#endif
COEF_CONST(1.0),
COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */
COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */
COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */
};
void apply_scalefactors(faacDecHandle hDecoder, ic_stream *ics,
real_t *x_invquant, uint16_t frame_len)
{
uint8_t g, sfb;
uint16_t top;
int32_t exp, frac;
uint8_t groups = 0;
uint16_t nshort = frame_len/8;
for (g = 0; g < ics->num_window_groups; g++)
{
uint16_t k = 0;
/* using this nshort*groups doesn't hurt long blocks, because
long blocks only have 1 group, so that means 'groups' is
always 0 for long blocks
*/
for (sfb = 0; sfb < ics->max_sfb; sfb++)
{
top = ics->sect_sfb_offset[g][sfb+1];
/* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */
/* just ignore them */
if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255)
{
exp = 0;
frac = 0;
} else {
/* ics->scale_factors[g][sfb] must be between 0 and 255 */
exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
}
#ifdef FIXED_POINT
exp -= 25;
/* IMDCT pre-scaling */
if (hDecoder->object_type == LD)
{
exp -= 6 /*9*/;
} else {
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
exp -= 4 /*7*/;
else
exp -= 7 /*10*/;
}
#endif
/* minimum size of a sf band is 4 and always a multiple of 4 */
for ( ; k < top; k += 4)
{
#ifdef FIXED_POINT
if (exp < 0)
{
x_invquant[k+(groups*nshort)] >>= -exp;
x_invquant[k+(groups*nshort)+1] >>= -exp;
x_invquant[k+(groups*nshort)+2] >>= -exp;
x_invquant[k+(groups*nshort)+3] >>= -exp;
} else {
x_invquant[k+(groups*nshort)] <<= exp;
x_invquant[k+(groups*nshort)+1] <<= exp;
x_invquant[k+(groups*nshort)+2] <<= exp;
x_invquant[k+(groups*nshort)+3] <<= exp;
}
#else
x_invquant[k+(groups*nshort)] = x_invquant[k+(groups*nshort)] * pow2sf_tab[exp/*+25*/];
x_invquant[k+(groups*nshort)+1] = x_invquant[k+(groups*nshort)+1] * pow2sf_tab[exp/*+25*/];
x_invquant[k+(groups*nshort)+2] = x_invquant[k+(groups*nshort)+2] * pow2sf_tab[exp/*+25*/];
x_invquant[k+(groups*nshort)+3] = x_invquant[k+(groups*nshort)+3] * pow2sf_tab[exp/*+25*/];
#endif
x_invquant[k+(groups*nshort)] = MUL_C(x_invquant[k+(groups*nshort)],pow2_table[frac /* + 3*/]);
x_invquant[k+(groups*nshort)+1] = MUL_C(x_invquant[k+(groups*nshort)+1],pow2_table[frac /* + 3*/]);
x_invquant[k+(groups*nshort)+2] = MUL_C(x_invquant[k+(groups*nshort)+2],pow2_table[frac /* + 3*/]);
x_invquant[k+(groups*nshort)+3] = MUL_C(x_invquant[k+(groups*nshort)+3],pow2_table[frac /* + 3*/]);
}
}
groups += ics->window_group_length[g];
}
}
#ifdef USE_SSE
void apply_scalefactors_sse(faacDecHandle hDecoder, ic_stream *ics,
real_t *x_invquant, uint16_t frame_len)
{
uint8_t g, sfb;
uint16_t top;
int32_t exp, frac;
uint8_t groups = 0;
uint16_t nshort = frame_len/8;
for (g = 0; g < ics->num_window_groups; g++)
{
uint16_t k = 0;
/* using this nshort*groups doesn't hurt long blocks, because
long blocks only have 1 group, so that means 'groups' is
always 0 for long blocks
*/
for (sfb = 0; sfb < ics->max_sfb; sfb++)
{
top = ics->sect_sfb_offset[g][sfb+1];
exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
/* minimum size of a sf band is 4 and always a multiple of 4 */
for ( ; k < top; k += 4)
{
__m128 m1 = _mm_load_ps(&x_invquant[k+(groups*nshort)]);
__m128 m2 = _mm_load_ps1(&pow2sf_tab[exp /*+25*/]);
__m128 m3 = _mm_load_ps1(&pow2_table[frac /* + 3*/]);
__m128 m4 = _mm_mul_ps(m1, m2);
__m128 m5 = _mm_mul_ps(m3, m4);
_mm_store_ps(&x_invquant[k+(groups*nshort)], m5);
}
}
groups += ics->window_group_length[g];
}
}
#endif
static uint8_t allocate_single_channel(faacDecHandle hDecoder, uint8_t channel,
uint8_t output_channels)
{
uint8_t mul = 1;
#ifdef MAIN_DEC
/* MAIN object type prediction */
if (hDecoder->object_type == MAIN)
{
/* allocate the state only when needed */
if (hDecoder->pred_stat[channel] == NULL)
{
hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength);
}
}
#endif
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
/* allocate the state only when needed */
if (hDecoder->lt_pred_stat[channel] == NULL)
{
hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
}
}
#endif
if (hDecoder->time_out[channel] == NULL)
{
mul = 1;
#ifdef SBR_DEC
hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0;
if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
{
/* SBR requires 2 times as much output data */
mul = 2;
hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1;
}
#endif
hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
}
#if (defined(PS_DEC) || defined(DRM_PS))
if (output_channels == 2)
{
if (hDecoder->time_out[channel+1] == NULL)
{
hDecoder->time_out[channel+1] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->time_out[channel+1], 0, mul*hDecoder->frameLength*sizeof(real_t));
}
}
#endif
if (hDecoder->fb_intermed[channel] == NULL)
{
hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t));
}
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
{
if (hDecoder->ssr_overlap[channel] == NULL)
{
hDecoder->ssr_overlap[channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->ssr_overlap[channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->prev_fmd[channel] == NULL)
{
uint16_t k;
hDecoder->prev_fmd[channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
for (k = 0; k < 2*hDecoder->frameLength; k++)
hDecoder->prev_fmd[channel][k] = REAL_CONST(-1);
}
}
#endif
return 0;
}
static uint8_t allocate_channel_pair(faacDecHandle hDecoder,
uint8_t channel, uint8_t paired_channel)
{
uint8_t mul = 1;
#ifdef MAIN_DEC
/* MAIN object type prediction */
if (hDecoder->object_type == MAIN)
{
/* allocate the state only when needed */
if (hDecoder->pred_stat[channel] == NULL)
{
hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength);
}
if (hDecoder->pred_stat[paired_channel] == NULL)
{
hDecoder->pred_stat[paired_channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
reset_all_predictors(hDecoder->pred_stat[paired_channel], hDecoder->frameLength);
}
}
#endif
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
/* allocate the state only when needed */
if (hDecoder->lt_pred_stat[channel] == NULL)
{
hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
}
if (hDecoder->lt_pred_stat[paired_channel] == NULL)
{
hDecoder->lt_pred_stat[paired_channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
memset(hDecoder->lt_pred_stat[paired_channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
}
}
#endif
if (hDecoder->time_out[channel] == NULL)
{
mul = 1;
#ifdef SBR_DEC
hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0;
if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
{
/* SBR requires 2 times as much output data */
mul = 2;
hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1;
}
#endif
hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->time_out[paired_channel] == NULL)
{
hDecoder->time_out[paired_channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->time_out[paired_channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->fb_intermed[channel] == NULL)
{
hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->fb_intermed[paired_channel] == NULL)
{
hDecoder->fb_intermed[paired_channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->fb_intermed[paired_channel], 0, hDecoder->frameLength*sizeof(real_t));
}
#ifdef SSR_DEC
if (hDecoder->object_type == SSR)
{
if (hDecoder->ssr_overlap[cpe->channel] == NULL)
{
hDecoder->ssr_overlap[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->ssr_overlap[cpe->channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->ssr_overlap[cpe->paired_channel] == NULL)
{
hDecoder->ssr_overlap[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
memset(hDecoder->ssr_overlap[cpe->paired_channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
}
if (hDecoder->prev_fmd[cpe->channel] == NULL)
{
uint16_t k;
hDecoder->prev_fmd[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
for (k = 0; k < 2*hDecoder->frameLength; k++)
hDecoder->prev_fmd[cpe->channel][k] = REAL_CONST(-1);
}
if (hDecoder->prev_fmd[cpe->paired_channel] == NULL)
{
uint16_t k;
hDecoder->prev_fmd[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
for (k = 0; k < 2*hDecoder->frameLength; k++)
hDecoder->prev_fmd[cpe->paired_channel][k] = REAL_CONST(-1);
}
}
#endif
return 0;
}
uint8_t reconstruct_single_channel(faacDecHandle hDecoder, ic_stream *ics,
element *sce, int16_t *spec_data)
{
uint8_t retval, output_channels;
ALIGN real_t spec_coef[1024];
#ifdef PROFILE
int64_t count = faad_get_ts();
#endif
/* determine whether some mono->stereo tool is used */
#if (defined(PS_DEC) || defined(DRM_PS))
output_channels = hDecoder->ps_used[hDecoder->fr_ch_ele] ? 2 : 1;
#else
output_channels = 1;
#endif
if (hDecoder->element_output_channels[hDecoder->fr_ch_ele] == 0)
{
/* element_output_channels not set yet */
hDecoder->element_output_channels[hDecoder->fr_ch_ele] = output_channels;
} else if (hDecoder->element_output_channels[hDecoder->fr_ch_ele] != output_channels) {
/* element inconsistency */
return 21;
}
if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0)
{
retval = allocate_single_channel(hDecoder, sce->channel, output_channels);
if (retval > 0)
return retval;
hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1;
}
/* inverse quantization */
retval = inverse_quantization(spec_coef, spec_data, hDecoder->frameLength);
if (retval > 0)
return retval;
/* apply scalefactors */
#ifndef USE_SSE
apply_scalefactors(hDecoder, ics, spec_coef, hDecoder->frameLength);
#else
hDecoder->apply_sf_func(hDecoder, ics, spec_coef, hDecoder->frameLength);
#endif
/* deinterleave short block grouping */
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics, spec_coef, hDecoder->frameLength);
#ifdef PROFILE
count = faad_get_ts() - count;
hDecoder->requant_cycles += count;
#endif
/* pns decoding */
pns_decode(ics, NULL, spec_coef, NULL, hDecoder->frameLength, 0, hDecoder->object_type);
#ifdef MAIN_DEC
/* MAIN object type prediction */
if (hDecoder->object_type == MAIN)
{
/* intra channel prediction */
ic_prediction(ics, spec_coef, hDecoder->pred_stat[sce->channel], hDecoder->frameLength,
hDecoder->sf_index);
/* In addition, for scalefactor bands coded by perceptual
noise substitution the predictors belonging to the
corresponding spectral coefficients are reset.
*/
pns_reset_pred_state(ics, hDecoder->pred_stat[sce->channel]);
}
#endif
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
#ifdef LD_DEC
if (hDecoder->object_type == LD)
{
if (ics->ltp.data_present)
{
if (ics->ltp.lag_update)
hDecoder->ltp_lag[sce->channel] = ics->ltp.lag;
}
ics->ltp.lag = hDecoder->ltp_lag[sce->channel];
}
#endif
/* long term prediction */
lt_prediction(ics, &(ics->ltp), spec_coef, hDecoder->lt_pred_stat[sce->channel], hDecoder->fb,
ics->window_shape, hDecoder->window_shape_prev[sce->channel],
hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
}
#endif
/* tns decoding */
tns_decode_frame(ics, &(ics->tns), hDecoder->sf_index, hDecoder->object_type,
spec_coef, hDecoder->frameLength);
/* drc decoding */
if (hDecoder->drc->present)
{
if (!hDecoder->drc->exclude_mask[sce->channel] || !hDecoder->drc->excluded_chns_present)
drc_decode(hDecoder->drc, spec_coef);
}
/* filter bank */
#ifdef SSR_DEC
if (hDecoder->object_type != SSR)
{
#endif
#ifdef USE_SSE
hDecoder->fb->if_func(hDecoder->fb, ics->window_sequence, ics->window_shape,
hDecoder->window_shape_prev[sce->channel], spec_coef,
hDecoder->time_out[sce->channel], hDecoder->object_type, hDecoder->frameLength);
#else
ifilter_bank(hDecoder->fb, ics->window_sequence, ics->window_shape,
hDecoder->window_shape_prev[sce->channel], spec_coef,
hDecoder->time_out[sce->channel], hDecoder->fb_intermed[sce->channel],
hDecoder->object_type, hDecoder->frameLength);
#endif
#ifdef SSR_DEC
} else {
ssr_decode(&(ics->ssr), hDecoder->fb, ics->window_sequence, ics->window_shape,
hDecoder->window_shape_prev[sce->channel], spec_coef, hDecoder->time_out[sce->channel],
hDecoder->ssr_overlap[sce->channel], hDecoder->ipqf_buffer[sce->channel], hDecoder->prev_fmd[sce->channel],
hDecoder->frameLength);
}
#endif
/* save window shape for next frame */
hDecoder->window_shape_prev[sce->channel] = ics->window_shape;
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
lt_update_state(hDecoder->lt_pred_stat[sce->channel], hDecoder->time_out[sce->channel],
hDecoder->fb_intermed[sce->channel], hDecoder->frameLength, hDecoder->object_type);
}
#endif
#ifdef SBR_DEC
if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
&& hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
{
uint8_t ele = hDecoder->fr_ch_ele;
uint8_t ch = sce->channel;
/* following case can happen when forceUpSampling == 1 */
if (hDecoder->sbr[ele] == NULL)
{
hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength,
sce->ele_id, 2*get_sample_rate(hDecoder->sf_index)
#ifdef DRM
, 0
#endif
);
}
/* check if any of the PS tools is used */
#if (defined(PS_DEC) || defined(DRM_PS))
if (output_channels == 1)
{
#endif
retval = sbrDecodeSingleFrame(hDecoder->sbr[ele], hDecoder->time_out[ch],
hDecoder->postSeekResetFlag, hDecoder->forceUpSampling);
#if (defined(PS_DEC) || defined(DRM_PS))
} else {
retval = sbrDecodeSingleFramePS(hDecoder->sbr[ele], hDecoder->time_out[ch],
hDecoder->time_out[ch+1], hDecoder->postSeekResetFlag,
hDecoder->forceUpSampling);
}
#endif
if (retval > 0)
return retval;
} else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
&& !hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
{
return 23;
}
#endif
return 0;
}
uint8_t reconstruct_channel_pair(faacDecHandle hDecoder, ic_stream *ics1, ic_stream *ics2,
element *cpe, int16_t *spec_data1, int16_t *spec_data2)
{
uint8_t retval;
ALIGN real_t spec_coef1[1024];
ALIGN real_t spec_coef2[1024];
#ifdef PROFILE
int64_t count = faad_get_ts();
#endif
if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0)
{
retval = allocate_channel_pair(hDecoder, cpe->channel, cpe->paired_channel);
if (retval > 0)
return retval;
hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1;
}
/* inverse quantization */
retval = inverse_quantization(spec_coef1, spec_data1, hDecoder->frameLength);
if (retval > 0)
return retval;
retval = inverse_quantization(spec_coef2, spec_data2, hDecoder->frameLength);
if (retval > 0)
return retval;
/* apply scalefactors */
#ifndef USE_SSE
apply_scalefactors(hDecoder, ics1, spec_coef1, hDecoder->frameLength);
apply_scalefactors(hDecoder, ics2, spec_coef2, hDecoder->frameLength);
#else
hDecoder->apply_sf_func(hDecoder, ics1, spec_coef1, hDecoder->frameLength);
hDecoder->apply_sf_func(hDecoder, ics2, spec_coef2, hDecoder->frameLength);
#endif
/* deinterleave short block grouping */
if (ics1->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics1, spec_coef1, hDecoder->frameLength);
if (ics2->window_sequence == EIGHT_SHORT_SEQUENCE)
quant_to_spec(ics2, spec_coef2, hDecoder->frameLength);
#ifdef PROFILE
count = faad_get_ts() - count;
hDecoder->requant_cycles += count;
#endif
/* pns decoding */
if (ics1->ms_mask_present)
{
pns_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength, 1, hDecoder->object_type);
} else {
pns_decode(ics1, NULL, spec_coef1, NULL, hDecoder->frameLength, 0, hDecoder->object_type);
pns_decode(ics2, NULL, spec_coef2, NULL, hDecoder->frameLength, 0, hDecoder->object_type);
}
/* mid/side decoding */
ms_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength);
/* intensity stereo decoding */
is_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength);
#ifdef MAIN_DEC
/* MAIN object type prediction */
if (hDecoder->object_type == MAIN)
{
/* intra channel prediction */
ic_prediction(ics1, spec_coef1, hDecoder->pred_stat[cpe->channel], hDecoder->frameLength,
hDecoder->sf_index);
ic_prediction(ics2, spec_coef2, hDecoder->pred_stat[cpe->paired_channel], hDecoder->frameLength,
hDecoder->sf_index);
/* In addition, for scalefactor bands coded by perceptual
noise substitution the predictors belonging to the
corresponding spectral coefficients are reset.
*/
pns_reset_pred_state(ics1, hDecoder->pred_stat[cpe->channel]);
pns_reset_pred_state(ics2, hDecoder->pred_stat[cpe->paired_channel]);
}
#endif
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
ltp_info *ltp1 = &(ics1->ltp);
ltp_info *ltp2 = (cpe->common_window) ? &(ics2->ltp2) : &(ics2->ltp);
#ifdef LD_DEC
if (hDecoder->object_type == LD)
{
if (ltp1->data_present)
{
if (ltp1->lag_update)
hDecoder->ltp_lag[cpe->channel] = ltp1->lag;
}
ltp1->lag = hDecoder->ltp_lag[cpe->channel];
if (ltp2->data_present)
{
if (ltp2->lag_update)
hDecoder->ltp_lag[cpe->paired_channel] = ltp2->lag;
}
ltp2->lag = hDecoder->ltp_lag[cpe->paired_channel];
}
#endif
/* long term prediction */
lt_prediction(ics1, ltp1, spec_coef1, hDecoder->lt_pred_stat[cpe->channel], hDecoder->fb,
ics1->window_shape, hDecoder->window_shape_prev[cpe->channel],
hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
lt_prediction(ics2, ltp2, spec_coef2, hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->fb,
ics2->window_shape, hDecoder->window_shape_prev[cpe->paired_channel],
hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
}
#endif
/* tns decoding */
tns_decode_frame(ics1, &(ics1->tns), hDecoder->sf_index, hDecoder->object_type,
spec_coef1, hDecoder->frameLength);
tns_decode_frame(ics2, &(ics2->tns), hDecoder->sf_index, hDecoder->object_type,
spec_coef2, hDecoder->frameLength);
/* drc decoding */
if (hDecoder->drc->present)
{
if (!hDecoder->drc->exclude_mask[cpe->channel] || !hDecoder->drc->excluded_chns_present)
drc_decode(hDecoder->drc, spec_coef1);
if (!hDecoder->drc->exclude_mask[cpe->paired_channel] || !hDecoder->drc->excluded_chns_present)
drc_decode(hDecoder->drc, spec_coef2);
}
/* filter bank */
#ifdef SSR_DEC
if (hDecoder->object_type != SSR)
{
#endif
#ifdef USE_SSE
hDecoder->fb->if_func(hDecoder->fb, ics1->window_sequence, ics1->window_shape,
hDecoder->window_shape_prev[cpe->channel], spec_coef1,
hDecoder->time_out[cpe->channel], hDecoder->object_type, hDecoder->frameLength);
hDecoder->fb->if_func(hDecoder->fb, ics2->window_sequence, ics2->window_shape,
hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2,
hDecoder->time_out[cpe->paired_channel], hDecoder->object_type, hDecoder->frameLength);
#else
ifilter_bank(hDecoder->fb, ics1->window_sequence, ics1->window_shape,
hDecoder->window_shape_prev[cpe->channel], spec_coef1,
hDecoder->time_out[cpe->channel], hDecoder->fb_intermed[cpe->channel],
hDecoder->object_type, hDecoder->frameLength);
ifilter_bank(hDecoder->fb, ics2->window_sequence, ics2->window_shape,
hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2,
hDecoder->time_out[cpe->paired_channel], hDecoder->fb_intermed[cpe->paired_channel],
hDecoder->object_type, hDecoder->frameLength);
#endif
#ifdef SSR_DEC
} else {
ssr_decode(&(ics1->ssr), hDecoder->fb, ics1->window_sequence, ics1->window_shape,
hDecoder->window_shape_prev[cpe->channel], spec_coef1, hDecoder->time_out[cpe->channel],
hDecoder->ssr_overlap[cpe->channel], hDecoder->ipqf_buffer[cpe->channel],
hDecoder->prev_fmd[cpe->channel], hDecoder->frameLength);
ssr_decode(&(ics2->ssr), hDecoder->fb, ics2->window_sequence, ics2->window_shape,
hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2, hDecoder->time_out[cpe->paired_channel],
hDecoder->ssr_overlap[cpe->paired_channel], hDecoder->ipqf_buffer[cpe->paired_channel],
hDecoder->prev_fmd[cpe->paired_channel], hDecoder->frameLength);
}
#endif
/* save window shape for next frame */
hDecoder->window_shape_prev[cpe->channel] = ics1->window_shape;
hDecoder->window_shape_prev[cpe->paired_channel] = ics2->window_shape;
#ifdef LTP_DEC
if (is_ltp_ot(hDecoder->object_type))
{
lt_update_state(hDecoder->lt_pred_stat[cpe->channel], hDecoder->time_out[cpe->channel],
hDecoder->fb_intermed[cpe->channel], hDecoder->frameLength, hDecoder->object_type);
lt_update_state(hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->time_out[cpe->paired_channel],
hDecoder->fb_intermed[cpe->paired_channel], hDecoder->frameLength, hDecoder->object_type);
}
#endif
#ifdef SBR_DEC
if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
&& hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
{
uint8_t ele = hDecoder->fr_ch_ele;
uint8_t ch0 = cpe->channel;
uint8_t ch1 = cpe->paired_channel;
/* following case can happen when forceUpSampling == 1 */
if (hDecoder->sbr[ele] == NULL)
{
hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength,
cpe->ele_id, 2*get_sample_rate(hDecoder->sf_index)
#ifdef DRM
, 0
#endif
);
}
retval = sbrDecodeCoupleFrame(hDecoder->sbr[ele],
hDecoder->time_out[ch0], hDecoder->time_out[ch1],
hDecoder->postSeekResetFlag, hDecoder->forceUpSampling);
if (retval > 0)
return retval;
} else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
&& !hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
{
return 23;
}
#endif
return 0;
}