mirror of
https://github.com/mpv-player/mpv
synced 2024-12-27 01:22:30 +00:00
fe3c4810e1
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@32624 b3059339-0415-0410-9bf9-f77b7e298cf2
354 lines
8.9 KiB
C
354 lines
8.9 KiB
C
/*
|
|
* Copyright (C) 2004 Alex Beregszaszi & Pierre Lombard
|
|
*
|
|
* This file is part of MPlayer.
|
|
*
|
|
* MPlayer is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MPlayer is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "af.h"
|
|
|
|
// Methods:
|
|
// 1: uses a 1 value memory and coefficients new=a*old+b*cur (with a+b=1)
|
|
// 2: uses several samples to smooth the variations (standard weighted mean
|
|
// on past samples)
|
|
|
|
// Size of the memory array
|
|
// FIXME: should depend on the frequency of the data (should be a few seconds)
|
|
#define NSAMPLES 128
|
|
|
|
// If summing all the mem[].len is lower than MIN_SAMPLE_SIZE bytes, then we
|
|
// choose to ignore the computed value as it's not significant enough
|
|
// FIXME: should depend on the frequency of the data (0.5s maybe)
|
|
#define MIN_SAMPLE_SIZE 32000
|
|
|
|
// mul is the value by which the samples are scaled
|
|
// and has to be in [MUL_MIN, MUL_MAX]
|
|
#define MUL_INIT 1.0
|
|
#define MUL_MIN 0.1
|
|
#define MUL_MAX 5.0
|
|
|
|
// Silence level
|
|
// FIXME: should be relative to the level of the samples
|
|
#define SIL_S16 (SHRT_MAX * 0.01)
|
|
#define SIL_FLOAT (INT_MAX * 0.01) // FIXME
|
|
|
|
// smooth must be in ]0.0, 1.0[
|
|
#define SMOOTH_MUL 0.06
|
|
#define SMOOTH_LASTAVG 0.06
|
|
|
|
#define DEFAULT_TARGET 0.25
|
|
|
|
// Data for specific instances of this filter
|
|
typedef struct af_volume_s
|
|
{
|
|
int method; // method used
|
|
float mul;
|
|
// method 1
|
|
float lastavg; // history value of the filter
|
|
// method 2
|
|
int idx;
|
|
struct {
|
|
float avg; // average level of the sample
|
|
int len; // sample size (weight)
|
|
} mem[NSAMPLES];
|
|
// "Ideal" level
|
|
float mid_s16;
|
|
float mid_float;
|
|
}af_volnorm_t;
|
|
|
|
// Initialization and runtime control
|
|
static int control(struct af_instance_s* af, int cmd, void* arg)
|
|
{
|
|
af_volnorm_t* s = (af_volnorm_t*)af->setup;
|
|
|
|
switch(cmd){
|
|
case AF_CONTROL_REINIT:
|
|
// Sanity check
|
|
if(!arg) return AF_ERROR;
|
|
|
|
af->data->rate = ((af_data_t*)arg)->rate;
|
|
af->data->nch = ((af_data_t*)arg)->nch;
|
|
|
|
if(((af_data_t*)arg)->format == (AF_FORMAT_S16_NE)){
|
|
af->data->format = AF_FORMAT_S16_NE;
|
|
af->data->bps = 2;
|
|
}else{
|
|
af->data->format = AF_FORMAT_FLOAT_NE;
|
|
af->data->bps = 4;
|
|
}
|
|
return af_test_output(af,(af_data_t*)arg);
|
|
case AF_CONTROL_COMMAND_LINE:{
|
|
int i = 0;
|
|
float target = DEFAULT_TARGET;
|
|
sscanf((char*)arg,"%d:%f", &i, &target);
|
|
if (i != 1 && i != 2)
|
|
return AF_ERROR;
|
|
s->method = i-1;
|
|
s->mid_s16 = ((float)SHRT_MAX) * target;
|
|
s->mid_float = ((float)INT_MAX) * target;
|
|
return AF_OK;
|
|
}
|
|
}
|
|
return AF_UNKNOWN;
|
|
}
|
|
|
|
// Deallocate memory
|
|
static void uninit(struct af_instance_s* af)
|
|
{
|
|
free(af->data);
|
|
free(af->setup);
|
|
}
|
|
|
|
static void method1_int16(af_volnorm_t *s, af_data_t *c)
|
|
{
|
|
register int i = 0;
|
|
int16_t *data = (int16_t*)c->audio; // Audio data
|
|
int len = c->len/2; // Number of samples
|
|
float curavg = 0.0, newavg, neededmul;
|
|
int tmp;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = data[i];
|
|
curavg += tmp * tmp;
|
|
}
|
|
curavg = sqrt(curavg / (float) len);
|
|
|
|
// Evaluate an adequate 'mul' coefficient based on previous state, current
|
|
// samples level, etc
|
|
|
|
if (curavg > SIL_S16)
|
|
{
|
|
neededmul = s->mid_s16 / (curavg * s->mul);
|
|
s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
|
|
|
|
// clamp the mul coefficient
|
|
s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
|
|
}
|
|
|
|
// Scale & clamp the samples
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = s->mul * data[i];
|
|
tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
|
|
data[i] = tmp;
|
|
}
|
|
|
|
// Evaulation of newavg (not 100% accurate because of values clamping)
|
|
newavg = s->mul * curavg;
|
|
|
|
// Stores computed values for future smoothing
|
|
s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
|
|
}
|
|
|
|
static void method1_float(af_volnorm_t *s, af_data_t *c)
|
|
{
|
|
register int i = 0;
|
|
float *data = (float*)c->audio; // Audio data
|
|
int len = c->len/4; // Number of samples
|
|
float curavg = 0.0, newavg, neededmul, tmp;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = data[i];
|
|
curavg += tmp * tmp;
|
|
}
|
|
curavg = sqrt(curavg / (float) len);
|
|
|
|
// Evaluate an adequate 'mul' coefficient based on previous state, current
|
|
// samples level, etc
|
|
|
|
if (curavg > SIL_FLOAT) // FIXME
|
|
{
|
|
neededmul = s->mid_float / (curavg * s->mul);
|
|
s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
|
|
|
|
// clamp the mul coefficient
|
|
s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
|
|
}
|
|
|
|
// Scale & clamp the samples
|
|
for (i = 0; i < len; i++)
|
|
data[i] *= s->mul;
|
|
|
|
// Evaulation of newavg (not 100% accurate because of values clamping)
|
|
newavg = s->mul * curavg;
|
|
|
|
// Stores computed values for future smoothing
|
|
s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
|
|
}
|
|
|
|
static void method2_int16(af_volnorm_t *s, af_data_t *c)
|
|
{
|
|
register int i = 0;
|
|
int16_t *data = (int16_t*)c->audio; // Audio data
|
|
int len = c->len/2; // Number of samples
|
|
float curavg = 0.0, newavg, avg = 0.0;
|
|
int tmp, totallen = 0;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = data[i];
|
|
curavg += tmp * tmp;
|
|
}
|
|
curavg = sqrt(curavg / (float) len);
|
|
|
|
// Evaluate an adequate 'mul' coefficient based on previous state, current
|
|
// samples level, etc
|
|
for (i = 0; i < NSAMPLES; i++)
|
|
{
|
|
avg += s->mem[i].avg * (float)s->mem[i].len;
|
|
totallen += s->mem[i].len;
|
|
}
|
|
|
|
if (totallen > MIN_SAMPLE_SIZE)
|
|
{
|
|
avg /= (float)totallen;
|
|
if (avg >= SIL_S16)
|
|
{
|
|
s->mul = s->mid_s16 / avg;
|
|
s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
|
|
}
|
|
}
|
|
|
|
// Scale & clamp the samples
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = s->mul * data[i];
|
|
tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
|
|
data[i] = tmp;
|
|
}
|
|
|
|
// Evaulation of newavg (not 100% accurate because of values clamping)
|
|
newavg = s->mul * curavg;
|
|
|
|
// Stores computed values for future smoothing
|
|
s->mem[s->idx].len = len;
|
|
s->mem[s->idx].avg = newavg;
|
|
s->idx = (s->idx + 1) % NSAMPLES;
|
|
}
|
|
|
|
static void method2_float(af_volnorm_t *s, af_data_t *c)
|
|
{
|
|
register int i = 0;
|
|
float *data = (float*)c->audio; // Audio data
|
|
int len = c->len/4; // Number of samples
|
|
float curavg = 0.0, newavg, avg = 0.0, tmp;
|
|
int totallen = 0;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
tmp = data[i];
|
|
curavg += tmp * tmp;
|
|
}
|
|
curavg = sqrt(curavg / (float) len);
|
|
|
|
// Evaluate an adequate 'mul' coefficient based on previous state, current
|
|
// samples level, etc
|
|
for (i = 0; i < NSAMPLES; i++)
|
|
{
|
|
avg += s->mem[i].avg * (float)s->mem[i].len;
|
|
totallen += s->mem[i].len;
|
|
}
|
|
|
|
if (totallen > MIN_SAMPLE_SIZE)
|
|
{
|
|
avg /= (float)totallen;
|
|
if (avg >= SIL_FLOAT)
|
|
{
|
|
s->mul = s->mid_float / avg;
|
|
s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
|
|
}
|
|
}
|
|
|
|
// Scale & clamp the samples
|
|
for (i = 0; i < len; i++)
|
|
data[i] *= s->mul;
|
|
|
|
// Evaulation of newavg (not 100% accurate because of values clamping)
|
|
newavg = s->mul * curavg;
|
|
|
|
// Stores computed values for future smoothing
|
|
s->mem[s->idx].len = len;
|
|
s->mem[s->idx].avg = newavg;
|
|
s->idx = (s->idx + 1) % NSAMPLES;
|
|
}
|
|
|
|
// Filter data through filter
|
|
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
|
|
{
|
|
af_volnorm_t *s = af->setup;
|
|
|
|
if(af->data->format == (AF_FORMAT_S16_NE))
|
|
{
|
|
if (s->method)
|
|
method2_int16(s, data);
|
|
else
|
|
method1_int16(s, data);
|
|
}
|
|
else if(af->data->format == (AF_FORMAT_FLOAT_NE))
|
|
{
|
|
if (s->method)
|
|
method2_float(s, data);
|
|
else
|
|
method1_float(s, data);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// Allocate memory and set function pointers
|
|
static int af_open(af_instance_t* af){
|
|
int i = 0;
|
|
af->control=control;
|
|
af->uninit=uninit;
|
|
af->play=play;
|
|
af->mul=1;
|
|
af->data=calloc(1,sizeof(af_data_t));
|
|
af->setup=calloc(1,sizeof(af_volnorm_t));
|
|
if(af->data == NULL || af->setup == NULL)
|
|
return AF_ERROR;
|
|
|
|
((af_volnorm_t*)af->setup)->mul = MUL_INIT;
|
|
((af_volnorm_t*)af->setup)->lastavg = ((float)SHRT_MAX) * DEFAULT_TARGET;
|
|
((af_volnorm_t*)af->setup)->idx = 0;
|
|
((af_volnorm_t*)af->setup)->mid_s16 = ((float)SHRT_MAX) * DEFAULT_TARGET;
|
|
((af_volnorm_t*)af->setup)->mid_float = ((float)INT_MAX) * DEFAULT_TARGET;
|
|
for (i = 0; i < NSAMPLES; i++)
|
|
{
|
|
((af_volnorm_t*)af->setup)->mem[i].len = 0;
|
|
((af_volnorm_t*)af->setup)->mem[i].avg = 0;
|
|
}
|
|
return AF_OK;
|
|
}
|
|
|
|
// Description of this filter
|
|
af_info_t af_info_volnorm = {
|
|
"Volume normalizer filter",
|
|
"volnorm",
|
|
"Alex Beregszaszi & Pierre Lombard",
|
|
"",
|
|
AF_FLAGS_NOT_REENTRANT,
|
|
af_open
|
|
};
|