mirror of
https://github.com/mpv-player/mpv
synced 2025-01-21 23:23:19 +00:00
c45d0b11c1
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@3840 b3059339-0415-0410-9bf9-f77b7e298cf2
712 lines
17 KiB
C
712 lines
17 KiB
C
/**************************************************************************
|
|
* Parks-McClellan algorithm for FIR filter design (C version)
|
|
*-------------------------------------------------
|
|
* Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the Free
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*************************************************************************/
|
|
|
|
|
|
#include "config.h"
|
|
#include "remez.h"
|
|
|
|
#include <stdio.h>
|
|
#ifdef HAVE_MALLOC_H
|
|
#include <malloc.h>
|
|
#endif
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/*******************
|
|
* CreateDenseGrid
|
|
*=================
|
|
* Creates the dense grid of frequencies from the specified bands.
|
|
* Also creates the Desired Frequency Response function (D[]) and
|
|
* the Weight function (W[]) on that dense grid
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coefficients
|
|
* int numtaps - Number of taps in the resulting filter
|
|
* int numband - Number of bands in user specification
|
|
* double bands[] - User-specified band edges [2*numband]
|
|
* double des[] - Desired response per band [numband]
|
|
* double weight[] - Weight per band [numband]
|
|
* int symmetry - Symmetry of filter - used for grid check
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* int gridsize - Number of elements in the dense frequency grid
|
|
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize]
|
|
* double D[] - Desired response on the dense grid [gridsize]
|
|
* double W[] - Weight function on the dense grid [gridsize]
|
|
*******************/
|
|
|
|
void CreateDenseGrid(int r, int numtaps, int numband, double bands[],
|
|
double des[], double weight[], int *gridsize,
|
|
double Grid[], double D[], double W[],
|
|
int symmetry)
|
|
{
|
|
int i, j, k, band;
|
|
double delf, lowf, highf;
|
|
|
|
delf = 0.5/(GRIDDENSITY*r);
|
|
|
|
/*
|
|
* For differentiator, hilbert,
|
|
* symmetry is odd and Grid[0] = max(delf, band[0])
|
|
*/
|
|
|
|
if ((symmetry == NEGATIVE) && (delf > bands[0]))
|
|
bands[0] = delf;
|
|
|
|
j=0;
|
|
for (band=0; band < numband; band++)
|
|
{
|
|
Grid[j] = bands[2*band];
|
|
lowf = bands[2*band];
|
|
highf = bands[2*band + 1];
|
|
k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */
|
|
for (i=0; i<k; i++)
|
|
{
|
|
D[j] = des[band];
|
|
W[j] = weight[band];
|
|
Grid[j] = lowf;
|
|
lowf += delf;
|
|
j++;
|
|
}
|
|
Grid[j-1] = highf;
|
|
}
|
|
|
|
/*
|
|
* Similar to above, if odd symmetry, last grid point can't be .5
|
|
* - but, if there are even taps, leave the last grid point at .5
|
|
*/
|
|
if ((symmetry == NEGATIVE) &&
|
|
(Grid[*gridsize-1] > (0.5 - delf)) &&
|
|
(numtaps % 2))
|
|
{
|
|
Grid[*gridsize-1] = 0.5-delf;
|
|
}
|
|
}
|
|
|
|
|
|
/********************
|
|
* InitialGuess
|
|
*==============
|
|
* Places Extremal Frequencies evenly throughout the dense grid.
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coefficients
|
|
* int gridsize - Number of elements in the dense frequency grid
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* int Ext[] - Extremal indexes to dense frequency grid [r+1]
|
|
********************/
|
|
|
|
void InitialGuess(int r, int Ext[], int gridsize)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<=r; i++)
|
|
Ext[i] = i * (gridsize-1) / r;
|
|
}
|
|
|
|
|
|
/***********************
|
|
* CalcParms
|
|
*===========
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coefficients
|
|
* int Ext[] - Extremal indexes to dense frequency grid [r+1]
|
|
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize]
|
|
* double D[] - Desired response on the dense grid [gridsize]
|
|
* double W[] - Weight function on the dense grid [gridsize]
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* double ad[] - 'b' in Oppenheim & Schafer [r+1]
|
|
* double x[] - [r+1]
|
|
* double y[] - 'C' in Oppenheim & Schafer [r+1]
|
|
***********************/
|
|
|
|
void CalcParms(int r, int Ext[], double Grid[], double D[], double W[],
|
|
double ad[], double x[], double y[])
|
|
{
|
|
int i, j, k, ld;
|
|
double sign, xi, delta, denom, numer;
|
|
|
|
/*
|
|
* Find x[]
|
|
*/
|
|
for (i=0; i<=r; i++)
|
|
x[i] = cos(Pi2 * Grid[Ext[i]]);
|
|
|
|
/*
|
|
* Calculate ad[] - Oppenheim & Schafer eq 7.132
|
|
*/
|
|
ld = (r-1)/15 + 1; /* Skips around to avoid round errors */
|
|
for (i=0; i<=r; i++)
|
|
{
|
|
denom = 1.0;
|
|
xi = x[i];
|
|
for (j=0; j<ld; j++)
|
|
{
|
|
for (k=j; k<=r; k+=ld)
|
|
if (k != i)
|
|
denom *= 2.0*(xi - x[k]);
|
|
}
|
|
if (fabs(denom)<0.00001)
|
|
denom = 0.00001;
|
|
ad[i] = 1.0/denom;
|
|
}
|
|
|
|
/*
|
|
* Calculate delta - Oppenheim & Schafer eq 7.131
|
|
*/
|
|
numer = denom = 0;
|
|
sign = 1;
|
|
for (i=0; i<=r; i++)
|
|
{
|
|
numer += ad[i] * D[Ext[i]];
|
|
denom += sign * ad[i]/W[Ext[i]];
|
|
sign = -sign;
|
|
}
|
|
delta = numer/denom;
|
|
sign = 1;
|
|
|
|
/*
|
|
* Calculate y[] - Oppenheim & Schafer eq 7.133b
|
|
*/
|
|
for (i=0; i<=r; i++)
|
|
{
|
|
y[i] = D[Ext[i]] - sign * delta/W[Ext[i]];
|
|
sign = -sign;
|
|
}
|
|
}
|
|
|
|
|
|
/*********************
|
|
* ComputeA
|
|
*==========
|
|
* Using values calculated in CalcParms, ComputeA calculates the
|
|
* actual filter response at a given frequency (freq). Uses
|
|
* eq 7.133a from Oppenheim & Schafer.
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* double freq - Frequency (0 to 0.5) at which to calculate A
|
|
* int r - 1/2 the number of filter coefficients
|
|
* double ad[] - 'b' in Oppenheim & Schafer [r+1]
|
|
* double x[] - [r+1]
|
|
* double y[] - 'C' in Oppenheim & Schafer [r+1]
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* Returns double value of A[freq]
|
|
*********************/
|
|
|
|
double ComputeA(double freq, int r, double ad[], double x[], double y[])
|
|
{
|
|
int i;
|
|
double xc, c, denom, numer;
|
|
|
|
denom = numer = 0;
|
|
xc = cos(Pi2 * freq);
|
|
for (i=0; i<=r; i++)
|
|
{
|
|
c = xc - x[i];
|
|
if (fabs(c) < 1.0e-7)
|
|
{
|
|
numer = y[i];
|
|
denom = 1;
|
|
break;
|
|
}
|
|
c = ad[i]/c;
|
|
denom += c;
|
|
numer += c*y[i];
|
|
}
|
|
return numer/denom;
|
|
}
|
|
|
|
|
|
/************************
|
|
* CalcError
|
|
*===========
|
|
* Calculates the Error function from the desired frequency response
|
|
* on the dense grid (D[]), the weight function on the dense grid (W[]),
|
|
* and the present response calculation (A[])
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coefficients
|
|
* double ad[] - [r+1]
|
|
* double x[] - [r+1]
|
|
* double y[] - [r+1]
|
|
* int gridsize - Number of elements in the dense frequency grid
|
|
* double Grid[] - Frequencies on the dense grid [gridsize]
|
|
* double D[] - Desired response on the dense grid [gridsize]
|
|
* double W[] - Weight function on the desnse grid [gridsize]
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* double E[] - Error function on dense grid [gridsize]
|
|
************************/
|
|
|
|
void CalcError(int r, double ad[], double x[], double y[],
|
|
int gridsize, double Grid[],
|
|
double D[], double W[], double E[])
|
|
{
|
|
int i;
|
|
double A;
|
|
|
|
for (i=0; i<gridsize; i++)
|
|
{
|
|
A = ComputeA(Grid[i], r, ad, x, y);
|
|
E[i] = W[i] * (D[i] - A);
|
|
}
|
|
}
|
|
|
|
/************************
|
|
* Search
|
|
*========
|
|
* Searches for the maxima/minima of the error curve. If more than
|
|
* r+1 extrema are found, it uses the following heuristic (thanks
|
|
* Chris Hanson):
|
|
* 1) Adjacent non-alternating extrema deleted first.
|
|
* 2) If there are more than one excess extrema, delete the
|
|
* one with the smallest error. This will create a non-alternation
|
|
* condition that is fixed by 1).
|
|
* 3) If there is exactly one excess extremum, delete the smaller
|
|
* of the first/last extremum
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coefficients
|
|
* int Ext[] - Indexes to Grid[] of extremal frequencies [r+1]
|
|
* int gridsize - Number of elements in the dense frequency grid
|
|
* double E[] - Array of error values. [gridsize]
|
|
* OUTPUT:
|
|
* -------
|
|
* int Ext[] - New indexes to extremal frequencies [r+1]
|
|
************************/
|
|
|
|
void Search(int r, int Ext[],
|
|
int gridsize, double E[])
|
|
{
|
|
int i, j, k, l, extra; /* Counters */
|
|
int up, alt;
|
|
int *foundExt; /* Array of found extremals */
|
|
|
|
/*
|
|
* Allocate enough space for found extremals.
|
|
*/
|
|
foundExt = (int *)malloc((2*r) * sizeof(int));
|
|
k = 0;
|
|
|
|
/*
|
|
* Check for extremum at 0.
|
|
*/
|
|
if (((E[0]>0.0) && (E[0]>E[1])) ||
|
|
((E[0]<0.0) && (E[0]<E[1])))
|
|
foundExt[k++] = 0;
|
|
|
|
/*
|
|
* Check for extrema inside dense grid
|
|
*/
|
|
for (i=1; i<gridsize-1; i++)
|
|
{
|
|
if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) ||
|
|
((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0)))
|
|
foundExt[k++] = i;
|
|
}
|
|
|
|
/*
|
|
* Check for extremum at 0.5
|
|
*/
|
|
j = gridsize-1;
|
|
if (((E[j]>0.0) && (E[j]>E[j-1])) ||
|
|
((E[j]<0.0) && (E[j]<E[j-1])))
|
|
foundExt[k++] = j;
|
|
|
|
|
|
/*
|
|
* Remove extra extremals
|
|
*/
|
|
extra = k - (r+1);
|
|
|
|
while (extra > 0)
|
|
{
|
|
if (E[foundExt[0]] > 0.0)
|
|
up = 1; /* first one is a maxima */
|
|
else
|
|
up = 0; /* first one is a minima */
|
|
|
|
l=0;
|
|
alt = 1;
|
|
for (j=1; j<k; j++)
|
|
{
|
|
if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]]))
|
|
l = j; /* new smallest error. */
|
|
if ((up) && (E[foundExt[j]] < 0.0))
|
|
up = 0; /* switch to a minima */
|
|
else if ((!up) && (E[foundExt[j]] > 0.0))
|
|
up = 1; /* switch to a maxima */
|
|
else
|
|
{
|
|
alt = 0;
|
|
break; /* Ooops, found two non-alternating */
|
|
} /* extrema. Delete smallest of them */
|
|
} /* if the loop finishes, all extrema are alternating */
|
|
|
|
/*
|
|
* If there's only one extremal and all are alternating,
|
|
* delete the smallest of the first/last extremals.
|
|
*/
|
|
if ((alt) && (extra == 1))
|
|
{
|
|
if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]]))
|
|
l = foundExt[k-1]; /* Delete last extremal */
|
|
else
|
|
l = foundExt[0]; /* Delete first extremal */
|
|
}
|
|
|
|
for (j=l; j<k; j++) /* Loop that does the deletion */
|
|
{
|
|
foundExt[j] = foundExt[j+1];
|
|
}
|
|
k--;
|
|
extra--;
|
|
}
|
|
|
|
for (i=0; i<=r; i++)
|
|
{
|
|
Ext[i] = foundExt[i]; /* Copy found extremals to Ext[] */
|
|
}
|
|
|
|
free(foundExt);
|
|
}
|
|
|
|
|
|
/*********************
|
|
* FreqSample
|
|
*============
|
|
* Simple frequency sampling algorithm to determine the impulse
|
|
* response h[] from A's found in ComputeA
|
|
*
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int N - Number of filter coefficients
|
|
* double A[] - Sample points of desired response [N/2]
|
|
* int symmetry - Symmetry of desired filter
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* double h[] - Impulse Response of final filter [N]
|
|
*********************/
|
|
void FreqSample(int N, double A[], double h[], int symm)
|
|
{
|
|
int n, k;
|
|
double x, val, M;
|
|
|
|
M = (N-1.0)/2.0;
|
|
if (symm == POSITIVE)
|
|
{
|
|
if (N%2)
|
|
{
|
|
for (n=0; n<N; n++)
|
|
{
|
|
val = A[0];
|
|
x = Pi2 * (n - M)/N;
|
|
for (k=1; k<=M; k++)
|
|
val += 2.0 * A[k] * cos(x*k);
|
|
h[n] = val/N;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (n=0; n<N; n++)
|
|
{
|
|
val = A[0];
|
|
x = Pi2 * (n - M)/N;
|
|
for (k=1; k<=(N/2-1); k++)
|
|
val += 2.0 * A[k] * cos(x*k);
|
|
h[n] = val/N;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (N%2)
|
|
{
|
|
for (n=0; n<N; n++)
|
|
{
|
|
val = 0;
|
|
x = Pi2 * (n - M)/N;
|
|
for (k=1; k<=M; k++)
|
|
val += 2.0 * A[k] * sin(x*k);
|
|
h[n] = val/N;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (n=0; n<N; n++)
|
|
{
|
|
val = A[N/2] * sin(Pi * (n - M));
|
|
x = Pi2 * (n - M)/N;
|
|
for (k=1; k<=(N/2-1); k++)
|
|
val += 2.0 * A[k] * sin(x*k);
|
|
h[n] = val/N;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*******************
|
|
* isDone
|
|
*========
|
|
* Checks to see if the error function is small enough to consider
|
|
* the result to have converged.
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int r - 1/2 the number of filter coeffiecients
|
|
* int Ext[] - Indexes to extremal frequencies [r+1]
|
|
* double E[] - Error function on the dense grid [gridsize]
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* Returns 1 if the result converged
|
|
* Returns 0 if the result has not converged
|
|
********************/
|
|
|
|
short isDone(int r, int Ext[], double E[])
|
|
{
|
|
int i;
|
|
double min, max, current;
|
|
|
|
min = max = fabs(E[Ext[0]]);
|
|
for (i=1; i<=r; i++)
|
|
{
|
|
current = fabs(E[Ext[i]]);
|
|
if (current < min)
|
|
min = current;
|
|
if (current > max)
|
|
max = current;
|
|
}
|
|
if (((max-min)/max) < 0.0001)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/********************
|
|
* remez
|
|
*=======
|
|
* Calculates the optimal (in the Chebyshev/minimax sense)
|
|
* FIR filter impulse response given a set of band edges,
|
|
* the desired reponse on those bands, and the weight given to
|
|
* the error in those bands.
|
|
*
|
|
* INPUT:
|
|
* ------
|
|
* int numtaps - Number of filter coefficients
|
|
* int numband - Number of bands in filter specification
|
|
* double bands[] - User-specified band edges [2 * numband]
|
|
* double des[] - User-specified band responses [numband]
|
|
* double weight[] - User-specified error weights [numband]
|
|
* int type - Type of filter
|
|
*
|
|
* OUTPUT:
|
|
* -------
|
|
* double h[] - Impulse response of final filter [numtaps]
|
|
********************/
|
|
|
|
void remez(double h[], int numtaps,
|
|
int numband, double bands[], double des[], double weight[],
|
|
int type)
|
|
{
|
|
double *Grid, *W, *D, *E;
|
|
int i, iter, gridsize, r, *Ext;
|
|
double *taps, c;
|
|
double *x, *y, *ad;
|
|
int symmetry;
|
|
|
|
if (type == BANDPASS)
|
|
symmetry = POSITIVE;
|
|
else
|
|
symmetry = NEGATIVE;
|
|
|
|
r = numtaps/2; /* number of extrema */
|
|
if ((numtaps%2) && (symmetry == POSITIVE))
|
|
r++;
|
|
|
|
/*
|
|
* Predict dense grid size in advance for memory allocation
|
|
* .5 is so we round up, not truncate
|
|
*/
|
|
gridsize = 0;
|
|
for (i=0; i<numband; i++)
|
|
{
|
|
gridsize += (int)(2*r*GRIDDENSITY*(bands[2*i+1] - bands[2*i]) + .5);
|
|
}
|
|
if (symmetry == NEGATIVE)
|
|
{
|
|
gridsize--;
|
|
}
|
|
|
|
/*
|
|
* Dynamically allocate memory for arrays with proper sizes
|
|
*/
|
|
Grid = (double *)malloc(gridsize * sizeof(double));
|
|
D = (double *)malloc(gridsize * sizeof(double));
|
|
W = (double *)malloc(gridsize * sizeof(double));
|
|
E = (double *)malloc(gridsize * sizeof(double));
|
|
Ext = (int *)malloc((r+1) * sizeof(int));
|
|
taps = (double *)malloc((r+1) * sizeof(double));
|
|
x = (double *)malloc((r+1) * sizeof(double));
|
|
y = (double *)malloc((r+1) * sizeof(double));
|
|
ad = (double *)malloc((r+1) * sizeof(double));
|
|
|
|
/*
|
|
* Create dense frequency grid
|
|
*/
|
|
CreateDenseGrid(r, numtaps, numband, bands, des, weight,
|
|
&gridsize, Grid, D, W, symmetry);
|
|
InitialGuess(r, Ext, gridsize);
|
|
|
|
/*
|
|
* For Differentiator: (fix grid)
|
|
*/
|
|
if (type == DIFFERENTIATOR)
|
|
{
|
|
for (i=0; i<gridsize; i++)
|
|
{
|
|
/* D[i] = D[i]*Grid[i]; */
|
|
if (D[i] > 0.0001)
|
|
W[i] = W[i]/Grid[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For odd or Negative symmetry filters, alter the
|
|
* D[] and W[] according to Parks McClellan
|
|
*/
|
|
if (symmetry == POSITIVE)
|
|
{
|
|
if (numtaps % 2 == 0)
|
|
{
|
|
for (i=0; i<gridsize; i++)
|
|
{
|
|
c = cos(Pi * Grid[i]);
|
|
D[i] /= c;
|
|
W[i] *= c;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (numtaps % 2)
|
|
{
|
|
for (i=0; i<gridsize; i++)
|
|
{
|
|
c = sin(Pi2 * Grid[i]);
|
|
D[i] /= c;
|
|
W[i] *= c;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0; i<gridsize; i++)
|
|
{
|
|
c = sin(Pi * Grid[i]);
|
|
D[i] /= c;
|
|
W[i] *= c;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform the Remez Exchange algorithm
|
|
*/
|
|
for (iter=0; iter<MAXITERATIONS; iter++)
|
|
{
|
|
CalcParms(r, Ext, Grid, D, W, ad, x, y);
|
|
CalcError(r, ad, x, y, gridsize, Grid, D, W, E);
|
|
Search(r, Ext, gridsize, E);
|
|
if (isDone(r, Ext, E))
|
|
break;
|
|
}
|
|
if (iter == MAXITERATIONS)
|
|
{
|
|
printf("Reached maximum iteration count.\nResults may be bad.\n");
|
|
}
|
|
|
|
CalcParms(r, Ext, Grid, D, W, ad, x, y);
|
|
|
|
/*
|
|
* Find the 'taps' of the filter for use with Frequency
|
|
* Sampling. If odd or Negative symmetry, fix the taps
|
|
* according to Parks McClellan
|
|
*/
|
|
for (i=0; i<=numtaps/2; i++)
|
|
{
|
|
if (symmetry == POSITIVE)
|
|
{
|
|
if (numtaps%2)
|
|
c = 1;
|
|
else
|
|
c = cos(Pi * (double)i/numtaps);
|
|
}
|
|
else
|
|
{
|
|
if (numtaps%2)
|
|
c = sin(Pi2 * (double)i/numtaps);
|
|
else
|
|
c = sin(Pi * (double)i/numtaps);
|
|
}
|
|
taps[i] = ComputeA((double)i/numtaps, r, ad, x, y)*c;
|
|
}
|
|
|
|
/*
|
|
* Frequency sampling design with calculated taps
|
|
*/
|
|
FreqSample(numtaps, taps, h, symmetry);
|
|
|
|
/*
|
|
* Delete allocated memory
|
|
*/
|
|
free(Grid);
|
|
free(W);
|
|
free(D);
|
|
free(E);
|
|
free(Ext);
|
|
free(x);
|
|
free(y);
|
|
free(ad);
|
|
}
|
|
|